xref: /openbmc/linux/drivers/crypto/s5p-sss.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36 
37 #define _SBF(s, v)			((v) << (s))
38 
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT		0x0000
41 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47 
48 #define SSS_REG_FCINTENSET		0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55 
56 #define SSS_REG_FCINTENCLR		0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63 
64 #define SSS_REG_FCINTPEND		0x000C
65 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71 
72 #define SSS_REG_FCFIFOSTAT		0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81 
82 #define SSS_REG_FCFIFOCTRL		0x0014
83 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
88 
89 #define SSS_REG_FCBRDMAS		0x0020
90 #define SSS_REG_FCBRDMAL		0x0024
91 #define SSS_REG_FCBRDMAC		0x0028
92 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93 #define SSS_FCBRDMAC_FLUSH		BIT(0)
94 
95 #define SSS_REG_FCBTDMAS		0x0030
96 #define SSS_REG_FCBTDMAL		0x0034
97 #define SSS_REG_FCBTDMAC		0x0038
98 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99 #define SSS_FCBTDMAC_FLUSH		BIT(0)
100 
101 #define SSS_REG_FCHRDMAS		0x0040
102 #define SSS_REG_FCHRDMAL		0x0044
103 #define SSS_REG_FCHRDMAC		0x0048
104 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105 #define SSS_FCHRDMAC_FLUSH		BIT(0)
106 
107 #define SSS_REG_FCPKDMAS		0x0050
108 #define SSS_REG_FCPKDMAL		0x0054
109 #define SSS_REG_FCPKDMAC		0x0058
110 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111 #define SSS_FCPKDMAC_DESCEND		BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113 #define SSS_FCPKDMAC_FLUSH		BIT(0)
114 
115 #define SSS_REG_FCPKDMAO		0x005C
116 
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL		0x00
119 #define SSS_AES_BYTESWAP_DI		BIT(11)
120 #define SSS_AES_BYTESWAP_DO		BIT(10)
121 #define SSS_AES_BYTESWAP_IV		BIT(9)
122 #define SSS_AES_BYTESWAP_CNT		BIT(8)
123 #define SSS_AES_BYTESWAP_KEY		BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE		BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT		BIT(0)
133 
134 #define SSS_REG_AES_STATUS		0x04
135 #define SSS_AES_BUSY			BIT(2)
136 #define SSS_AES_INPUT_READY		BIT(1)
137 #define SSS_AES_OUTPUT_READY		BIT(0)
138 
139 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144 
145 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148 
149 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151 						SSS_AES_REG(dev, reg))
152 
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT		BIT(0)
155 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156 #define FLAGS_AES_CBC			_SBF(1, 0x01)
157 #define FLAGS_AES_CTR			_SBF(1, 0x02)
158 
159 #define AES_KEY_LEN			16
160 #define CRYPTO_QUEUE_LEN		1
161 
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL		0x00
164 
165 #define SSS_HASH_USER_IV_EN		BIT(5)
166 #define SSS_HASH_INIT_BIT		BIT(4)
167 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170 
171 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172 
173 #define SSS_REG_HASH_CTRL_PAUSE		0x04
174 
175 #define SSS_HASH_PAUSE			BIT(0)
176 
177 #define SSS_REG_HASH_CTRL_FIFO		0x08
178 
179 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU          0
181 
182 #define SSS_REG_HASH_CTRL_SWAP		0x0C
183 
184 #define SSS_HASH_BYTESWAP_DI		BIT(3)
185 #define SSS_HASH_BYTESWAP_DO		BIT(2)
186 #define SSS_HASH_BYTESWAP_IV		BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
188 
189 #define SSS_REG_HASH_STATUS		0x10
190 
191 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194 
195 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197 
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200 
201 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203 
204 #define HASH_BLOCK_SIZE			64
205 #define HASH_REG_SIZEOF			4
206 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209 
210 /*
211  * HASH bit numbers, used by device, setting in dev->hash_flags with
212  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215  */
216 #define HASH_FLAGS_BUSY		0
217 #define HASH_FLAGS_FINAL	1
218 #define HASH_FLAGS_DMA_ACTIVE	2
219 #define HASH_FLAGS_OUTPUT_READY	3
220 #define HASH_FLAGS_DMA_READY	4
221 #define HASH_FLAGS_SGS_COPIED	5
222 #define HASH_FLAGS_SGS_ALLOCED	6
223 
224 /* HASH HW constants */
225 #define BUFLEN			HASH_BLOCK_SIZE
226 
227 #define SSS_HASH_DMA_LEN_ALIGN	8
228 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
229 
230 #define SSS_HASH_QUEUE_LENGTH	10
231 
232 /**
233  * struct samsung_aes_variant - platform specific SSS driver data
234  * @aes_offset: AES register offset from SSS module's base.
235  * @hash_offset: HASH register offset from SSS module's base.
236  * @clk_names: names of clocks needed to run SSS IP
237  *
238  * Specifies platform specific configuration of SSS module.
239  * Note: A structure for driver specific platform data is used for future
240  * expansion of its usage.
241  */
242 struct samsung_aes_variant {
243 	unsigned int			aes_offset;
244 	unsigned int			hash_offset;
245 	const char			*clk_names[2];
246 };
247 
248 struct s5p_aes_reqctx {
249 	unsigned long			mode;
250 };
251 
252 struct s5p_aes_ctx {
253 	struct s5p_aes_dev		*dev;
254 
255 	u8				aes_key[AES_MAX_KEY_SIZE];
256 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
257 	int				keylen;
258 };
259 
260 /**
261  * struct s5p_aes_dev - Crypto device state container
262  * @dev:	Associated device
263  * @clk:	Clock for accessing hardware
264  * @pclk:	APB bus clock necessary to access the hardware
265  * @ioaddr:	Mapped IO memory region
266  * @aes_ioaddr:	Per-varian offset for AES block IO memory
267  * @irq_fc:	Feed control interrupt line
268  * @req:	Crypto request currently handled by the device
269  * @ctx:	Configuration for currently handled crypto request
270  * @sg_src:	Scatter list with source data for currently handled block
271  *		in device.  This is DMA-mapped into device.
272  * @sg_dst:	Scatter list with destination data for currently handled block
273  *		in device. This is DMA-mapped into device.
274  * @sg_src_cpy:	In case of unaligned access, copied scatter list
275  *		with source data.
276  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
277  *		with destination data.
278  * @tasklet:	New request scheduling jib
279  * @queue:	Crypto queue
280  * @busy:	Indicates whether the device is currently handling some request
281  *		thus it uses some of the fields from this state, like:
282  *		req, ctx, sg_src/dst (and copies).  This essentially
283  *		protects against concurrent access to these fields.
284  * @lock:	Lock for protecting both access to device hardware registers
285  *		and fields related to current request (including the busy field).
286  * @res:	Resources for hash.
287  * @io_hash_base: Per-variant offset for HASH block IO memory.
288  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
289  *		variable.
290  * @hash_flags:	Flags for current HASH op.
291  * @hash_queue:	Async hash queue.
292  * @hash_tasklet: New HASH request scheduling job.
293  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
294  * @hash_req:	Current request sending to SSS HASH block.
295  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296  * @hash_sg_cnt: Counter for hash_sg_iter.
297  *
298  * @use_hash:	true if HASH algs enabled
299  */
300 struct s5p_aes_dev {
301 	struct device			*dev;
302 	struct clk			*clk;
303 	struct clk			*pclk;
304 	void __iomem			*ioaddr;
305 	void __iomem			*aes_ioaddr;
306 	int				irq_fc;
307 
308 	struct skcipher_request		*req;
309 	struct s5p_aes_ctx		*ctx;
310 	struct scatterlist		*sg_src;
311 	struct scatterlist		*sg_dst;
312 
313 	struct scatterlist		*sg_src_cpy;
314 	struct scatterlist		*sg_dst_cpy;
315 
316 	struct tasklet_struct		tasklet;
317 	struct crypto_queue		queue;
318 	bool				busy;
319 	spinlock_t			lock;
320 
321 	struct resource			*res;
322 	void __iomem			*io_hash_base;
323 
324 	spinlock_t			hash_lock; /* protect hash_ vars */
325 	unsigned long			hash_flags;
326 	struct crypto_queue		hash_queue;
327 	struct tasklet_struct		hash_tasklet;
328 
329 	u8				xmit_buf[BUFLEN];
330 	struct ahash_request		*hash_req;
331 	struct scatterlist		*hash_sg_iter;
332 	unsigned int			hash_sg_cnt;
333 
334 	bool				use_hash;
335 };
336 
337 /**
338  * struct s5p_hash_reqctx - HASH request context
339  * @dd:		Associated device
340  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
341  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
342  * @digest:	Digest message or IV for partial result
343  * @nregs:	Number of HW registers for digest or IV read/write
344  * @engine:	Bits for selecting type of HASH in SSS block
345  * @sg:		sg for DMA transfer
346  * @sg_len:	Length of sg for DMA transfer
347  * @sgl:	sg for joining buffer and req->src scatterlist
348  * @skip:	Skip offset in req->src for current op
349  * @total:	Total number of bytes for current request
350  * @finup:	Keep state for finup or final.
351  * @error:	Keep track of error.
352  * @bufcnt:	Number of bytes holded in buffer[]
353  * @buffer:	For byte(s) from end of req->src in UPDATE op
354  */
355 struct s5p_hash_reqctx {
356 	struct s5p_aes_dev	*dd;
357 	bool			op_update;
358 
359 	u64			digcnt;
360 	u8			digest[SHA256_DIGEST_SIZE];
361 
362 	unsigned int		nregs; /* digest_size / sizeof(reg) */
363 	u32			engine;
364 
365 	struct scatterlist	*sg;
366 	unsigned int		sg_len;
367 	struct scatterlist	sgl[2];
368 	unsigned int		skip;
369 	unsigned int		total;
370 	bool			finup;
371 	bool			error;
372 
373 	u32			bufcnt;
374 	u8			buffer[];
375 };
376 
377 /**
378  * struct s5p_hash_ctx - HASH transformation context
379  * @dd:		Associated device
380  * @flags:	Bits for algorithm HASH.
381  * @fallback:	Software transformation for zero message or size < BUFLEN.
382  */
383 struct s5p_hash_ctx {
384 	struct s5p_aes_dev	*dd;
385 	unsigned long		flags;
386 	struct crypto_shash	*fallback;
387 };
388 
389 static const struct samsung_aes_variant s5p_aes_data = {
390 	.aes_offset	= 0x4000,
391 	.hash_offset	= 0x6000,
392 	.clk_names	= { "secss", },
393 };
394 
395 static const struct samsung_aes_variant exynos_aes_data = {
396 	.aes_offset	= 0x200,
397 	.hash_offset	= 0x400,
398 	.clk_names	= { "secss", },
399 };
400 
401 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
402 	.aes_offset	= 0x400,
403 	.hash_offset	= 0x800,
404 	.clk_names	= { "aclk", "pclk", },
405 };
406 
407 static const struct of_device_id s5p_sss_dt_match[] = {
408 	{
409 		.compatible = "samsung,s5pv210-secss",
410 		.data = &s5p_aes_data,
411 	},
412 	{
413 		.compatible = "samsung,exynos4210-secss",
414 		.data = &exynos_aes_data,
415 	},
416 	{
417 		.compatible = "samsung,exynos5433-slim-sss",
418 		.data = &exynos5433_slim_aes_data,
419 	},
420 	{ },
421 };
422 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
423 
424 static inline const struct samsung_aes_variant *find_s5p_sss_version
425 				   (const struct platform_device *pdev)
426 {
427 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
428 		return of_device_get_match_data(&pdev->dev);
429 
430 	return (const struct samsung_aes_variant *)
431 			platform_get_device_id(pdev)->driver_data;
432 }
433 
434 static struct s5p_aes_dev *s5p_dev;
435 
436 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
437 			       const struct scatterlist *sg)
438 {
439 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
440 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
441 }
442 
443 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
444 				const struct scatterlist *sg)
445 {
446 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
447 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
448 }
449 
450 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
451 {
452 	int len;
453 
454 	if (!*sg)
455 		return;
456 
457 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
458 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
459 
460 	kfree(*sg);
461 	*sg = NULL;
462 }
463 
464 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
465 			    unsigned int nbytes, int out)
466 {
467 	struct scatter_walk walk;
468 
469 	if (!nbytes)
470 		return;
471 
472 	scatterwalk_start(&walk, sg);
473 	scatterwalk_copychunks(buf, &walk, nbytes, out);
474 	scatterwalk_done(&walk, out, 0);
475 }
476 
477 static void s5p_sg_done(struct s5p_aes_dev *dev)
478 {
479 	struct skcipher_request *req = dev->req;
480 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
481 
482 	if (dev->sg_dst_cpy) {
483 		dev_dbg(dev->dev,
484 			"Copying %d bytes of output data back to original place\n",
485 			dev->req->cryptlen);
486 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
487 				dev->req->cryptlen, 1);
488 	}
489 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
490 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
491 	if (reqctx->mode & FLAGS_AES_CBC)
492 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
493 
494 	else if (reqctx->mode & FLAGS_AES_CTR)
495 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
496 }
497 
498 /* Calls the completion. Cannot be called with dev->lock hold. */
499 static void s5p_aes_complete(struct skcipher_request *req, int err)
500 {
501 	skcipher_request_complete(req, err);
502 }
503 
504 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
505 {
506 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
507 }
508 
509 static void s5p_unset_indata(struct s5p_aes_dev *dev)
510 {
511 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
512 }
513 
514 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
515 			   struct scatterlist **dst)
516 {
517 	void *pages;
518 	int len;
519 
520 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
521 	if (!*dst)
522 		return -ENOMEM;
523 
524 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
525 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
526 	if (!pages) {
527 		kfree(*dst);
528 		*dst = NULL;
529 		return -ENOMEM;
530 	}
531 
532 	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
533 
534 	sg_init_table(*dst, 1);
535 	sg_set_buf(*dst, pages, len);
536 
537 	return 0;
538 }
539 
540 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
541 {
542 	if (!sg->length)
543 		return -EINVAL;
544 
545 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
546 		return -ENOMEM;
547 
548 	dev->sg_dst = sg;
549 
550 	return 0;
551 }
552 
553 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
554 {
555 	if (!sg->length)
556 		return -EINVAL;
557 
558 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
559 		return -ENOMEM;
560 
561 	dev->sg_src = sg;
562 
563 	return 0;
564 }
565 
566 /*
567  * Returns -ERRNO on error (mapping of new data failed).
568  * On success returns:
569  *  - 0 if there is no more data,
570  *  - 1 if new transmitting (output) data is ready and its address+length
571  *     have to be written to device (by calling s5p_set_dma_outdata()).
572  */
573 static int s5p_aes_tx(struct s5p_aes_dev *dev)
574 {
575 	int ret = 0;
576 
577 	s5p_unset_outdata(dev);
578 
579 	if (!sg_is_last(dev->sg_dst)) {
580 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
581 		if (!ret)
582 			ret = 1;
583 	}
584 
585 	return ret;
586 }
587 
588 /*
589  * Returns -ERRNO on error (mapping of new data failed).
590  * On success returns:
591  *  - 0 if there is no more data,
592  *  - 1 if new receiving (input) data is ready and its address+length
593  *     have to be written to device (by calling s5p_set_dma_indata()).
594  */
595 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
596 {
597 	int ret = 0;
598 
599 	s5p_unset_indata(dev);
600 
601 	if (!sg_is_last(dev->sg_src)) {
602 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
603 		if (!ret)
604 			ret = 1;
605 	}
606 
607 	return ret;
608 }
609 
610 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
611 {
612 	return __raw_readl(dd->io_hash_base + offset);
613 }
614 
615 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
616 				  u32 offset, u32 value)
617 {
618 	__raw_writel(value, dd->io_hash_base + offset);
619 }
620 
621 /**
622  * s5p_set_dma_hashdata() - start DMA with sg
623  * @dev:	device
624  * @sg:		scatterlist ready to DMA transmit
625  */
626 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
627 				 const struct scatterlist *sg)
628 {
629 	dev->hash_sg_cnt--;
630 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
631 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
632 }
633 
634 /**
635  * s5p_hash_rx() - get next hash_sg_iter
636  * @dev:	device
637  *
638  * Return:
639  * 2	if there is no more data and it is UPDATE op
640  * 1	if new receiving (input) data is ready and can be written to device
641  * 0	if there is no more data and it is FINAL op
642  */
643 static int s5p_hash_rx(struct s5p_aes_dev *dev)
644 {
645 	if (dev->hash_sg_cnt > 0) {
646 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
647 		return 1;
648 	}
649 
650 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
651 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
652 		return 0;
653 
654 	return 2;
655 }
656 
657 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
658 {
659 	struct platform_device *pdev = dev_id;
660 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
661 	struct skcipher_request *req;
662 	int err_dma_tx = 0;
663 	int err_dma_rx = 0;
664 	int err_dma_hx = 0;
665 	bool tx_end = false;
666 	bool hx_end = false;
667 	unsigned long flags;
668 	u32 status, st_bits;
669 	int err;
670 
671 	spin_lock_irqsave(&dev->lock, flags);
672 
673 	/*
674 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
675 	 * reach end), then map next scatterlist entry.
676 	 * In case of such mapping error, s5p_aes_complete() should be called.
677 	 *
678 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
679 	 * and schedule new tasklet.
680 	 *
681 	 * Handle hx interrupt. If there is still data map next entry.
682 	 */
683 	status = SSS_READ(dev, FCINTSTAT);
684 	if (status & SSS_FCINTSTAT_BRDMAINT)
685 		err_dma_rx = s5p_aes_rx(dev);
686 
687 	if (status & SSS_FCINTSTAT_BTDMAINT) {
688 		if (sg_is_last(dev->sg_dst))
689 			tx_end = true;
690 		err_dma_tx = s5p_aes_tx(dev);
691 	}
692 
693 	if (status & SSS_FCINTSTAT_HRDMAINT)
694 		err_dma_hx = s5p_hash_rx(dev);
695 
696 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
697 				SSS_FCINTSTAT_HRDMAINT);
698 	/* clear DMA bits */
699 	SSS_WRITE(dev, FCINTPEND, st_bits);
700 
701 	/* clear HASH irq bits */
702 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
703 		/* cannot have both HPART and HDONE */
704 		if (status & SSS_FCINTSTAT_HPARTINT)
705 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
706 
707 		if (status & SSS_FCINTSTAT_HDONEINT)
708 			st_bits = SSS_HASH_STATUS_MSG_DONE;
709 
710 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
711 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
712 		hx_end = true;
713 		/* when DONE or PART, do not handle HASH DMA */
714 		err_dma_hx = 0;
715 	}
716 
717 	if (err_dma_rx < 0) {
718 		err = err_dma_rx;
719 		goto error;
720 	}
721 	if (err_dma_tx < 0) {
722 		err = err_dma_tx;
723 		goto error;
724 	}
725 
726 	if (tx_end) {
727 		s5p_sg_done(dev);
728 		if (err_dma_hx == 1)
729 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
730 
731 		spin_unlock_irqrestore(&dev->lock, flags);
732 
733 		s5p_aes_complete(dev->req, 0);
734 		/* Device is still busy */
735 		tasklet_schedule(&dev->tasklet);
736 	} else {
737 		/*
738 		 * Writing length of DMA block (either receiving or
739 		 * transmitting) will start the operation immediately, so this
740 		 * should be done at the end (even after clearing pending
741 		 * interrupts to not miss the interrupt).
742 		 */
743 		if (err_dma_tx == 1)
744 			s5p_set_dma_outdata(dev, dev->sg_dst);
745 		if (err_dma_rx == 1)
746 			s5p_set_dma_indata(dev, dev->sg_src);
747 		if (err_dma_hx == 1)
748 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
749 
750 		spin_unlock_irqrestore(&dev->lock, flags);
751 	}
752 
753 	goto hash_irq_end;
754 
755 error:
756 	s5p_sg_done(dev);
757 	dev->busy = false;
758 	req = dev->req;
759 	if (err_dma_hx == 1)
760 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
761 
762 	spin_unlock_irqrestore(&dev->lock, flags);
763 	s5p_aes_complete(req, err);
764 
765 hash_irq_end:
766 	/*
767 	 * Note about else if:
768 	 *   when hash_sg_iter reaches end and its UPDATE op,
769 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
770 	 */
771 	if (hx_end)
772 		tasklet_schedule(&dev->hash_tasklet);
773 	else if (err_dma_hx == 2)
774 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
775 			       SSS_HASH_PAUSE);
776 
777 	return IRQ_HANDLED;
778 }
779 
780 /**
781  * s5p_hash_read_msg() - read message or IV from HW
782  * @req:	AHASH request
783  */
784 static void s5p_hash_read_msg(struct ahash_request *req)
785 {
786 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
787 	struct s5p_aes_dev *dd = ctx->dd;
788 	u32 *hash = (u32 *)ctx->digest;
789 	unsigned int i;
790 
791 	for (i = 0; i < ctx->nregs; i++)
792 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
793 }
794 
795 /**
796  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
797  * @dd:		device
798  * @ctx:	request context
799  */
800 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
801 				  const struct s5p_hash_reqctx *ctx)
802 {
803 	const u32 *hash = (const u32 *)ctx->digest;
804 	unsigned int i;
805 
806 	for (i = 0; i < ctx->nregs; i++)
807 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
808 }
809 
810 /**
811  * s5p_hash_write_iv() - write IV for next partial/finup op.
812  * @req:	AHASH request
813  */
814 static void s5p_hash_write_iv(struct ahash_request *req)
815 {
816 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
817 
818 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
819 }
820 
821 /**
822  * s5p_hash_copy_result() - copy digest into req->result
823  * @req:	AHASH request
824  */
825 static void s5p_hash_copy_result(struct ahash_request *req)
826 {
827 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
828 
829 	if (!req->result)
830 		return;
831 
832 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
833 }
834 
835 /**
836  * s5p_hash_dma_flush() - flush HASH DMA
837  * @dev:	secss device
838  */
839 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
840 {
841 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
842 }
843 
844 /**
845  * s5p_hash_dma_enable() - enable DMA mode for HASH
846  * @dev:	secss device
847  *
848  * enable DMA mode for HASH
849  */
850 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
851 {
852 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
853 }
854 
855 /**
856  * s5p_hash_irq_disable() - disable irq HASH signals
857  * @dev:	secss device
858  * @flags:	bitfield with irq's to be disabled
859  */
860 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
861 {
862 	SSS_WRITE(dev, FCINTENCLR, flags);
863 }
864 
865 /**
866  * s5p_hash_irq_enable() - enable irq signals
867  * @dev:	secss device
868  * @flags:	bitfield with irq's to be enabled
869  */
870 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
871 {
872 	SSS_WRITE(dev, FCINTENSET, flags);
873 }
874 
875 /**
876  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
877  * @dev:	secss device
878  * @hashflow:	HASH stream flow with/without crypto AES/DES
879  */
880 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
881 {
882 	unsigned long flags;
883 	u32 flow;
884 
885 	spin_lock_irqsave(&dev->lock, flags);
886 
887 	flow = SSS_READ(dev, FCFIFOCTRL);
888 	flow &= ~SSS_HASHIN_MASK;
889 	flow |= hashflow;
890 	SSS_WRITE(dev, FCFIFOCTRL, flow);
891 
892 	spin_unlock_irqrestore(&dev->lock, flags);
893 }
894 
895 /**
896  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
897  * @dev:	secss device
898  * @hashflow:	HASH stream flow with/without AES/DES
899  *
900  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
901  * enable HASH irq's HRDMA, HDONE, HPART
902  */
903 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
904 {
905 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
906 			     SSS_FCINTENCLR_HDONEINTENCLR |
907 			     SSS_FCINTENCLR_HPARTINTENCLR);
908 	s5p_hash_dma_flush(dev);
909 
910 	s5p_hash_dma_enable(dev);
911 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
912 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
913 			    SSS_FCINTENSET_HDONEINTENSET |
914 			    SSS_FCINTENSET_HPARTINTENSET);
915 }
916 
917 /**
918  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
919  * @dd:		secss device
920  * @length:	length for request
921  * @final:	true if final op
922  *
923  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
924  * after previous updates, fill up IV words. For final, calculate and set
925  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
926  * length as 2^63 so it will be never reached and set to zero prelow and
927  * prehigh.
928  *
929  * This function does not start DMA transfer.
930  */
931 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
932 				bool final)
933 {
934 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
935 	u32 prelow, prehigh, low, high;
936 	u32 configflags, swapflags;
937 	u64 tmplen;
938 
939 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
940 
941 	if (likely(ctx->digcnt)) {
942 		s5p_hash_write_ctx_iv(dd, ctx);
943 		configflags |= SSS_HASH_USER_IV_EN;
944 	}
945 
946 	if (final) {
947 		/* number of bytes for last part */
948 		low = length;
949 		high = 0;
950 		/* total number of bits prev hashed */
951 		tmplen = ctx->digcnt * 8;
952 		prelow = (u32)tmplen;
953 		prehigh = (u32)(tmplen >> 32);
954 	} else {
955 		prelow = 0;
956 		prehigh = 0;
957 		low = 0;
958 		high = BIT(31);
959 	}
960 
961 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
962 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
963 
964 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
965 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
966 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
967 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
968 
969 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
970 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
971 }
972 
973 /**
974  * s5p_hash_xmit_dma() - start DMA hash processing
975  * @dd:		secss device
976  * @length:	length for request
977  * @final:	true if final op
978  *
979  * Update digcnt here, as it is needed for finup/final op.
980  */
981 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
982 			     bool final)
983 {
984 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
985 	unsigned int cnt;
986 
987 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
988 	if (!cnt) {
989 		dev_err(dd->dev, "dma_map_sg error\n");
990 		ctx->error = true;
991 		return -EINVAL;
992 	}
993 
994 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
995 	dd->hash_sg_iter = ctx->sg;
996 	dd->hash_sg_cnt = cnt;
997 	s5p_hash_write_ctrl(dd, length, final);
998 	ctx->digcnt += length;
999 	ctx->total -= length;
1000 
1001 	/* catch last interrupt */
1002 	if (final)
1003 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1004 
1005 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1006 
1007 	return -EINPROGRESS;
1008 }
1009 
1010 /**
1011  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1012  * @ctx:	request context
1013  * @sg:		source scatterlist request
1014  * @new_len:	number of bytes to process from sg
1015  *
1016  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1017  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1018  * with allocated buffer.
1019  *
1020  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1021  */
1022 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1023 			     struct scatterlist *sg, unsigned int new_len)
1024 {
1025 	unsigned int pages, len;
1026 	void *buf;
1027 
1028 	len = new_len + ctx->bufcnt;
1029 	pages = get_order(len);
1030 
1031 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1032 	if (!buf) {
1033 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1034 		ctx->error = true;
1035 		return -ENOMEM;
1036 	}
1037 
1038 	if (ctx->bufcnt)
1039 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1040 
1041 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1042 				 new_len, 0);
1043 	sg_init_table(ctx->sgl, 1);
1044 	sg_set_buf(ctx->sgl, buf, len);
1045 	ctx->sg = ctx->sgl;
1046 	ctx->sg_len = 1;
1047 	ctx->bufcnt = 0;
1048 	ctx->skip = 0;
1049 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1056  * @ctx:	request context
1057  * @sg:		source scatterlist request
1058  * @new_len:	number of bytes to process from sg
1059  *
1060  * Allocate new scatterlist table, copy data for HASH into it. If there was
1061  * xmit_buf filled, prepare it first, then copy page, length and offset from
1062  * source sg into it, adjusting begin and/or end for skip offset and
1063  * hash_later value.
1064  *
1065  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1066  * it after irq ends processing.
1067  */
1068 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1069 				  struct scatterlist *sg, unsigned int new_len)
1070 {
1071 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1072 	struct scatterlist *tmp;
1073 	unsigned int len;
1074 
1075 	if (ctx->bufcnt)
1076 		n++;
1077 
1078 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1079 	if (!ctx->sg) {
1080 		ctx->error = true;
1081 		return -ENOMEM;
1082 	}
1083 
1084 	sg_init_table(ctx->sg, n);
1085 
1086 	tmp = ctx->sg;
1087 
1088 	ctx->sg_len = 0;
1089 
1090 	if (ctx->bufcnt) {
1091 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1092 		tmp = sg_next(tmp);
1093 		ctx->sg_len++;
1094 	}
1095 
1096 	while (sg && skip >= sg->length) {
1097 		skip -= sg->length;
1098 		sg = sg_next(sg);
1099 	}
1100 
1101 	while (sg && new_len) {
1102 		len = sg->length - skip;
1103 		if (new_len < len)
1104 			len = new_len;
1105 
1106 		new_len -= len;
1107 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1108 		skip = 0;
1109 		if (new_len <= 0)
1110 			sg_mark_end(tmp);
1111 
1112 		tmp = sg_next(tmp);
1113 		ctx->sg_len++;
1114 		sg = sg_next(sg);
1115 	}
1116 
1117 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  * s5p_hash_prepare_sgs() - prepare sg for processing
1124  * @ctx:	request context
1125  * @sg:		source scatterlist request
1126  * @new_len:	number of bytes to process from sg
1127  * @final:	final flag
1128  *
1129  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1130  * sg table have good aligned elements (list_ok). If one of this checks fails,
1131  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1132  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1133  * table and prepare sg elements.
1134  *
1135  * For digest or finup all conditions can be good, and we may not need any
1136  * fixes.
1137  */
1138 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1139 				struct scatterlist *sg,
1140 				unsigned int new_len, bool final)
1141 {
1142 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1143 	bool aligned = true, list_ok = true;
1144 	struct scatterlist *sg_tmp = sg;
1145 
1146 	if (!sg || !sg->length || !new_len)
1147 		return 0;
1148 
1149 	if (skip || !final)
1150 		list_ok = false;
1151 
1152 	while (nbytes > 0 && sg_tmp) {
1153 		n++;
1154 		if (skip >= sg_tmp->length) {
1155 			skip -= sg_tmp->length;
1156 			if (!sg_tmp->length) {
1157 				aligned = false;
1158 				break;
1159 			}
1160 		} else {
1161 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1162 				aligned = false;
1163 				break;
1164 			}
1165 
1166 			if (nbytes < sg_tmp->length - skip) {
1167 				list_ok = false;
1168 				break;
1169 			}
1170 
1171 			nbytes -= sg_tmp->length - skip;
1172 			skip = 0;
1173 		}
1174 
1175 		sg_tmp = sg_next(sg_tmp);
1176 	}
1177 
1178 	if (!aligned)
1179 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1180 	else if (!list_ok)
1181 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1182 
1183 	/*
1184 	 * Have aligned data from previous operation and/or current
1185 	 * Note: will enter here only if (digest or finup) and aligned
1186 	 */
1187 	if (ctx->bufcnt) {
1188 		ctx->sg_len = n;
1189 		sg_init_table(ctx->sgl, 2);
1190 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1191 		sg_chain(ctx->sgl, 2, sg);
1192 		ctx->sg = ctx->sgl;
1193 		ctx->sg_len++;
1194 	} else {
1195 		ctx->sg = sg;
1196 		ctx->sg_len = n;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /**
1203  * s5p_hash_prepare_request() - prepare request for processing
1204  * @req:	AHASH request
1205  * @update:	true if UPDATE op
1206  *
1207  * Note 1: we can have update flag _and_ final flag at the same time.
1208  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1209  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1210  *	   we have final op
1211  */
1212 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1213 {
1214 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1215 	bool final = ctx->finup;
1216 	int xmit_len, hash_later, nbytes;
1217 	int ret;
1218 
1219 	if (update)
1220 		nbytes = req->nbytes;
1221 	else
1222 		nbytes = 0;
1223 
1224 	ctx->total = nbytes + ctx->bufcnt;
1225 	if (!ctx->total)
1226 		return 0;
1227 
1228 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1229 		/* bytes left from previous request, so fill up to BUFLEN */
1230 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1231 
1232 		if (len > nbytes)
1233 			len = nbytes;
1234 
1235 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1236 					 0, len, 0);
1237 		ctx->bufcnt += len;
1238 		nbytes -= len;
1239 		ctx->skip = len;
1240 	} else {
1241 		ctx->skip = 0;
1242 	}
1243 
1244 	if (ctx->bufcnt)
1245 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1246 
1247 	xmit_len = ctx->total;
1248 	if (final) {
1249 		hash_later = 0;
1250 	} else {
1251 		if (IS_ALIGNED(xmit_len, BUFLEN))
1252 			xmit_len -= BUFLEN;
1253 		else
1254 			xmit_len -= xmit_len & (BUFLEN - 1);
1255 
1256 		hash_later = ctx->total - xmit_len;
1257 		/* copy hash_later bytes from end of req->src */
1258 		/* previous bytes are in xmit_buf, so no overwrite */
1259 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1260 					 req->nbytes - hash_later,
1261 					 hash_later, 0);
1262 	}
1263 
1264 	if (xmit_len > BUFLEN) {
1265 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1266 					   final);
1267 		if (ret)
1268 			return ret;
1269 	} else {
1270 		/* have buffered data only */
1271 		if (unlikely(!ctx->bufcnt)) {
1272 			/* first update didn't fill up buffer */
1273 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1274 						 0, xmit_len, 0);
1275 		}
1276 
1277 		sg_init_table(ctx->sgl, 1);
1278 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1279 
1280 		ctx->sg = ctx->sgl;
1281 		ctx->sg_len = 1;
1282 	}
1283 
1284 	ctx->bufcnt = hash_later;
1285 	if (!final)
1286 		ctx->total = xmit_len;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * s5p_hash_update_dma_stop() - unmap DMA
1293  * @dd:		secss device
1294  *
1295  * Unmap scatterlist ctx->sg.
1296  */
1297 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1298 {
1299 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1300 
1301 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1302 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1303 }
1304 
1305 /**
1306  * s5p_hash_finish() - copy calculated digest to crypto layer
1307  * @req:	AHASH request
1308  */
1309 static void s5p_hash_finish(struct ahash_request *req)
1310 {
1311 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1312 	struct s5p_aes_dev *dd = ctx->dd;
1313 
1314 	if (ctx->digcnt)
1315 		s5p_hash_copy_result(req);
1316 
1317 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1318 }
1319 
1320 /**
1321  * s5p_hash_finish_req() - finish request
1322  * @req:	AHASH request
1323  * @err:	error
1324  */
1325 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1326 {
1327 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1328 	struct s5p_aes_dev *dd = ctx->dd;
1329 	unsigned long flags;
1330 
1331 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1332 		free_pages((unsigned long)sg_virt(ctx->sg),
1333 			   get_order(ctx->sg->length));
1334 
1335 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1336 		kfree(ctx->sg);
1337 
1338 	ctx->sg = NULL;
1339 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1340 			    BIT(HASH_FLAGS_SGS_COPIED));
1341 
1342 	if (!err && !ctx->error) {
1343 		s5p_hash_read_msg(req);
1344 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1345 			s5p_hash_finish(req);
1346 	} else {
1347 		ctx->error = true;
1348 	}
1349 
1350 	spin_lock_irqsave(&dd->hash_lock, flags);
1351 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1352 			    BIT(HASH_FLAGS_DMA_READY) |
1353 			    BIT(HASH_FLAGS_OUTPUT_READY));
1354 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1355 
1356 	if (req->base.complete)
1357 		ahash_request_complete(req, err);
1358 }
1359 
1360 /**
1361  * s5p_hash_handle_queue() - handle hash queue
1362  * @dd:		device s5p_aes_dev
1363  * @req:	AHASH request
1364  *
1365  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1366  * device then processes the first request from the dd->queue
1367  *
1368  * Returns: see s5p_hash_final below.
1369  */
1370 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1371 				 struct ahash_request *req)
1372 {
1373 	struct crypto_async_request *async_req, *backlog;
1374 	struct s5p_hash_reqctx *ctx;
1375 	unsigned long flags;
1376 	int err = 0, ret = 0;
1377 
1378 retry:
1379 	spin_lock_irqsave(&dd->hash_lock, flags);
1380 	if (req)
1381 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1382 
1383 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1384 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1385 		return ret;
1386 	}
1387 
1388 	backlog = crypto_get_backlog(&dd->hash_queue);
1389 	async_req = crypto_dequeue_request(&dd->hash_queue);
1390 	if (async_req)
1391 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1392 
1393 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1394 
1395 	if (!async_req)
1396 		return ret;
1397 
1398 	if (backlog)
1399 		crypto_request_complete(backlog, -EINPROGRESS);
1400 
1401 	req = ahash_request_cast(async_req);
1402 	dd->hash_req = req;
1403 	ctx = ahash_request_ctx(req);
1404 
1405 	err = s5p_hash_prepare_request(req, ctx->op_update);
1406 	if (err || !ctx->total)
1407 		goto out;
1408 
1409 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1410 		ctx->op_update, req->nbytes);
1411 
1412 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1413 	if (ctx->digcnt)
1414 		s5p_hash_write_iv(req); /* restore hash IV */
1415 
1416 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1417 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1418 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1419 			/* no final() after finup() */
1420 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1421 	} else { /* HASH_OP_FINAL */
1422 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423 	}
1424 out:
1425 	if (err != -EINPROGRESS) {
1426 		/* hash_tasklet_cb will not finish it, so do it here */
1427 		s5p_hash_finish_req(req, err);
1428 		req = NULL;
1429 
1430 		/*
1431 		 * Execute next request immediately if there is anything
1432 		 * in queue.
1433 		 */
1434 		goto retry;
1435 	}
1436 
1437 	return ret;
1438 }
1439 
1440 /**
1441  * s5p_hash_tasklet_cb() - hash tasklet
1442  * @data:	ptr to s5p_aes_dev
1443  */
1444 static void s5p_hash_tasklet_cb(unsigned long data)
1445 {
1446 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1447 
1448 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1449 		s5p_hash_handle_queue(dd, NULL);
1450 		return;
1451 	}
1452 
1453 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1454 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1455 				       &dd->hash_flags)) {
1456 			s5p_hash_update_dma_stop(dd);
1457 		}
1458 
1459 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1460 				       &dd->hash_flags)) {
1461 			/* hash or semi-hash ready */
1462 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1463 			goto finish;
1464 		}
1465 	}
1466 
1467 	return;
1468 
1469 finish:
1470 	/* finish curent request */
1471 	s5p_hash_finish_req(dd->hash_req, 0);
1472 
1473 	/* If we are not busy, process next req */
1474 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1475 		s5p_hash_handle_queue(dd, NULL);
1476 }
1477 
1478 /**
1479  * s5p_hash_enqueue() - enqueue request
1480  * @req:	AHASH request
1481  * @op:		operation UPDATE (true) or FINAL (false)
1482  *
1483  * Returns: see s5p_hash_final below.
1484  */
1485 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1486 {
1487 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1488 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1489 
1490 	ctx->op_update = op;
1491 
1492 	return s5p_hash_handle_queue(tctx->dd, req);
1493 }
1494 
1495 /**
1496  * s5p_hash_update() - process the hash input data
1497  * @req:	AHASH request
1498  *
1499  * If request will fit in buffer, copy it and return immediately
1500  * else enqueue it with OP_UPDATE.
1501  *
1502  * Returns: see s5p_hash_final below.
1503  */
1504 static int s5p_hash_update(struct ahash_request *req)
1505 {
1506 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1507 
1508 	if (!req->nbytes)
1509 		return 0;
1510 
1511 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1512 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1513 					 0, req->nbytes, 0);
1514 		ctx->bufcnt += req->nbytes;
1515 		return 0;
1516 	}
1517 
1518 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1519 }
1520 
1521 /**
1522  * s5p_hash_final() - close up hash and calculate digest
1523  * @req:	AHASH request
1524  *
1525  * Note: in final req->src do not have any data, and req->nbytes can be
1526  * non-zero.
1527  *
1528  * If there were no input data processed yet and the buffered hash data is
1529  * less than BUFLEN (64) then calculate the final hash immediately by using
1530  * SW algorithm fallback.
1531  *
1532  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1533  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1534  * previous update op, so there are always some buffered bytes in ctx->buffer,
1535  * which means that ctx->bufcnt!=0
1536  *
1537  * Returns:
1538  * 0 if the request has been processed immediately,
1539  * -EINPROGRESS if the operation has been queued for later execution or is set
1540  *		to processing by HW,
1541  * -EBUSY if queue is full and request should be resubmitted later,
1542  * other negative values denotes an error.
1543  */
1544 static int s5p_hash_final(struct ahash_request *req)
1545 {
1546 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1547 
1548 	ctx->finup = true;
1549 	if (ctx->error)
1550 		return -EINVAL; /* uncompleted hash is not needed */
1551 
1552 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1553 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1554 
1555 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1556 					       ctx->bufcnt, req->result);
1557 	}
1558 
1559 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1560 }
1561 
1562 /**
1563  * s5p_hash_finup() - process last req->src and calculate digest
1564  * @req:	AHASH request containing the last update data
1565  *
1566  * Return values: see s5p_hash_final above.
1567  */
1568 static int s5p_hash_finup(struct ahash_request *req)
1569 {
1570 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1571 	int err1, err2;
1572 
1573 	ctx->finup = true;
1574 
1575 	err1 = s5p_hash_update(req);
1576 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1577 		return err1;
1578 
1579 	/*
1580 	 * final() has to be always called to cleanup resources even if
1581 	 * update() failed, except EINPROGRESS or calculate digest for small
1582 	 * size
1583 	 */
1584 	err2 = s5p_hash_final(req);
1585 
1586 	return err1 ?: err2;
1587 }
1588 
1589 /**
1590  * s5p_hash_init() - initialize AHASH request contex
1591  * @req:	AHASH request
1592  *
1593  * Init async hash request context.
1594  */
1595 static int s5p_hash_init(struct ahash_request *req)
1596 {
1597 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1598 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1599 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1600 
1601 	ctx->dd = tctx->dd;
1602 	ctx->error = false;
1603 	ctx->finup = false;
1604 	ctx->bufcnt = 0;
1605 	ctx->digcnt = 0;
1606 	ctx->total = 0;
1607 	ctx->skip = 0;
1608 
1609 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1610 		crypto_ahash_digestsize(tfm));
1611 
1612 	switch (crypto_ahash_digestsize(tfm)) {
1613 	case MD5_DIGEST_SIZE:
1614 		ctx->engine = SSS_HASH_ENGINE_MD5;
1615 		ctx->nregs = HASH_MD5_MAX_REG;
1616 		break;
1617 	case SHA1_DIGEST_SIZE:
1618 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1619 		ctx->nregs = HASH_SHA1_MAX_REG;
1620 		break;
1621 	case SHA256_DIGEST_SIZE:
1622 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1623 		ctx->nregs = HASH_SHA256_MAX_REG;
1624 		break;
1625 	default:
1626 		ctx->error = true;
1627 		return -EINVAL;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  * s5p_hash_digest - calculate digest from req->src
1635  * @req:	AHASH request
1636  *
1637  * Return values: see s5p_hash_final above.
1638  */
1639 static int s5p_hash_digest(struct ahash_request *req)
1640 {
1641 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1642 }
1643 
1644 /**
1645  * s5p_hash_cra_init_alg - init crypto alg transformation
1646  * @tfm:	crypto transformation
1647  */
1648 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1649 {
1650 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1651 	const char *alg_name = crypto_tfm_alg_name(tfm);
1652 
1653 	tctx->dd = s5p_dev;
1654 	/* Allocate a fallback and abort if it failed. */
1655 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1656 					    CRYPTO_ALG_NEED_FALLBACK);
1657 	if (IS_ERR(tctx->fallback)) {
1658 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1659 		return PTR_ERR(tctx->fallback);
1660 	}
1661 
1662 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1663 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  * s5p_hash_cra_init - init crypto tfm
1670  * @tfm:	crypto transformation
1671  */
1672 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1673 {
1674 	return s5p_hash_cra_init_alg(tfm);
1675 }
1676 
1677 /**
1678  * s5p_hash_cra_exit - exit crypto tfm
1679  * @tfm:	crypto transformation
1680  *
1681  * free allocated fallback
1682  */
1683 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1684 {
1685 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1686 
1687 	crypto_free_shash(tctx->fallback);
1688 	tctx->fallback = NULL;
1689 }
1690 
1691 /**
1692  * s5p_hash_export - export hash state
1693  * @req:	AHASH request
1694  * @out:	buffer for exported state
1695  */
1696 static int s5p_hash_export(struct ahash_request *req, void *out)
1697 {
1698 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1699 
1700 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1701 
1702 	return 0;
1703 }
1704 
1705 /**
1706  * s5p_hash_import - import hash state
1707  * @req:	AHASH request
1708  * @in:		buffer with state to be imported from
1709  */
1710 static int s5p_hash_import(struct ahash_request *req, const void *in)
1711 {
1712 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1713 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1714 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1715 	const struct s5p_hash_reqctx *ctx_in = in;
1716 
1717 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1718 	if (ctx_in->bufcnt > BUFLEN) {
1719 		ctx->error = true;
1720 		return -EINVAL;
1721 	}
1722 
1723 	ctx->dd = tctx->dd;
1724 	ctx->error = false;
1725 
1726 	return 0;
1727 }
1728 
1729 static struct ahash_alg algs_sha1_md5_sha256[] = {
1730 {
1731 	.init		= s5p_hash_init,
1732 	.update		= s5p_hash_update,
1733 	.final		= s5p_hash_final,
1734 	.finup		= s5p_hash_finup,
1735 	.digest		= s5p_hash_digest,
1736 	.export		= s5p_hash_export,
1737 	.import		= s5p_hash_import,
1738 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1739 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1740 	.halg.base	= {
1741 		.cra_name		= "sha1",
1742 		.cra_driver_name	= "exynos-sha1",
1743 		.cra_priority		= 100,
1744 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1745 					  CRYPTO_ALG_ASYNC |
1746 					  CRYPTO_ALG_NEED_FALLBACK,
1747 		.cra_blocksize		= HASH_BLOCK_SIZE,
1748 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1749 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1750 		.cra_module		= THIS_MODULE,
1751 		.cra_init		= s5p_hash_cra_init,
1752 		.cra_exit		= s5p_hash_cra_exit,
1753 	}
1754 },
1755 {
1756 	.init		= s5p_hash_init,
1757 	.update		= s5p_hash_update,
1758 	.final		= s5p_hash_final,
1759 	.finup		= s5p_hash_finup,
1760 	.digest		= s5p_hash_digest,
1761 	.export		= s5p_hash_export,
1762 	.import		= s5p_hash_import,
1763 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1764 	.halg.digestsize	= MD5_DIGEST_SIZE,
1765 	.halg.base	= {
1766 		.cra_name		= "md5",
1767 		.cra_driver_name	= "exynos-md5",
1768 		.cra_priority		= 100,
1769 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1770 					  CRYPTO_ALG_ASYNC |
1771 					  CRYPTO_ALG_NEED_FALLBACK,
1772 		.cra_blocksize		= HASH_BLOCK_SIZE,
1773 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1774 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1775 		.cra_module		= THIS_MODULE,
1776 		.cra_init		= s5p_hash_cra_init,
1777 		.cra_exit		= s5p_hash_cra_exit,
1778 	}
1779 },
1780 {
1781 	.init		= s5p_hash_init,
1782 	.update		= s5p_hash_update,
1783 	.final		= s5p_hash_final,
1784 	.finup		= s5p_hash_finup,
1785 	.digest		= s5p_hash_digest,
1786 	.export		= s5p_hash_export,
1787 	.import		= s5p_hash_import,
1788 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1789 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1790 	.halg.base	= {
1791 		.cra_name		= "sha256",
1792 		.cra_driver_name	= "exynos-sha256",
1793 		.cra_priority		= 100,
1794 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1795 					  CRYPTO_ALG_ASYNC |
1796 					  CRYPTO_ALG_NEED_FALLBACK,
1797 		.cra_blocksize		= HASH_BLOCK_SIZE,
1798 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1799 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1800 		.cra_module		= THIS_MODULE,
1801 		.cra_init		= s5p_hash_cra_init,
1802 		.cra_exit		= s5p_hash_cra_exit,
1803 	}
1804 }
1805 
1806 };
1807 
1808 static void s5p_set_aes(struct s5p_aes_dev *dev,
1809 			const u8 *key, const u8 *iv, const u8 *ctr,
1810 			unsigned int keylen)
1811 {
1812 	void __iomem *keystart;
1813 
1814 	if (iv)
1815 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1816 			    AES_BLOCK_SIZE);
1817 
1818 	if (ctr)
1819 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1820 			    AES_BLOCK_SIZE);
1821 
1822 	if (keylen == AES_KEYSIZE_256)
1823 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1824 	else if (keylen == AES_KEYSIZE_192)
1825 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1826 	else
1827 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1828 
1829 	memcpy_toio(keystart, key, keylen);
1830 }
1831 
1832 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1833 {
1834 	while (sg) {
1835 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1836 			return false;
1837 		sg = sg_next(sg);
1838 	}
1839 
1840 	return true;
1841 }
1842 
1843 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1844 				struct skcipher_request *req)
1845 {
1846 	struct scatterlist *sg;
1847 	int err;
1848 
1849 	dev->sg_src_cpy = NULL;
1850 	sg = req->src;
1851 	if (!s5p_is_sg_aligned(sg)) {
1852 		dev_dbg(dev->dev,
1853 			"At least one unaligned source scatter list, making a copy\n");
1854 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1855 		if (err)
1856 			return err;
1857 
1858 		sg = dev->sg_src_cpy;
1859 	}
1860 
1861 	err = s5p_set_indata(dev, sg);
1862 	if (err) {
1863 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1864 		return err;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1871 				 struct skcipher_request *req)
1872 {
1873 	struct scatterlist *sg;
1874 	int err;
1875 
1876 	dev->sg_dst_cpy = NULL;
1877 	sg = req->dst;
1878 	if (!s5p_is_sg_aligned(sg)) {
1879 		dev_dbg(dev->dev,
1880 			"At least one unaligned dest scatter list, making a copy\n");
1881 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1882 		if (err)
1883 			return err;
1884 
1885 		sg = dev->sg_dst_cpy;
1886 	}
1887 
1888 	err = s5p_set_outdata(dev, sg);
1889 	if (err) {
1890 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1891 		return err;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1898 {
1899 	struct skcipher_request *req = dev->req;
1900 	u32 aes_control;
1901 	unsigned long flags;
1902 	int err;
1903 	u8 *iv, *ctr;
1904 
1905 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1906 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1907 	if (mode & FLAGS_AES_DECRYPT)
1908 		aes_control |= SSS_AES_MODE_DECRYPT;
1909 
1910 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1911 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1912 		iv = req->iv;
1913 		ctr = NULL;
1914 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1915 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1916 		iv = NULL;
1917 		ctr = req->iv;
1918 	} else {
1919 		iv = NULL; /* AES_ECB */
1920 		ctr = NULL;
1921 	}
1922 
1923 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1924 		aes_control |= SSS_AES_KEY_SIZE_192;
1925 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1926 		aes_control |= SSS_AES_KEY_SIZE_256;
1927 
1928 	aes_control |= SSS_AES_FIFO_MODE;
1929 
1930 	/* as a variant it is possible to use byte swapping on DMA side */
1931 	aes_control |= SSS_AES_BYTESWAP_DI
1932 		    |  SSS_AES_BYTESWAP_DO
1933 		    |  SSS_AES_BYTESWAP_IV
1934 		    |  SSS_AES_BYTESWAP_KEY
1935 		    |  SSS_AES_BYTESWAP_CNT;
1936 
1937 	spin_lock_irqsave(&dev->lock, flags);
1938 
1939 	SSS_WRITE(dev, FCINTENCLR,
1940 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1941 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1942 
1943 	err = s5p_set_indata_start(dev, req);
1944 	if (err)
1945 		goto indata_error;
1946 
1947 	err = s5p_set_outdata_start(dev, req);
1948 	if (err)
1949 		goto outdata_error;
1950 
1951 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1952 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1953 
1954 	s5p_set_dma_indata(dev,  dev->sg_src);
1955 	s5p_set_dma_outdata(dev, dev->sg_dst);
1956 
1957 	SSS_WRITE(dev, FCINTENSET,
1958 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1959 
1960 	spin_unlock_irqrestore(&dev->lock, flags);
1961 
1962 	return;
1963 
1964 outdata_error:
1965 	s5p_unset_indata(dev);
1966 
1967 indata_error:
1968 	s5p_sg_done(dev);
1969 	dev->busy = false;
1970 	spin_unlock_irqrestore(&dev->lock, flags);
1971 	s5p_aes_complete(req, err);
1972 }
1973 
1974 static void s5p_tasklet_cb(unsigned long data)
1975 {
1976 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1977 	struct crypto_async_request *async_req, *backlog;
1978 	struct s5p_aes_reqctx *reqctx;
1979 	unsigned long flags;
1980 
1981 	spin_lock_irqsave(&dev->lock, flags);
1982 	backlog   = crypto_get_backlog(&dev->queue);
1983 	async_req = crypto_dequeue_request(&dev->queue);
1984 
1985 	if (!async_req) {
1986 		dev->busy = false;
1987 		spin_unlock_irqrestore(&dev->lock, flags);
1988 		return;
1989 	}
1990 	spin_unlock_irqrestore(&dev->lock, flags);
1991 
1992 	if (backlog)
1993 		crypto_request_complete(backlog, -EINPROGRESS);
1994 
1995 	dev->req = skcipher_request_cast(async_req);
1996 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1997 	reqctx   = skcipher_request_ctx(dev->req);
1998 
1999 	s5p_aes_crypt_start(dev, reqctx->mode);
2000 }
2001 
2002 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2003 			      struct skcipher_request *req)
2004 {
2005 	unsigned long flags;
2006 	int err;
2007 
2008 	spin_lock_irqsave(&dev->lock, flags);
2009 	err = crypto_enqueue_request(&dev->queue, &req->base);
2010 	if (dev->busy) {
2011 		spin_unlock_irqrestore(&dev->lock, flags);
2012 		return err;
2013 	}
2014 	dev->busy = true;
2015 
2016 	spin_unlock_irqrestore(&dev->lock, flags);
2017 
2018 	tasklet_schedule(&dev->tasklet);
2019 
2020 	return err;
2021 }
2022 
2023 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2024 {
2025 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2026 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2027 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2028 	struct s5p_aes_dev *dev = ctx->dev;
2029 
2030 	if (!req->cryptlen)
2031 		return 0;
2032 
2033 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2034 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2035 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2036 		return -EINVAL;
2037 	}
2038 
2039 	reqctx->mode = mode;
2040 
2041 	return s5p_aes_handle_req(dev, req);
2042 }
2043 
2044 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2045 			  const u8 *key, unsigned int keylen)
2046 {
2047 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2048 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2049 
2050 	if (keylen != AES_KEYSIZE_128 &&
2051 	    keylen != AES_KEYSIZE_192 &&
2052 	    keylen != AES_KEYSIZE_256)
2053 		return -EINVAL;
2054 
2055 	memcpy(ctx->aes_key, key, keylen);
2056 	ctx->keylen = keylen;
2057 
2058 	return 0;
2059 }
2060 
2061 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2062 {
2063 	return s5p_aes_crypt(req, 0);
2064 }
2065 
2066 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2067 {
2068 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2069 }
2070 
2071 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2072 {
2073 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2074 }
2075 
2076 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2077 {
2078 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2079 }
2080 
2081 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2082 {
2083 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2084 }
2085 
2086 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2087 {
2088 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2089 
2090 	ctx->dev = s5p_dev;
2091 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2092 
2093 	return 0;
2094 }
2095 
2096 static struct skcipher_alg algs[] = {
2097 	{
2098 		.base.cra_name		= "ecb(aes)",
2099 		.base.cra_driver_name	= "ecb-aes-s5p",
2100 		.base.cra_priority	= 100,
2101 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2102 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2103 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2104 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2105 		.base.cra_alignmask	= 0x0f,
2106 		.base.cra_module	= THIS_MODULE,
2107 
2108 		.min_keysize		= AES_MIN_KEY_SIZE,
2109 		.max_keysize		= AES_MAX_KEY_SIZE,
2110 		.setkey			= s5p_aes_setkey,
2111 		.encrypt		= s5p_aes_ecb_encrypt,
2112 		.decrypt		= s5p_aes_ecb_decrypt,
2113 		.init			= s5p_aes_init_tfm,
2114 	},
2115 	{
2116 		.base.cra_name		= "cbc(aes)",
2117 		.base.cra_driver_name	= "cbc-aes-s5p",
2118 		.base.cra_priority	= 100,
2119 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2120 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2121 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2122 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2123 		.base.cra_alignmask	= 0x0f,
2124 		.base.cra_module	= THIS_MODULE,
2125 
2126 		.min_keysize		= AES_MIN_KEY_SIZE,
2127 		.max_keysize		= AES_MAX_KEY_SIZE,
2128 		.ivsize			= AES_BLOCK_SIZE,
2129 		.setkey			= s5p_aes_setkey,
2130 		.encrypt		= s5p_aes_cbc_encrypt,
2131 		.decrypt		= s5p_aes_cbc_decrypt,
2132 		.init			= s5p_aes_init_tfm,
2133 	},
2134 	{
2135 		.base.cra_name		= "ctr(aes)",
2136 		.base.cra_driver_name	= "ctr-aes-s5p",
2137 		.base.cra_priority	= 100,
2138 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2139 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2140 		.base.cra_blocksize	= 1,
2141 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2142 		.base.cra_alignmask	= 0x0f,
2143 		.base.cra_module	= THIS_MODULE,
2144 
2145 		.min_keysize		= AES_MIN_KEY_SIZE,
2146 		.max_keysize		= AES_MAX_KEY_SIZE,
2147 		.ivsize			= AES_BLOCK_SIZE,
2148 		.setkey			= s5p_aes_setkey,
2149 		.encrypt		= s5p_aes_ctr_crypt,
2150 		.decrypt		= s5p_aes_ctr_crypt,
2151 		.init			= s5p_aes_init_tfm,
2152 	},
2153 };
2154 
2155 static int s5p_aes_probe(struct platform_device *pdev)
2156 {
2157 	struct device *dev = &pdev->dev;
2158 	int i, j, err;
2159 	const struct samsung_aes_variant *variant;
2160 	struct s5p_aes_dev *pdata;
2161 	struct resource *res;
2162 	unsigned int hash_i;
2163 
2164 	if (s5p_dev)
2165 		return -EEXIST;
2166 
2167 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2168 	if (!pdata)
2169 		return -ENOMEM;
2170 
2171 	variant = find_s5p_sss_version(pdev);
2172 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2173 	if (!res)
2174 		return -EINVAL;
2175 
2176 	/*
2177 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2178 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2179 	 * is enabled in config. We need larger size for HASH registers in
2180 	 * secss, current describe only AES/DES
2181 	 */
2182 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2183 		if (variant == &exynos_aes_data) {
2184 			res->end += 0x300;
2185 			pdata->use_hash = true;
2186 		}
2187 	}
2188 
2189 	pdata->res = res;
2190 	pdata->ioaddr = devm_ioremap_resource(dev, res);
2191 	if (IS_ERR(pdata->ioaddr)) {
2192 		if (!pdata->use_hash)
2193 			return PTR_ERR(pdata->ioaddr);
2194 		/* try AES without HASH */
2195 		res->end -= 0x300;
2196 		pdata->use_hash = false;
2197 		pdata->ioaddr = devm_ioremap_resource(dev, res);
2198 		if (IS_ERR(pdata->ioaddr))
2199 			return PTR_ERR(pdata->ioaddr);
2200 	}
2201 
2202 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2203 	if (IS_ERR(pdata->clk))
2204 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2205 				     "failed to find secss clock %s\n",
2206 				     variant->clk_names[0]);
2207 
2208 	err = clk_prepare_enable(pdata->clk);
2209 	if (err < 0) {
2210 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2211 			variant->clk_names[0], err);
2212 		return err;
2213 	}
2214 
2215 	if (variant->clk_names[1]) {
2216 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2217 		if (IS_ERR(pdata->pclk)) {
2218 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2219 					    "failed to find clock %s\n",
2220 					    variant->clk_names[1]);
2221 			goto err_clk;
2222 		}
2223 
2224 		err = clk_prepare_enable(pdata->pclk);
2225 		if (err < 0) {
2226 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2227 				variant->clk_names[0], err);
2228 			goto err_clk;
2229 		}
2230 	} else {
2231 		pdata->pclk = NULL;
2232 	}
2233 
2234 	spin_lock_init(&pdata->lock);
2235 	spin_lock_init(&pdata->hash_lock);
2236 
2237 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2238 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2239 
2240 	pdata->irq_fc = platform_get_irq(pdev, 0);
2241 	if (pdata->irq_fc < 0) {
2242 		err = pdata->irq_fc;
2243 		dev_warn(dev, "feed control interrupt is not available.\n");
2244 		goto err_irq;
2245 	}
2246 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2247 					s5p_aes_interrupt, IRQF_ONESHOT,
2248 					pdev->name, pdev);
2249 	if (err < 0) {
2250 		dev_warn(dev, "feed control interrupt is not available.\n");
2251 		goto err_irq;
2252 	}
2253 
2254 	pdata->busy = false;
2255 	pdata->dev = dev;
2256 	platform_set_drvdata(pdev, pdata);
2257 	s5p_dev = pdata;
2258 
2259 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2260 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2261 
2262 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2263 		err = crypto_register_skcipher(&algs[i]);
2264 		if (err)
2265 			goto err_algs;
2266 	}
2267 
2268 	if (pdata->use_hash) {
2269 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2270 			     (unsigned long)pdata);
2271 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2272 
2273 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2274 		     hash_i++) {
2275 			struct ahash_alg *alg;
2276 
2277 			alg = &algs_sha1_md5_sha256[hash_i];
2278 			err = crypto_register_ahash(alg);
2279 			if (err) {
2280 				dev_err(dev, "can't register '%s': %d\n",
2281 					alg->halg.base.cra_driver_name, err);
2282 				goto err_hash;
2283 			}
2284 		}
2285 	}
2286 
2287 	dev_info(dev, "s5p-sss driver registered\n");
2288 
2289 	return 0;
2290 
2291 err_hash:
2292 	for (j = hash_i - 1; j >= 0; j--)
2293 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2294 
2295 	tasklet_kill(&pdata->hash_tasklet);
2296 	res->end -= 0x300;
2297 
2298 err_algs:
2299 	if (i < ARRAY_SIZE(algs))
2300 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2301 			err);
2302 
2303 	for (j = 0; j < i; j++)
2304 		crypto_unregister_skcipher(&algs[j]);
2305 
2306 	tasklet_kill(&pdata->tasklet);
2307 
2308 err_irq:
2309 	clk_disable_unprepare(pdata->pclk);
2310 
2311 err_clk:
2312 	clk_disable_unprepare(pdata->clk);
2313 	s5p_dev = NULL;
2314 
2315 	return err;
2316 }
2317 
2318 static int s5p_aes_remove(struct platform_device *pdev)
2319 {
2320 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2321 	int i;
2322 
2323 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2324 		crypto_unregister_skcipher(&algs[i]);
2325 
2326 	tasklet_kill(&pdata->tasklet);
2327 	if (pdata->use_hash) {
2328 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2329 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2330 
2331 		pdata->res->end -= 0x300;
2332 		tasklet_kill(&pdata->hash_tasklet);
2333 		pdata->use_hash = false;
2334 	}
2335 
2336 	clk_disable_unprepare(pdata->pclk);
2337 
2338 	clk_disable_unprepare(pdata->clk);
2339 	s5p_dev = NULL;
2340 
2341 	return 0;
2342 }
2343 
2344 static struct platform_driver s5p_aes_crypto = {
2345 	.probe	= s5p_aes_probe,
2346 	.remove	= s5p_aes_remove,
2347 	.driver	= {
2348 		.name	= "s5p-secss",
2349 		.of_match_table = s5p_sss_dt_match,
2350 	},
2351 };
2352 
2353 module_platform_driver(s5p_aes_crypto);
2354 
2355 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2356 MODULE_LICENSE("GPL v2");
2357 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2358 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2359