xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision 25cdda95)
1 /*
2  * Cryptographic API.
3  *
4  * Support for Samsung S5PV210 HW acceleration.
5  *
6  * Copyright (C) 2011 NetUP Inc. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/crypto.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/scatterlist.h>
27 
28 #include <crypto/ctr.h>
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/scatterwalk.h>
32 
33 #define _SBF(s, v)                      ((v) << (s))
34 
35 /* Feed control registers */
36 #define SSS_REG_FCINTSTAT               0x0000
37 #define SSS_FCINTSTAT_BRDMAINT          BIT(3)
38 #define SSS_FCINTSTAT_BTDMAINT          BIT(2)
39 #define SSS_FCINTSTAT_HRDMAINT          BIT(1)
40 #define SSS_FCINTSTAT_PKDMAINT          BIT(0)
41 
42 #define SSS_REG_FCINTENSET              0x0004
43 #define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
44 #define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
45 #define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
46 #define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
47 
48 #define SSS_REG_FCINTENCLR              0x0008
49 #define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
50 #define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
51 #define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
52 #define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
53 
54 #define SSS_REG_FCINTPEND               0x000C
55 #define SSS_FCINTPEND_BRDMAINTP         BIT(3)
56 #define SSS_FCINTPEND_BTDMAINTP         BIT(2)
57 #define SSS_FCINTPEND_HRDMAINTP         BIT(1)
58 #define SSS_FCINTPEND_PKDMAINTP         BIT(0)
59 
60 #define SSS_REG_FCFIFOSTAT              0x0010
61 #define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
62 #define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
63 #define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
64 #define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
65 #define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
66 #define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
67 #define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
68 #define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
69 
70 #define SSS_REG_FCFIFOCTRL              0x0014
71 #define SSS_FCFIFOCTRL_DESSEL           BIT(2)
72 #define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
73 #define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
74 #define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)
75 
76 #define SSS_REG_FCBRDMAS                0x0020
77 #define SSS_REG_FCBRDMAL                0x0024
78 #define SSS_REG_FCBRDMAC                0x0028
79 #define SSS_FCBRDMAC_BYTESWAP           BIT(1)
80 #define SSS_FCBRDMAC_FLUSH              BIT(0)
81 
82 #define SSS_REG_FCBTDMAS                0x0030
83 #define SSS_REG_FCBTDMAL                0x0034
84 #define SSS_REG_FCBTDMAC                0x0038
85 #define SSS_FCBTDMAC_BYTESWAP           BIT(1)
86 #define SSS_FCBTDMAC_FLUSH              BIT(0)
87 
88 #define SSS_REG_FCHRDMAS                0x0040
89 #define SSS_REG_FCHRDMAL                0x0044
90 #define SSS_REG_FCHRDMAC                0x0048
91 #define SSS_FCHRDMAC_BYTESWAP           BIT(1)
92 #define SSS_FCHRDMAC_FLUSH              BIT(0)
93 
94 #define SSS_REG_FCPKDMAS                0x0050
95 #define SSS_REG_FCPKDMAL                0x0054
96 #define SSS_REG_FCPKDMAC                0x0058
97 #define SSS_FCPKDMAC_BYTESWAP           BIT(3)
98 #define SSS_FCPKDMAC_DESCEND            BIT(2)
99 #define SSS_FCPKDMAC_TRANSMIT           BIT(1)
100 #define SSS_FCPKDMAC_FLUSH              BIT(0)
101 
102 #define SSS_REG_FCPKDMAO                0x005C
103 
104 /* AES registers */
105 #define SSS_REG_AES_CONTROL		0x00
106 #define SSS_AES_BYTESWAP_DI             BIT(11)
107 #define SSS_AES_BYTESWAP_DO             BIT(10)
108 #define SSS_AES_BYTESWAP_IV             BIT(9)
109 #define SSS_AES_BYTESWAP_CNT            BIT(8)
110 #define SSS_AES_BYTESWAP_KEY            BIT(7)
111 #define SSS_AES_KEY_CHANGE_MODE         BIT(6)
112 #define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
113 #define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
114 #define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
115 #define SSS_AES_FIFO_MODE               BIT(3)
116 #define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
117 #define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
118 #define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
119 #define SSS_AES_MODE_DECRYPT            BIT(0)
120 
121 #define SSS_REG_AES_STATUS		0x04
122 #define SSS_AES_BUSY                    BIT(2)
123 #define SSS_AES_INPUT_READY             BIT(1)
124 #define SSS_AES_OUTPUT_READY            BIT(0)
125 
126 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
127 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
128 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
129 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
130 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
131 
132 #define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
133 #define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
134 #define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))
135 
136 #define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
137 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
138 						SSS_AES_REG(dev, reg))
139 
140 /* HW engine modes */
141 #define FLAGS_AES_DECRYPT               BIT(0)
142 #define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
143 #define FLAGS_AES_CBC                   _SBF(1, 0x01)
144 #define FLAGS_AES_CTR                   _SBF(1, 0x02)
145 
146 #define AES_KEY_LEN         16
147 #define CRYPTO_QUEUE_LEN    1
148 
149 /**
150  * struct samsung_aes_variant - platform specific SSS driver data
151  * @aes_offset: AES register offset from SSS module's base.
152  *
153  * Specifies platform specific configuration of SSS module.
154  * Note: A structure for driver specific platform data is used for future
155  * expansion of its usage.
156  */
157 struct samsung_aes_variant {
158 	unsigned int			aes_offset;
159 };
160 
161 struct s5p_aes_reqctx {
162 	unsigned long			mode;
163 };
164 
165 struct s5p_aes_ctx {
166 	struct s5p_aes_dev		*dev;
167 
168 	uint8_t				aes_key[AES_MAX_KEY_SIZE];
169 	uint8_t				nonce[CTR_RFC3686_NONCE_SIZE];
170 	int				keylen;
171 };
172 
173 /**
174  * struct s5p_aes_dev - Crypto device state container
175  * @dev:	Associated device
176  * @clk:	Clock for accessing hardware
177  * @ioaddr:	Mapped IO memory region
178  * @aes_ioaddr:	Per-varian offset for AES block IO memory
179  * @irq_fc:	Feed control interrupt line
180  * @req:	Crypto request currently handled by the device
181  * @ctx:	Configuration for currently handled crypto request
182  * @sg_src:	Scatter list with source data for currently handled block
183  *		in device.  This is DMA-mapped into device.
184  * @sg_dst:	Scatter list with destination data for currently handled block
185  *		in device. This is DMA-mapped into device.
186  * @sg_src_cpy:	In case of unaligned access, copied scatter list
187  *		with source data.
188  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
189  *		with destination data.
190  * @tasklet:	New request scheduling jib
191  * @queue:	Crypto queue
192  * @busy:	Indicates whether the device is currently handling some request
193  *		thus it uses some of the fields from this state, like:
194  *		req, ctx, sg_src/dst (and copies).  This essentially
195  *		protects against concurrent access to these fields.
196  * @lock:	Lock for protecting both access to device hardware registers
197  *		and fields related to current request (including the busy field).
198  */
199 struct s5p_aes_dev {
200 	struct device			*dev;
201 	struct clk			*clk;
202 	void __iomem			*ioaddr;
203 	void __iomem			*aes_ioaddr;
204 	int				irq_fc;
205 
206 	struct ablkcipher_request	*req;
207 	struct s5p_aes_ctx		*ctx;
208 	struct scatterlist		*sg_src;
209 	struct scatterlist		*sg_dst;
210 
211 	struct scatterlist		*sg_src_cpy;
212 	struct scatterlist		*sg_dst_cpy;
213 
214 	struct tasklet_struct		tasklet;
215 	struct crypto_queue		queue;
216 	bool				busy;
217 	spinlock_t			lock;
218 };
219 
220 static struct s5p_aes_dev *s5p_dev;
221 
222 static const struct samsung_aes_variant s5p_aes_data = {
223 	.aes_offset	= 0x4000,
224 };
225 
226 static const struct samsung_aes_variant exynos_aes_data = {
227 	.aes_offset	= 0x200,
228 };
229 
230 static const struct of_device_id s5p_sss_dt_match[] = {
231 	{
232 		.compatible = "samsung,s5pv210-secss",
233 		.data = &s5p_aes_data,
234 	},
235 	{
236 		.compatible = "samsung,exynos4210-secss",
237 		.data = &exynos_aes_data,
238 	},
239 	{ },
240 };
241 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
242 
243 static inline struct samsung_aes_variant *find_s5p_sss_version
244 				   (struct platform_device *pdev)
245 {
246 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
247 		const struct of_device_id *match;
248 
249 		match = of_match_node(s5p_sss_dt_match,
250 					pdev->dev.of_node);
251 		return (struct samsung_aes_variant *)match->data;
252 	}
253 	return (struct samsung_aes_variant *)
254 			platform_get_device_id(pdev)->driver_data;
255 }
256 
257 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
258 {
259 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
260 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
261 }
262 
263 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
264 {
265 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
266 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
267 }
268 
269 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
270 {
271 	int len;
272 
273 	if (!*sg)
274 		return;
275 
276 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
277 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
278 
279 	kfree(*sg);
280 	*sg = NULL;
281 }
282 
283 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
284 			    unsigned int nbytes, int out)
285 {
286 	struct scatter_walk walk;
287 
288 	if (!nbytes)
289 		return;
290 
291 	scatterwalk_start(&walk, sg);
292 	scatterwalk_copychunks(buf, &walk, nbytes, out);
293 	scatterwalk_done(&walk, out, 0);
294 }
295 
296 static void s5p_sg_done(struct s5p_aes_dev *dev)
297 {
298 	if (dev->sg_dst_cpy) {
299 		dev_dbg(dev->dev,
300 			"Copying %d bytes of output data back to original place\n",
301 			dev->req->nbytes);
302 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
303 				dev->req->nbytes, 1);
304 	}
305 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
306 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
307 }
308 
309 /* Calls the completion. Cannot be called with dev->lock hold. */
310 static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
311 {
312 	dev->req->base.complete(&dev->req->base, err);
313 }
314 
315 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
316 {
317 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
318 }
319 
320 static void s5p_unset_indata(struct s5p_aes_dev *dev)
321 {
322 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
323 }
324 
325 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
326 			    struct scatterlist **dst)
327 {
328 	void *pages;
329 	int len;
330 
331 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
332 	if (!*dst)
333 		return -ENOMEM;
334 
335 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
336 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
337 	if (!pages) {
338 		kfree(*dst);
339 		*dst = NULL;
340 		return -ENOMEM;
341 	}
342 
343 	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
344 
345 	sg_init_table(*dst, 1);
346 	sg_set_buf(*dst, pages, len);
347 
348 	return 0;
349 }
350 
351 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
352 {
353 	int err;
354 
355 	if (!sg->length) {
356 		err = -EINVAL;
357 		goto exit;
358 	}
359 
360 	err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
361 	if (!err) {
362 		err = -ENOMEM;
363 		goto exit;
364 	}
365 
366 	dev->sg_dst = sg;
367 	err = 0;
368 
369 exit:
370 	return err;
371 }
372 
373 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
374 {
375 	int err;
376 
377 	if (!sg->length) {
378 		err = -EINVAL;
379 		goto exit;
380 	}
381 
382 	err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
383 	if (!err) {
384 		err = -ENOMEM;
385 		goto exit;
386 	}
387 
388 	dev->sg_src = sg;
389 	err = 0;
390 
391 exit:
392 	return err;
393 }
394 
395 /*
396  * Returns -ERRNO on error (mapping of new data failed).
397  * On success returns:
398  *  - 0 if there is no more data,
399  *  - 1 if new transmitting (output) data is ready and its address+length
400  *     have to be written to device (by calling s5p_set_dma_outdata()).
401  */
402 static int s5p_aes_tx(struct s5p_aes_dev *dev)
403 {
404 	int ret = 0;
405 
406 	s5p_unset_outdata(dev);
407 
408 	if (!sg_is_last(dev->sg_dst)) {
409 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
410 		if (!ret)
411 			ret = 1;
412 	}
413 
414 	return ret;
415 }
416 
417 /*
418  * Returns -ERRNO on error (mapping of new data failed).
419  * On success returns:
420  *  - 0 if there is no more data,
421  *  - 1 if new receiving (input) data is ready and its address+length
422  *     have to be written to device (by calling s5p_set_dma_indata()).
423  */
424 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
425 {
426 	int ret = 0;
427 
428 	s5p_unset_indata(dev);
429 
430 	if (!sg_is_last(dev->sg_src)) {
431 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
432 		if (!ret)
433 			ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
440 {
441 	struct platform_device *pdev = dev_id;
442 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
443 	int err_dma_tx = 0;
444 	int err_dma_rx = 0;
445 	bool tx_end = false;
446 	unsigned long flags;
447 	uint32_t status;
448 	int err;
449 
450 	spin_lock_irqsave(&dev->lock, flags);
451 
452 	/*
453 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
454 	 * reach end), then map next scatterlist entry.
455 	 * In case of such mapping error, s5p_aes_complete() should be called.
456 	 *
457 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
458 	 * and schedule new tasklet.
459 	 */
460 	status = SSS_READ(dev, FCINTSTAT);
461 	if (status & SSS_FCINTSTAT_BRDMAINT)
462 		err_dma_rx = s5p_aes_rx(dev);
463 
464 	if (status & SSS_FCINTSTAT_BTDMAINT) {
465 		if (sg_is_last(dev->sg_dst))
466 			tx_end = true;
467 		err_dma_tx = s5p_aes_tx(dev);
468 	}
469 
470 	SSS_WRITE(dev, FCINTPEND, status);
471 
472 	if (err_dma_rx < 0) {
473 		err = err_dma_rx;
474 		goto error;
475 	}
476 	if (err_dma_tx < 0) {
477 		err = err_dma_tx;
478 		goto error;
479 	}
480 
481 	if (tx_end) {
482 		s5p_sg_done(dev);
483 
484 		spin_unlock_irqrestore(&dev->lock, flags);
485 
486 		s5p_aes_complete(dev, 0);
487 		/* Device is still busy */
488 		tasklet_schedule(&dev->tasklet);
489 	} else {
490 		/*
491 		 * Writing length of DMA block (either receiving or
492 		 * transmitting) will start the operation immediately, so this
493 		 * should be done at the end (even after clearing pending
494 		 * interrupts to not miss the interrupt).
495 		 */
496 		if (err_dma_tx == 1)
497 			s5p_set_dma_outdata(dev, dev->sg_dst);
498 		if (err_dma_rx == 1)
499 			s5p_set_dma_indata(dev, dev->sg_src);
500 
501 		spin_unlock_irqrestore(&dev->lock, flags);
502 	}
503 
504 	return IRQ_HANDLED;
505 
506 error:
507 	s5p_sg_done(dev);
508 	dev->busy = false;
509 	spin_unlock_irqrestore(&dev->lock, flags);
510 	s5p_aes_complete(dev, err);
511 
512 	return IRQ_HANDLED;
513 }
514 
515 static void s5p_set_aes(struct s5p_aes_dev *dev,
516 			uint8_t *key, uint8_t *iv, unsigned int keylen)
517 {
518 	void __iomem *keystart;
519 
520 	if (iv)
521 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
522 
523 	if (keylen == AES_KEYSIZE_256)
524 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
525 	else if (keylen == AES_KEYSIZE_192)
526 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
527 	else
528 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
529 
530 	memcpy_toio(keystart, key, keylen);
531 }
532 
533 static bool s5p_is_sg_aligned(struct scatterlist *sg)
534 {
535 	while (sg) {
536 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
537 			return false;
538 		sg = sg_next(sg);
539 	}
540 
541 	return true;
542 }
543 
544 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
545 				struct ablkcipher_request *req)
546 {
547 	struct scatterlist *sg;
548 	int err;
549 
550 	dev->sg_src_cpy = NULL;
551 	sg = req->src;
552 	if (!s5p_is_sg_aligned(sg)) {
553 		dev_dbg(dev->dev,
554 			"At least one unaligned source scatter list, making a copy\n");
555 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
556 		if (err)
557 			return err;
558 
559 		sg = dev->sg_src_cpy;
560 	}
561 
562 	err = s5p_set_indata(dev, sg);
563 	if (err) {
564 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
565 		return err;
566 	}
567 
568 	return 0;
569 }
570 
571 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
572 				struct ablkcipher_request *req)
573 {
574 	struct scatterlist *sg;
575 	int err;
576 
577 	dev->sg_dst_cpy = NULL;
578 	sg = req->dst;
579 	if (!s5p_is_sg_aligned(sg)) {
580 		dev_dbg(dev->dev,
581 			"At least one unaligned dest scatter list, making a copy\n");
582 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
583 		if (err)
584 			return err;
585 
586 		sg = dev->sg_dst_cpy;
587 	}
588 
589 	err = s5p_set_outdata(dev, sg);
590 	if (err) {
591 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
592 		return err;
593 	}
594 
595 	return 0;
596 }
597 
598 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
599 {
600 	struct ablkcipher_request *req = dev->req;
601 	uint32_t aes_control;
602 	unsigned long flags;
603 	int err;
604 
605 	aes_control = SSS_AES_KEY_CHANGE_MODE;
606 	if (mode & FLAGS_AES_DECRYPT)
607 		aes_control |= SSS_AES_MODE_DECRYPT;
608 
609 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
610 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
611 	else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
612 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
613 
614 	if (dev->ctx->keylen == AES_KEYSIZE_192)
615 		aes_control |= SSS_AES_KEY_SIZE_192;
616 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
617 		aes_control |= SSS_AES_KEY_SIZE_256;
618 
619 	aes_control |= SSS_AES_FIFO_MODE;
620 
621 	/* as a variant it is possible to use byte swapping on DMA side */
622 	aes_control |= SSS_AES_BYTESWAP_DI
623 		    |  SSS_AES_BYTESWAP_DO
624 		    |  SSS_AES_BYTESWAP_IV
625 		    |  SSS_AES_BYTESWAP_KEY
626 		    |  SSS_AES_BYTESWAP_CNT;
627 
628 	spin_lock_irqsave(&dev->lock, flags);
629 
630 	SSS_WRITE(dev, FCINTENCLR,
631 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
632 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
633 
634 	err = s5p_set_indata_start(dev, req);
635 	if (err)
636 		goto indata_error;
637 
638 	err = s5p_set_outdata_start(dev, req);
639 	if (err)
640 		goto outdata_error;
641 
642 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
643 	s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
644 
645 	s5p_set_dma_indata(dev,  dev->sg_src);
646 	s5p_set_dma_outdata(dev, dev->sg_dst);
647 
648 	SSS_WRITE(dev, FCINTENSET,
649 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
650 
651 	spin_unlock_irqrestore(&dev->lock, flags);
652 
653 	return;
654 
655 outdata_error:
656 	s5p_unset_indata(dev);
657 
658 indata_error:
659 	s5p_sg_done(dev);
660 	dev->busy = false;
661 	spin_unlock_irqrestore(&dev->lock, flags);
662 	s5p_aes_complete(dev, err);
663 }
664 
665 static void s5p_tasklet_cb(unsigned long data)
666 {
667 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
668 	struct crypto_async_request *async_req, *backlog;
669 	struct s5p_aes_reqctx *reqctx;
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&dev->lock, flags);
673 	backlog   = crypto_get_backlog(&dev->queue);
674 	async_req = crypto_dequeue_request(&dev->queue);
675 
676 	if (!async_req) {
677 		dev->busy = false;
678 		spin_unlock_irqrestore(&dev->lock, flags);
679 		return;
680 	}
681 	spin_unlock_irqrestore(&dev->lock, flags);
682 
683 	if (backlog)
684 		backlog->complete(backlog, -EINPROGRESS);
685 
686 	dev->req = ablkcipher_request_cast(async_req);
687 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
688 	reqctx   = ablkcipher_request_ctx(dev->req);
689 
690 	s5p_aes_crypt_start(dev, reqctx->mode);
691 }
692 
693 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
694 			      struct ablkcipher_request *req)
695 {
696 	unsigned long flags;
697 	int err;
698 
699 	spin_lock_irqsave(&dev->lock, flags);
700 	err = ablkcipher_enqueue_request(&dev->queue, req);
701 	if (dev->busy) {
702 		spin_unlock_irqrestore(&dev->lock, flags);
703 		goto exit;
704 	}
705 	dev->busy = true;
706 
707 	spin_unlock_irqrestore(&dev->lock, flags);
708 
709 	tasklet_schedule(&dev->tasklet);
710 
711 exit:
712 	return err;
713 }
714 
715 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
716 {
717 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
718 	struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
719 	struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
720 	struct s5p_aes_dev *dev = ctx->dev;
721 
722 	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
723 		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
724 		return -EINVAL;
725 	}
726 
727 	reqctx->mode = mode;
728 
729 	return s5p_aes_handle_req(dev, req);
730 }
731 
732 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
733 			  const uint8_t *key, unsigned int keylen)
734 {
735 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
736 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
737 
738 	if (keylen != AES_KEYSIZE_128 &&
739 	    keylen != AES_KEYSIZE_192 &&
740 	    keylen != AES_KEYSIZE_256)
741 		return -EINVAL;
742 
743 	memcpy(ctx->aes_key, key, keylen);
744 	ctx->keylen = keylen;
745 
746 	return 0;
747 }
748 
749 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
750 {
751 	return s5p_aes_crypt(req, 0);
752 }
753 
754 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
755 {
756 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
757 }
758 
759 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
760 {
761 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
762 }
763 
764 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
765 {
766 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
767 }
768 
769 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
770 {
771 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
772 
773 	ctx->dev = s5p_dev;
774 	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
775 
776 	return 0;
777 }
778 
779 static struct crypto_alg algs[] = {
780 	{
781 		.cra_name		= "ecb(aes)",
782 		.cra_driver_name	= "ecb-aes-s5p",
783 		.cra_priority		= 100,
784 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
785 					  CRYPTO_ALG_ASYNC |
786 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
787 		.cra_blocksize		= AES_BLOCK_SIZE,
788 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
789 		.cra_alignmask		= 0x0f,
790 		.cra_type		= &crypto_ablkcipher_type,
791 		.cra_module		= THIS_MODULE,
792 		.cra_init		= s5p_aes_cra_init,
793 		.cra_u.ablkcipher = {
794 			.min_keysize	= AES_MIN_KEY_SIZE,
795 			.max_keysize	= AES_MAX_KEY_SIZE,
796 			.setkey		= s5p_aes_setkey,
797 			.encrypt	= s5p_aes_ecb_encrypt,
798 			.decrypt	= s5p_aes_ecb_decrypt,
799 		}
800 	},
801 	{
802 		.cra_name		= "cbc(aes)",
803 		.cra_driver_name	= "cbc-aes-s5p",
804 		.cra_priority		= 100,
805 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
806 					  CRYPTO_ALG_ASYNC |
807 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
808 		.cra_blocksize		= AES_BLOCK_SIZE,
809 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
810 		.cra_alignmask		= 0x0f,
811 		.cra_type		= &crypto_ablkcipher_type,
812 		.cra_module		= THIS_MODULE,
813 		.cra_init		= s5p_aes_cra_init,
814 		.cra_u.ablkcipher = {
815 			.min_keysize	= AES_MIN_KEY_SIZE,
816 			.max_keysize	= AES_MAX_KEY_SIZE,
817 			.ivsize		= AES_BLOCK_SIZE,
818 			.setkey		= s5p_aes_setkey,
819 			.encrypt	= s5p_aes_cbc_encrypt,
820 			.decrypt	= s5p_aes_cbc_decrypt,
821 		}
822 	},
823 };
824 
825 static int s5p_aes_probe(struct platform_device *pdev)
826 {
827 	struct device *dev = &pdev->dev;
828 	int i, j, err = -ENODEV;
829 	struct samsung_aes_variant *variant;
830 	struct s5p_aes_dev *pdata;
831 	struct resource *res;
832 
833 	if (s5p_dev)
834 		return -EEXIST;
835 
836 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
837 	if (!pdata)
838 		return -ENOMEM;
839 
840 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
842 	if (IS_ERR(pdata->ioaddr))
843 		return PTR_ERR(pdata->ioaddr);
844 
845 	variant = find_s5p_sss_version(pdev);
846 
847 	pdata->clk = devm_clk_get(dev, "secss");
848 	if (IS_ERR(pdata->clk)) {
849 		dev_err(dev, "failed to find secss clock source\n");
850 		return -ENOENT;
851 	}
852 
853 	err = clk_prepare_enable(pdata->clk);
854 	if (err < 0) {
855 		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
856 		return err;
857 	}
858 
859 	spin_lock_init(&pdata->lock);
860 
861 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
862 
863 	pdata->irq_fc = platform_get_irq(pdev, 0);
864 	if (pdata->irq_fc < 0) {
865 		err = pdata->irq_fc;
866 		dev_warn(dev, "feed control interrupt is not available.\n");
867 		goto err_irq;
868 	}
869 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
870 					s5p_aes_interrupt, IRQF_ONESHOT,
871 					pdev->name, pdev);
872 	if (err < 0) {
873 		dev_warn(dev, "feed control interrupt is not available.\n");
874 		goto err_irq;
875 	}
876 
877 	pdata->busy = false;
878 	pdata->dev = dev;
879 	platform_set_drvdata(pdev, pdata);
880 	s5p_dev = pdata;
881 
882 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
883 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
884 
885 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
886 		err = crypto_register_alg(&algs[i]);
887 		if (err)
888 			goto err_algs;
889 	}
890 
891 	dev_info(dev, "s5p-sss driver registered\n");
892 
893 	return 0;
894 
895 err_algs:
896 	dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
897 
898 	for (j = 0; j < i; j++)
899 		crypto_unregister_alg(&algs[j]);
900 
901 	tasklet_kill(&pdata->tasklet);
902 
903 err_irq:
904 	clk_disable_unprepare(pdata->clk);
905 
906 	s5p_dev = NULL;
907 
908 	return err;
909 }
910 
911 static int s5p_aes_remove(struct platform_device *pdev)
912 {
913 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
914 	int i;
915 
916 	if (!pdata)
917 		return -ENODEV;
918 
919 	for (i = 0; i < ARRAY_SIZE(algs); i++)
920 		crypto_unregister_alg(&algs[i]);
921 
922 	tasklet_kill(&pdata->tasklet);
923 
924 	clk_disable_unprepare(pdata->clk);
925 
926 	s5p_dev = NULL;
927 
928 	return 0;
929 }
930 
931 static struct platform_driver s5p_aes_crypto = {
932 	.probe	= s5p_aes_probe,
933 	.remove	= s5p_aes_remove,
934 	.driver	= {
935 		.name	= "s5p-secss",
936 		.of_match_table = s5p_sss_dt_match,
937 	},
938 };
939 
940 module_platform_driver(s5p_aes_crypto);
941 
942 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
943 MODULE_LICENSE("GPL v2");
944 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
945