1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36
37 #define _SBF(s, v) ((v) << (s))
38
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT 0x0000
41 #define SSS_FCINTSTAT_HPARTINT BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47
48 #define SSS_REG_FCINTENSET 0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55
56 #define SSS_REG_FCINTENCLR 0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63
64 #define SSS_REG_FCINTPEND 0x000C
65 #define SSS_FCINTPEND_HPARTINTP BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71
72 #define SSS_REG_FCFIFOSTAT 0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81
82 #define SSS_REG_FCFIFOCTRL 0x0014
83 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
84 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
87 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88
89 #define SSS_REG_FCBRDMAS 0x0020
90 #define SSS_REG_FCBRDMAL 0x0024
91 #define SSS_REG_FCBRDMAC 0x0028
92 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
93 #define SSS_FCBRDMAC_FLUSH BIT(0)
94
95 #define SSS_REG_FCBTDMAS 0x0030
96 #define SSS_REG_FCBTDMAL 0x0034
97 #define SSS_REG_FCBTDMAC 0x0038
98 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
99 #define SSS_FCBTDMAC_FLUSH BIT(0)
100
101 #define SSS_REG_FCHRDMAS 0x0040
102 #define SSS_REG_FCHRDMAL 0x0044
103 #define SSS_REG_FCHRDMAC 0x0048
104 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
105 #define SSS_FCHRDMAC_FLUSH BIT(0)
106
107 #define SSS_REG_FCPKDMAS 0x0050
108 #define SSS_REG_FCPKDMAL 0x0054
109 #define SSS_REG_FCPKDMAC 0x0058
110 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
111 #define SSS_FCPKDMAC_DESCEND BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
113 #define SSS_FCPKDMAC_FLUSH BIT(0)
114
115 #define SSS_REG_FCPKDMAO 0x005C
116
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL 0x00
119 #define SSS_AES_BYTESWAP_DI BIT(11)
120 #define SSS_AES_BYTESWAP_DO BIT(10)
121 #define SSS_AES_BYTESWAP_IV BIT(9)
122 #define SSS_AES_BYTESWAP_CNT BIT(8)
123 #define SSS_AES_BYTESWAP_KEY BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
125 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT BIT(0)
133
134 #define SSS_REG_AES_STATUS 0x04
135 #define SSS_AES_BUSY BIT(2)
136 #define SSS_AES_INPUT_READY BIT(1)
137 #define SSS_AES_OUTPUT_READY BIT(0)
138
139 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144
145 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148
149 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
151 SSS_AES_REG(dev, reg))
152
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT BIT(0)
155 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
156 #define FLAGS_AES_CBC _SBF(1, 0x01)
157 #define FLAGS_AES_CTR _SBF(1, 0x02)
158
159 #define AES_KEY_LEN 16
160 #define CRYPTO_QUEUE_LEN 1
161
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL 0x00
164
165 #define SSS_HASH_USER_IV_EN BIT(5)
166 #define SSS_HASH_INIT_BIT BIT(4)
167 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170
171 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172
173 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174
175 #define SSS_HASH_PAUSE BIT(0)
176
177 #define SSS_REG_HASH_CTRL_FIFO 0x08
178
179 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU 0
181
182 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183
184 #define SSS_HASH_BYTESWAP_DI BIT(3)
185 #define SSS_HASH_BYTESWAP_DO BIT(2)
186 #define SSS_HASH_BYTESWAP_IV BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188
189 #define SSS_REG_HASH_STATUS 0x10
190
191 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194
195 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200
201 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203
204 #define HASH_BLOCK_SIZE 64
205 #define HASH_REG_SIZEOF 4
206 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209
210 /*
211 * HASH bit numbers, used by device, setting in dev->hash_flags with
212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 */
216 #define HASH_FLAGS_BUSY 0
217 #define HASH_FLAGS_FINAL 1
218 #define HASH_FLAGS_DMA_ACTIVE 2
219 #define HASH_FLAGS_OUTPUT_READY 3
220 #define HASH_FLAGS_DMA_READY 4
221 #define HASH_FLAGS_SGS_COPIED 5
222 #define HASH_FLAGS_SGS_ALLOCED 6
223
224 /* HASH HW constants */
225 #define BUFLEN HASH_BLOCK_SIZE
226
227 #define SSS_HASH_DMA_LEN_ALIGN 8
228 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
229
230 #define SSS_HASH_QUEUE_LENGTH 10
231
232 /**
233 * struct samsung_aes_variant - platform specific SSS driver data
234 * @aes_offset: AES register offset from SSS module's base.
235 * @hash_offset: HASH register offset from SSS module's base.
236 * @clk_names: names of clocks needed to run SSS IP
237 *
238 * Specifies platform specific configuration of SSS module.
239 * Note: A structure for driver specific platform data is used for future
240 * expansion of its usage.
241 */
242 struct samsung_aes_variant {
243 unsigned int aes_offset;
244 unsigned int hash_offset;
245 const char *clk_names[2];
246 };
247
248 struct s5p_aes_reqctx {
249 unsigned long mode;
250 };
251
252 struct s5p_aes_ctx {
253 struct s5p_aes_dev *dev;
254
255 u8 aes_key[AES_MAX_KEY_SIZE];
256 u8 nonce[CTR_RFC3686_NONCE_SIZE];
257 int keylen;
258 };
259
260 /**
261 * struct s5p_aes_dev - Crypto device state container
262 * @dev: Associated device
263 * @clk: Clock for accessing hardware
264 * @pclk: APB bus clock necessary to access the hardware
265 * @ioaddr: Mapped IO memory region
266 * @aes_ioaddr: Per-varian offset for AES block IO memory
267 * @irq_fc: Feed control interrupt line
268 * @req: Crypto request currently handled by the device
269 * @ctx: Configuration for currently handled crypto request
270 * @sg_src: Scatter list with source data for currently handled block
271 * in device. This is DMA-mapped into device.
272 * @sg_dst: Scatter list with destination data for currently handled block
273 * in device. This is DMA-mapped into device.
274 * @sg_src_cpy: In case of unaligned access, copied scatter list
275 * with source data.
276 * @sg_dst_cpy: In case of unaligned access, copied scatter list
277 * with destination data.
278 * @tasklet: New request scheduling jib
279 * @queue: Crypto queue
280 * @busy: Indicates whether the device is currently handling some request
281 * thus it uses some of the fields from this state, like:
282 * req, ctx, sg_src/dst (and copies). This essentially
283 * protects against concurrent access to these fields.
284 * @lock: Lock for protecting both access to device hardware registers
285 * and fields related to current request (including the busy field).
286 * @res: Resources for hash.
287 * @io_hash_base: Per-variant offset for HASH block IO memory.
288 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
289 * variable.
290 * @hash_flags: Flags for current HASH op.
291 * @hash_queue: Async hash queue.
292 * @hash_tasklet: New HASH request scheduling job.
293 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
294 * @hash_req: Current request sending to SSS HASH block.
295 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296 * @hash_sg_cnt: Counter for hash_sg_iter.
297 *
298 * @use_hash: true if HASH algs enabled
299 */
300 struct s5p_aes_dev {
301 struct device *dev;
302 struct clk *clk;
303 struct clk *pclk;
304 void __iomem *ioaddr;
305 void __iomem *aes_ioaddr;
306 int irq_fc;
307
308 struct skcipher_request *req;
309 struct s5p_aes_ctx *ctx;
310 struct scatterlist *sg_src;
311 struct scatterlist *sg_dst;
312
313 struct scatterlist *sg_src_cpy;
314 struct scatterlist *sg_dst_cpy;
315
316 struct tasklet_struct tasklet;
317 struct crypto_queue queue;
318 bool busy;
319 spinlock_t lock;
320
321 struct resource *res;
322 void __iomem *io_hash_base;
323
324 spinlock_t hash_lock; /* protect hash_ vars */
325 unsigned long hash_flags;
326 struct crypto_queue hash_queue;
327 struct tasklet_struct hash_tasklet;
328
329 u8 xmit_buf[BUFLEN];
330 struct ahash_request *hash_req;
331 struct scatterlist *hash_sg_iter;
332 unsigned int hash_sg_cnt;
333
334 bool use_hash;
335 };
336
337 /**
338 * struct s5p_hash_reqctx - HASH request context
339 * @dd: Associated device
340 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
341 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
342 * @digest: Digest message or IV for partial result
343 * @nregs: Number of HW registers for digest or IV read/write
344 * @engine: Bits for selecting type of HASH in SSS block
345 * @sg: sg for DMA transfer
346 * @sg_len: Length of sg for DMA transfer
347 * @sgl: sg for joining buffer and req->src scatterlist
348 * @skip: Skip offset in req->src for current op
349 * @total: Total number of bytes for current request
350 * @finup: Keep state for finup or final.
351 * @error: Keep track of error.
352 * @bufcnt: Number of bytes holded in buffer[]
353 * @buffer: For byte(s) from end of req->src in UPDATE op
354 */
355 struct s5p_hash_reqctx {
356 struct s5p_aes_dev *dd;
357 bool op_update;
358
359 u64 digcnt;
360 u8 digest[SHA256_DIGEST_SIZE];
361
362 unsigned int nregs; /* digest_size / sizeof(reg) */
363 u32 engine;
364
365 struct scatterlist *sg;
366 unsigned int sg_len;
367 struct scatterlist sgl[2];
368 unsigned int skip;
369 unsigned int total;
370 bool finup;
371 bool error;
372
373 u32 bufcnt;
374 u8 buffer[];
375 };
376
377 /**
378 * struct s5p_hash_ctx - HASH transformation context
379 * @dd: Associated device
380 * @flags: Bits for algorithm HASH.
381 * @fallback: Software transformation for zero message or size < BUFLEN.
382 */
383 struct s5p_hash_ctx {
384 struct s5p_aes_dev *dd;
385 unsigned long flags;
386 struct crypto_shash *fallback;
387 };
388
389 static const struct samsung_aes_variant s5p_aes_data = {
390 .aes_offset = 0x4000,
391 .hash_offset = 0x6000,
392 .clk_names = { "secss", },
393 };
394
395 static const struct samsung_aes_variant exynos_aes_data = {
396 .aes_offset = 0x200,
397 .hash_offset = 0x400,
398 .clk_names = { "secss", },
399 };
400
401 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
402 .aes_offset = 0x400,
403 .hash_offset = 0x800,
404 .clk_names = { "aclk", "pclk", },
405 };
406
407 static const struct of_device_id s5p_sss_dt_match[] = {
408 {
409 .compatible = "samsung,s5pv210-secss",
410 .data = &s5p_aes_data,
411 },
412 {
413 .compatible = "samsung,exynos4210-secss",
414 .data = &exynos_aes_data,
415 },
416 {
417 .compatible = "samsung,exynos5433-slim-sss",
418 .data = &exynos5433_slim_aes_data,
419 },
420 { },
421 };
422 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
423
find_s5p_sss_version(const struct platform_device * pdev)424 static inline const struct samsung_aes_variant *find_s5p_sss_version
425 (const struct platform_device *pdev)
426 {
427 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
428 return of_device_get_match_data(&pdev->dev);
429
430 return (const struct samsung_aes_variant *)
431 platform_get_device_id(pdev)->driver_data;
432 }
433
434 static struct s5p_aes_dev *s5p_dev;
435
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)436 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
437 const struct scatterlist *sg)
438 {
439 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
440 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
441 }
442
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)443 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
444 const struct scatterlist *sg)
445 {
446 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
447 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
448 }
449
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)450 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
451 {
452 int len;
453
454 if (!*sg)
455 return;
456
457 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
458 free_pages((unsigned long)sg_virt(*sg), get_order(len));
459
460 kfree(*sg);
461 *sg = NULL;
462 }
463
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)464 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
465 unsigned int nbytes, int out)
466 {
467 struct scatter_walk walk;
468
469 if (!nbytes)
470 return;
471
472 scatterwalk_start(&walk, sg);
473 scatterwalk_copychunks(buf, &walk, nbytes, out);
474 scatterwalk_done(&walk, out, 0);
475 }
476
s5p_sg_done(struct s5p_aes_dev * dev)477 static void s5p_sg_done(struct s5p_aes_dev *dev)
478 {
479 struct skcipher_request *req = dev->req;
480 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
481
482 if (dev->sg_dst_cpy) {
483 dev_dbg(dev->dev,
484 "Copying %d bytes of output data back to original place\n",
485 dev->req->cryptlen);
486 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
487 dev->req->cryptlen, 1);
488 }
489 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
490 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
491 if (reqctx->mode & FLAGS_AES_CBC)
492 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
493
494 else if (reqctx->mode & FLAGS_AES_CTR)
495 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
496 }
497
498 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)499 static void s5p_aes_complete(struct skcipher_request *req, int err)
500 {
501 skcipher_request_complete(req, err);
502 }
503
s5p_unset_outdata(struct s5p_aes_dev * dev)504 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
505 {
506 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
507 }
508
s5p_unset_indata(struct s5p_aes_dev * dev)509 static void s5p_unset_indata(struct s5p_aes_dev *dev)
510 {
511 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
512 }
513
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)514 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
515 struct scatterlist **dst)
516 {
517 void *pages;
518 int len;
519
520 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
521 if (!*dst)
522 return -ENOMEM;
523
524 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
525 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
526 if (!pages) {
527 kfree(*dst);
528 *dst = NULL;
529 return -ENOMEM;
530 }
531
532 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
533
534 sg_init_table(*dst, 1);
535 sg_set_buf(*dst, pages, len);
536
537 return 0;
538 }
539
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)540 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
541 {
542 if (!sg->length)
543 return -EINVAL;
544
545 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
546 return -ENOMEM;
547
548 dev->sg_dst = sg;
549
550 return 0;
551 }
552
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)553 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
554 {
555 if (!sg->length)
556 return -EINVAL;
557
558 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
559 return -ENOMEM;
560
561 dev->sg_src = sg;
562
563 return 0;
564 }
565
566 /*
567 * Returns -ERRNO on error (mapping of new data failed).
568 * On success returns:
569 * - 0 if there is no more data,
570 * - 1 if new transmitting (output) data is ready and its address+length
571 * have to be written to device (by calling s5p_set_dma_outdata()).
572 */
s5p_aes_tx(struct s5p_aes_dev * dev)573 static int s5p_aes_tx(struct s5p_aes_dev *dev)
574 {
575 int ret = 0;
576
577 s5p_unset_outdata(dev);
578
579 if (!sg_is_last(dev->sg_dst)) {
580 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
581 if (!ret)
582 ret = 1;
583 }
584
585 return ret;
586 }
587
588 /*
589 * Returns -ERRNO on error (mapping of new data failed).
590 * On success returns:
591 * - 0 if there is no more data,
592 * - 1 if new receiving (input) data is ready and its address+length
593 * have to be written to device (by calling s5p_set_dma_indata()).
594 */
s5p_aes_rx(struct s5p_aes_dev * dev)595 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
596 {
597 int ret = 0;
598
599 s5p_unset_indata(dev);
600
601 if (!sg_is_last(dev->sg_src)) {
602 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
603 if (!ret)
604 ret = 1;
605 }
606
607 return ret;
608 }
609
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)610 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
611 {
612 return __raw_readl(dd->io_hash_base + offset);
613 }
614
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)615 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
616 u32 offset, u32 value)
617 {
618 __raw_writel(value, dd->io_hash_base + offset);
619 }
620
621 /**
622 * s5p_set_dma_hashdata() - start DMA with sg
623 * @dev: device
624 * @sg: scatterlist ready to DMA transmit
625 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)626 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
627 const struct scatterlist *sg)
628 {
629 dev->hash_sg_cnt--;
630 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
631 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
632 }
633
634 /**
635 * s5p_hash_rx() - get next hash_sg_iter
636 * @dev: device
637 *
638 * Return:
639 * 2 if there is no more data and it is UPDATE op
640 * 1 if new receiving (input) data is ready and can be written to device
641 * 0 if there is no more data and it is FINAL op
642 */
s5p_hash_rx(struct s5p_aes_dev * dev)643 static int s5p_hash_rx(struct s5p_aes_dev *dev)
644 {
645 if (dev->hash_sg_cnt > 0) {
646 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
647 return 1;
648 }
649
650 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
651 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
652 return 0;
653
654 return 2;
655 }
656
s5p_aes_interrupt(int irq,void * dev_id)657 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
658 {
659 struct platform_device *pdev = dev_id;
660 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
661 struct skcipher_request *req;
662 int err_dma_tx = 0;
663 int err_dma_rx = 0;
664 int err_dma_hx = 0;
665 bool tx_end = false;
666 bool hx_end = false;
667 unsigned long flags;
668 u32 status, st_bits;
669 int err;
670
671 spin_lock_irqsave(&dev->lock, flags);
672
673 /*
674 * Handle rx or tx interrupt. If there is still data (scatterlist did not
675 * reach end), then map next scatterlist entry.
676 * In case of such mapping error, s5p_aes_complete() should be called.
677 *
678 * If there is no more data in tx scatter list, call s5p_aes_complete()
679 * and schedule new tasklet.
680 *
681 * Handle hx interrupt. If there is still data map next entry.
682 */
683 status = SSS_READ(dev, FCINTSTAT);
684 if (status & SSS_FCINTSTAT_BRDMAINT)
685 err_dma_rx = s5p_aes_rx(dev);
686
687 if (status & SSS_FCINTSTAT_BTDMAINT) {
688 if (sg_is_last(dev->sg_dst))
689 tx_end = true;
690 err_dma_tx = s5p_aes_tx(dev);
691 }
692
693 if (status & SSS_FCINTSTAT_HRDMAINT)
694 err_dma_hx = s5p_hash_rx(dev);
695
696 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
697 SSS_FCINTSTAT_HRDMAINT);
698 /* clear DMA bits */
699 SSS_WRITE(dev, FCINTPEND, st_bits);
700
701 /* clear HASH irq bits */
702 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
703 /* cannot have both HPART and HDONE */
704 if (status & SSS_FCINTSTAT_HPARTINT)
705 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
706
707 if (status & SSS_FCINTSTAT_HDONEINT)
708 st_bits = SSS_HASH_STATUS_MSG_DONE;
709
710 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
711 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
712 hx_end = true;
713 /* when DONE or PART, do not handle HASH DMA */
714 err_dma_hx = 0;
715 }
716
717 if (err_dma_rx < 0) {
718 err = err_dma_rx;
719 goto error;
720 }
721 if (err_dma_tx < 0) {
722 err = err_dma_tx;
723 goto error;
724 }
725
726 if (tx_end) {
727 s5p_sg_done(dev);
728 if (err_dma_hx == 1)
729 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
730
731 spin_unlock_irqrestore(&dev->lock, flags);
732
733 s5p_aes_complete(dev->req, 0);
734 /* Device is still busy */
735 tasklet_schedule(&dev->tasklet);
736 } else {
737 /*
738 * Writing length of DMA block (either receiving or
739 * transmitting) will start the operation immediately, so this
740 * should be done at the end (even after clearing pending
741 * interrupts to not miss the interrupt).
742 */
743 if (err_dma_tx == 1)
744 s5p_set_dma_outdata(dev, dev->sg_dst);
745 if (err_dma_rx == 1)
746 s5p_set_dma_indata(dev, dev->sg_src);
747 if (err_dma_hx == 1)
748 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
749
750 spin_unlock_irqrestore(&dev->lock, flags);
751 }
752
753 goto hash_irq_end;
754
755 error:
756 s5p_sg_done(dev);
757 dev->busy = false;
758 req = dev->req;
759 if (err_dma_hx == 1)
760 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
761
762 spin_unlock_irqrestore(&dev->lock, flags);
763 s5p_aes_complete(req, err);
764
765 hash_irq_end:
766 /*
767 * Note about else if:
768 * when hash_sg_iter reaches end and its UPDATE op,
769 * issue SSS_HASH_PAUSE and wait for HPART irq
770 */
771 if (hx_end)
772 tasklet_schedule(&dev->hash_tasklet);
773 else if (err_dma_hx == 2)
774 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
775 SSS_HASH_PAUSE);
776
777 return IRQ_HANDLED;
778 }
779
780 /**
781 * s5p_hash_read_msg() - read message or IV from HW
782 * @req: AHASH request
783 */
s5p_hash_read_msg(struct ahash_request * req)784 static void s5p_hash_read_msg(struct ahash_request *req)
785 {
786 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
787 struct s5p_aes_dev *dd = ctx->dd;
788 u32 *hash = (u32 *)ctx->digest;
789 unsigned int i;
790
791 for (i = 0; i < ctx->nregs; i++)
792 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
793 }
794
795 /**
796 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
797 * @dd: device
798 * @ctx: request context
799 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)800 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
801 const struct s5p_hash_reqctx *ctx)
802 {
803 const u32 *hash = (const u32 *)ctx->digest;
804 unsigned int i;
805
806 for (i = 0; i < ctx->nregs; i++)
807 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
808 }
809
810 /**
811 * s5p_hash_write_iv() - write IV for next partial/finup op.
812 * @req: AHASH request
813 */
s5p_hash_write_iv(struct ahash_request * req)814 static void s5p_hash_write_iv(struct ahash_request *req)
815 {
816 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
817
818 s5p_hash_write_ctx_iv(ctx->dd, ctx);
819 }
820
821 /**
822 * s5p_hash_copy_result() - copy digest into req->result
823 * @req: AHASH request
824 */
s5p_hash_copy_result(struct ahash_request * req)825 static void s5p_hash_copy_result(struct ahash_request *req)
826 {
827 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
828
829 if (!req->result)
830 return;
831
832 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
833 }
834
835 /**
836 * s5p_hash_dma_flush() - flush HASH DMA
837 * @dev: secss device
838 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)839 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
840 {
841 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
842 }
843
844 /**
845 * s5p_hash_dma_enable() - enable DMA mode for HASH
846 * @dev: secss device
847 *
848 * enable DMA mode for HASH
849 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)850 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
851 {
852 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
853 }
854
855 /**
856 * s5p_hash_irq_disable() - disable irq HASH signals
857 * @dev: secss device
858 * @flags: bitfield with irq's to be disabled
859 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)860 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
861 {
862 SSS_WRITE(dev, FCINTENCLR, flags);
863 }
864
865 /**
866 * s5p_hash_irq_enable() - enable irq signals
867 * @dev: secss device
868 * @flags: bitfield with irq's to be enabled
869 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)870 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
871 {
872 SSS_WRITE(dev, FCINTENSET, flags);
873 }
874
875 /**
876 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
877 * @dev: secss device
878 * @hashflow: HASH stream flow with/without crypto AES/DES
879 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)880 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
881 {
882 unsigned long flags;
883 u32 flow;
884
885 spin_lock_irqsave(&dev->lock, flags);
886
887 flow = SSS_READ(dev, FCFIFOCTRL);
888 flow &= ~SSS_HASHIN_MASK;
889 flow |= hashflow;
890 SSS_WRITE(dev, FCFIFOCTRL, flow);
891
892 spin_unlock_irqrestore(&dev->lock, flags);
893 }
894
895 /**
896 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
897 * @dev: secss device
898 * @hashflow: HASH stream flow with/without AES/DES
899 *
900 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
901 * enable HASH irq's HRDMA, HDONE, HPART
902 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)903 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
904 {
905 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
906 SSS_FCINTENCLR_HDONEINTENCLR |
907 SSS_FCINTENCLR_HPARTINTENCLR);
908 s5p_hash_dma_flush(dev);
909
910 s5p_hash_dma_enable(dev);
911 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
912 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
913 SSS_FCINTENSET_HDONEINTENSET |
914 SSS_FCINTENSET_HPARTINTENSET);
915 }
916
917 /**
918 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
919 * @dd: secss device
920 * @length: length for request
921 * @final: true if final op
922 *
923 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
924 * after previous updates, fill up IV words. For final, calculate and set
925 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
926 * length as 2^63 so it will be never reached and set to zero prelow and
927 * prehigh.
928 *
929 * This function does not start DMA transfer.
930 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)931 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
932 bool final)
933 {
934 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
935 u32 prelow, prehigh, low, high;
936 u32 configflags, swapflags;
937 u64 tmplen;
938
939 configflags = ctx->engine | SSS_HASH_INIT_BIT;
940
941 if (likely(ctx->digcnt)) {
942 s5p_hash_write_ctx_iv(dd, ctx);
943 configflags |= SSS_HASH_USER_IV_EN;
944 }
945
946 if (final) {
947 /* number of bytes for last part */
948 low = length;
949 high = 0;
950 /* total number of bits prev hashed */
951 tmplen = ctx->digcnt * 8;
952 prelow = (u32)tmplen;
953 prehigh = (u32)(tmplen >> 32);
954 } else {
955 prelow = 0;
956 prehigh = 0;
957 low = 0;
958 high = BIT(31);
959 }
960
961 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
962 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
963
964 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
965 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
966 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
967 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
968
969 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
970 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
971 }
972
973 /**
974 * s5p_hash_xmit_dma() - start DMA hash processing
975 * @dd: secss device
976 * @length: length for request
977 * @final: true if final op
978 *
979 * Update digcnt here, as it is needed for finup/final op.
980 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)981 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
982 bool final)
983 {
984 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
985 unsigned int cnt;
986
987 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
988 if (!cnt) {
989 dev_err(dd->dev, "dma_map_sg error\n");
990 ctx->error = true;
991 return -EINVAL;
992 }
993
994 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
995 dd->hash_sg_iter = ctx->sg;
996 dd->hash_sg_cnt = cnt;
997 s5p_hash_write_ctrl(dd, length, final);
998 ctx->digcnt += length;
999 ctx->total -= length;
1000
1001 /* catch last interrupt */
1002 if (final)
1003 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1004
1005 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1006
1007 return -EINPROGRESS;
1008 }
1009
1010 /**
1011 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1012 * @ctx: request context
1013 * @sg: source scatterlist request
1014 * @new_len: number of bytes to process from sg
1015 *
1016 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1017 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1018 * with allocated buffer.
1019 *
1020 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1021 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1022 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1023 struct scatterlist *sg, unsigned int new_len)
1024 {
1025 unsigned int pages, len;
1026 void *buf;
1027
1028 len = new_len + ctx->bufcnt;
1029 pages = get_order(len);
1030
1031 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1032 if (!buf) {
1033 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1034 ctx->error = true;
1035 return -ENOMEM;
1036 }
1037
1038 if (ctx->bufcnt)
1039 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1040
1041 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1042 new_len, 0);
1043 sg_init_table(ctx->sgl, 1);
1044 sg_set_buf(ctx->sgl, buf, len);
1045 ctx->sg = ctx->sgl;
1046 ctx->sg_len = 1;
1047 ctx->bufcnt = 0;
1048 ctx->skip = 0;
1049 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1056 * @ctx: request context
1057 * @sg: source scatterlist request
1058 * @new_len: number of bytes to process from sg
1059 *
1060 * Allocate new scatterlist table, copy data for HASH into it. If there was
1061 * xmit_buf filled, prepare it first, then copy page, length and offset from
1062 * source sg into it, adjusting begin and/or end for skip offset and
1063 * hash_later value.
1064 *
1065 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1066 * it after irq ends processing.
1067 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1068 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1069 struct scatterlist *sg, unsigned int new_len)
1070 {
1071 unsigned int skip = ctx->skip, n = sg_nents(sg);
1072 struct scatterlist *tmp;
1073 unsigned int len;
1074
1075 if (ctx->bufcnt)
1076 n++;
1077
1078 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1079 if (!ctx->sg) {
1080 ctx->error = true;
1081 return -ENOMEM;
1082 }
1083
1084 sg_init_table(ctx->sg, n);
1085
1086 tmp = ctx->sg;
1087
1088 ctx->sg_len = 0;
1089
1090 if (ctx->bufcnt) {
1091 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1092 tmp = sg_next(tmp);
1093 ctx->sg_len++;
1094 }
1095
1096 while (sg && skip >= sg->length) {
1097 skip -= sg->length;
1098 sg = sg_next(sg);
1099 }
1100
1101 while (sg && new_len) {
1102 len = sg->length - skip;
1103 if (new_len < len)
1104 len = new_len;
1105
1106 new_len -= len;
1107 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1108 skip = 0;
1109 if (new_len <= 0)
1110 sg_mark_end(tmp);
1111
1112 tmp = sg_next(tmp);
1113 ctx->sg_len++;
1114 sg = sg_next(sg);
1115 }
1116
1117 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1118
1119 return 0;
1120 }
1121
1122 /**
1123 * s5p_hash_prepare_sgs() - prepare sg for processing
1124 * @ctx: request context
1125 * @sg: source scatterlist request
1126 * @new_len: number of bytes to process from sg
1127 * @final: final flag
1128 *
1129 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1130 * sg table have good aligned elements (list_ok). If one of this checks fails,
1131 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1132 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1133 * table and prepare sg elements.
1134 *
1135 * For digest or finup all conditions can be good, and we may not need any
1136 * fixes.
1137 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1138 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1139 struct scatterlist *sg,
1140 unsigned int new_len, bool final)
1141 {
1142 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1143 bool aligned = true, list_ok = true;
1144 struct scatterlist *sg_tmp = sg;
1145
1146 if (!sg || !sg->length || !new_len)
1147 return 0;
1148
1149 if (skip || !final)
1150 list_ok = false;
1151
1152 while (nbytes > 0 && sg_tmp) {
1153 n++;
1154 if (skip >= sg_tmp->length) {
1155 skip -= sg_tmp->length;
1156 if (!sg_tmp->length) {
1157 aligned = false;
1158 break;
1159 }
1160 } else {
1161 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1162 aligned = false;
1163 break;
1164 }
1165
1166 if (nbytes < sg_tmp->length - skip) {
1167 list_ok = false;
1168 break;
1169 }
1170
1171 nbytes -= sg_tmp->length - skip;
1172 skip = 0;
1173 }
1174
1175 sg_tmp = sg_next(sg_tmp);
1176 }
1177
1178 if (!aligned)
1179 return s5p_hash_copy_sgs(ctx, sg, new_len);
1180 else if (!list_ok)
1181 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1182
1183 /*
1184 * Have aligned data from previous operation and/or current
1185 * Note: will enter here only if (digest or finup) and aligned
1186 */
1187 if (ctx->bufcnt) {
1188 ctx->sg_len = n;
1189 sg_init_table(ctx->sgl, 2);
1190 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1191 sg_chain(ctx->sgl, 2, sg);
1192 ctx->sg = ctx->sgl;
1193 ctx->sg_len++;
1194 } else {
1195 ctx->sg = sg;
1196 ctx->sg_len = n;
1197 }
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * s5p_hash_prepare_request() - prepare request for processing
1204 * @req: AHASH request
1205 * @update: true if UPDATE op
1206 *
1207 * Note 1: we can have update flag _and_ final flag at the same time.
1208 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1209 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1210 * we have final op
1211 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1212 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1213 {
1214 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1215 bool final = ctx->finup;
1216 int xmit_len, hash_later, nbytes;
1217 int ret;
1218
1219 if (update)
1220 nbytes = req->nbytes;
1221 else
1222 nbytes = 0;
1223
1224 ctx->total = nbytes + ctx->bufcnt;
1225 if (!ctx->total)
1226 return 0;
1227
1228 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1229 /* bytes left from previous request, so fill up to BUFLEN */
1230 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1231
1232 if (len > nbytes)
1233 len = nbytes;
1234
1235 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1236 0, len, 0);
1237 ctx->bufcnt += len;
1238 nbytes -= len;
1239 ctx->skip = len;
1240 } else {
1241 ctx->skip = 0;
1242 }
1243
1244 if (ctx->bufcnt)
1245 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1246
1247 xmit_len = ctx->total;
1248 if (final) {
1249 hash_later = 0;
1250 } else {
1251 if (IS_ALIGNED(xmit_len, BUFLEN))
1252 xmit_len -= BUFLEN;
1253 else
1254 xmit_len -= xmit_len & (BUFLEN - 1);
1255
1256 hash_later = ctx->total - xmit_len;
1257 /* copy hash_later bytes from end of req->src */
1258 /* previous bytes are in xmit_buf, so no overwrite */
1259 scatterwalk_map_and_copy(ctx->buffer, req->src,
1260 req->nbytes - hash_later,
1261 hash_later, 0);
1262 }
1263
1264 if (xmit_len > BUFLEN) {
1265 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1266 final);
1267 if (ret)
1268 return ret;
1269 } else {
1270 /* have buffered data only */
1271 if (unlikely(!ctx->bufcnt)) {
1272 /* first update didn't fill up buffer */
1273 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1274 0, xmit_len, 0);
1275 }
1276
1277 sg_init_table(ctx->sgl, 1);
1278 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1279
1280 ctx->sg = ctx->sgl;
1281 ctx->sg_len = 1;
1282 }
1283
1284 ctx->bufcnt = hash_later;
1285 if (!final)
1286 ctx->total = xmit_len;
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * s5p_hash_update_dma_stop() - unmap DMA
1293 * @dd: secss device
1294 *
1295 * Unmap scatterlist ctx->sg.
1296 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1297 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1298 {
1299 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1300
1301 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1302 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1303 }
1304
1305 /**
1306 * s5p_hash_finish() - copy calculated digest to crypto layer
1307 * @req: AHASH request
1308 */
s5p_hash_finish(struct ahash_request * req)1309 static void s5p_hash_finish(struct ahash_request *req)
1310 {
1311 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1312 struct s5p_aes_dev *dd = ctx->dd;
1313
1314 if (ctx->digcnt)
1315 s5p_hash_copy_result(req);
1316
1317 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1318 }
1319
1320 /**
1321 * s5p_hash_finish_req() - finish request
1322 * @req: AHASH request
1323 * @err: error
1324 */
s5p_hash_finish_req(struct ahash_request * req,int err)1325 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1326 {
1327 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1328 struct s5p_aes_dev *dd = ctx->dd;
1329 unsigned long flags;
1330
1331 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1332 free_pages((unsigned long)sg_virt(ctx->sg),
1333 get_order(ctx->sg->length));
1334
1335 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1336 kfree(ctx->sg);
1337
1338 ctx->sg = NULL;
1339 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1340 BIT(HASH_FLAGS_SGS_COPIED));
1341
1342 if (!err && !ctx->error) {
1343 s5p_hash_read_msg(req);
1344 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1345 s5p_hash_finish(req);
1346 } else {
1347 ctx->error = true;
1348 }
1349
1350 spin_lock_irqsave(&dd->hash_lock, flags);
1351 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1352 BIT(HASH_FLAGS_DMA_READY) |
1353 BIT(HASH_FLAGS_OUTPUT_READY));
1354 spin_unlock_irqrestore(&dd->hash_lock, flags);
1355
1356 if (req->base.complete)
1357 ahash_request_complete(req, err);
1358 }
1359
1360 /**
1361 * s5p_hash_handle_queue() - handle hash queue
1362 * @dd: device s5p_aes_dev
1363 * @req: AHASH request
1364 *
1365 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1366 * device then processes the first request from the dd->queue
1367 *
1368 * Returns: see s5p_hash_final below.
1369 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1370 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1371 struct ahash_request *req)
1372 {
1373 struct crypto_async_request *async_req, *backlog;
1374 struct s5p_hash_reqctx *ctx;
1375 unsigned long flags;
1376 int err = 0, ret = 0;
1377
1378 retry:
1379 spin_lock_irqsave(&dd->hash_lock, flags);
1380 if (req)
1381 ret = ahash_enqueue_request(&dd->hash_queue, req);
1382
1383 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1384 spin_unlock_irqrestore(&dd->hash_lock, flags);
1385 return ret;
1386 }
1387
1388 backlog = crypto_get_backlog(&dd->hash_queue);
1389 async_req = crypto_dequeue_request(&dd->hash_queue);
1390 if (async_req)
1391 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1392
1393 spin_unlock_irqrestore(&dd->hash_lock, flags);
1394
1395 if (!async_req)
1396 return ret;
1397
1398 if (backlog)
1399 crypto_request_complete(backlog, -EINPROGRESS);
1400
1401 req = ahash_request_cast(async_req);
1402 dd->hash_req = req;
1403 ctx = ahash_request_ctx(req);
1404
1405 err = s5p_hash_prepare_request(req, ctx->op_update);
1406 if (err || !ctx->total)
1407 goto out;
1408
1409 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1410 ctx->op_update, req->nbytes);
1411
1412 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1413 if (ctx->digcnt)
1414 s5p_hash_write_iv(req); /* restore hash IV */
1415
1416 if (ctx->op_update) { /* HASH_OP_UPDATE */
1417 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1418 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1419 /* no final() after finup() */
1420 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1421 } else { /* HASH_OP_FINAL */
1422 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423 }
1424 out:
1425 if (err != -EINPROGRESS) {
1426 /* hash_tasklet_cb will not finish it, so do it here */
1427 s5p_hash_finish_req(req, err);
1428 req = NULL;
1429
1430 /*
1431 * Execute next request immediately if there is anything
1432 * in queue.
1433 */
1434 goto retry;
1435 }
1436
1437 return ret;
1438 }
1439
1440 /**
1441 * s5p_hash_tasklet_cb() - hash tasklet
1442 * @data: ptr to s5p_aes_dev
1443 */
s5p_hash_tasklet_cb(unsigned long data)1444 static void s5p_hash_tasklet_cb(unsigned long data)
1445 {
1446 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1447
1448 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1449 s5p_hash_handle_queue(dd, NULL);
1450 return;
1451 }
1452
1453 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1454 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1455 &dd->hash_flags)) {
1456 s5p_hash_update_dma_stop(dd);
1457 }
1458
1459 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1460 &dd->hash_flags)) {
1461 /* hash or semi-hash ready */
1462 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1463 goto finish;
1464 }
1465 }
1466
1467 return;
1468
1469 finish:
1470 /* finish curent request */
1471 s5p_hash_finish_req(dd->hash_req, 0);
1472
1473 /* If we are not busy, process next req */
1474 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1475 s5p_hash_handle_queue(dd, NULL);
1476 }
1477
1478 /**
1479 * s5p_hash_enqueue() - enqueue request
1480 * @req: AHASH request
1481 * @op: operation UPDATE (true) or FINAL (false)
1482 *
1483 * Returns: see s5p_hash_final below.
1484 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1485 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1486 {
1487 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1488 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1489
1490 ctx->op_update = op;
1491
1492 return s5p_hash_handle_queue(tctx->dd, req);
1493 }
1494
1495 /**
1496 * s5p_hash_update() - process the hash input data
1497 * @req: AHASH request
1498 *
1499 * If request will fit in buffer, copy it and return immediately
1500 * else enqueue it with OP_UPDATE.
1501 *
1502 * Returns: see s5p_hash_final below.
1503 */
s5p_hash_update(struct ahash_request * req)1504 static int s5p_hash_update(struct ahash_request *req)
1505 {
1506 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1507
1508 if (!req->nbytes)
1509 return 0;
1510
1511 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1512 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1513 0, req->nbytes, 0);
1514 ctx->bufcnt += req->nbytes;
1515 return 0;
1516 }
1517
1518 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1519 }
1520
1521 /**
1522 * s5p_hash_final() - close up hash and calculate digest
1523 * @req: AHASH request
1524 *
1525 * Note: in final req->src do not have any data, and req->nbytes can be
1526 * non-zero.
1527 *
1528 * If there were no input data processed yet and the buffered hash data is
1529 * less than BUFLEN (64) then calculate the final hash immediately by using
1530 * SW algorithm fallback.
1531 *
1532 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1533 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1534 * previous update op, so there are always some buffered bytes in ctx->buffer,
1535 * which means that ctx->bufcnt!=0
1536 *
1537 * Returns:
1538 * 0 if the request has been processed immediately,
1539 * -EINPROGRESS if the operation has been queued for later execution or is set
1540 * to processing by HW,
1541 * -EBUSY if queue is full and request should be resubmitted later,
1542 * other negative values denotes an error.
1543 */
s5p_hash_final(struct ahash_request * req)1544 static int s5p_hash_final(struct ahash_request *req)
1545 {
1546 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1547
1548 ctx->finup = true;
1549 if (ctx->error)
1550 return -EINVAL; /* uncompleted hash is not needed */
1551
1552 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1553 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1554
1555 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1556 ctx->bufcnt, req->result);
1557 }
1558
1559 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1560 }
1561
1562 /**
1563 * s5p_hash_finup() - process last req->src and calculate digest
1564 * @req: AHASH request containing the last update data
1565 *
1566 * Return values: see s5p_hash_final above.
1567 */
s5p_hash_finup(struct ahash_request * req)1568 static int s5p_hash_finup(struct ahash_request *req)
1569 {
1570 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1571 int err1, err2;
1572
1573 ctx->finup = true;
1574
1575 err1 = s5p_hash_update(req);
1576 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1577 return err1;
1578
1579 /*
1580 * final() has to be always called to cleanup resources even if
1581 * update() failed, except EINPROGRESS or calculate digest for small
1582 * size
1583 */
1584 err2 = s5p_hash_final(req);
1585
1586 return err1 ?: err2;
1587 }
1588
1589 /**
1590 * s5p_hash_init() - initialize AHASH request contex
1591 * @req: AHASH request
1592 *
1593 * Init async hash request context.
1594 */
s5p_hash_init(struct ahash_request * req)1595 static int s5p_hash_init(struct ahash_request *req)
1596 {
1597 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1598 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1599 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1600
1601 ctx->dd = tctx->dd;
1602 ctx->error = false;
1603 ctx->finup = false;
1604 ctx->bufcnt = 0;
1605 ctx->digcnt = 0;
1606 ctx->total = 0;
1607 ctx->skip = 0;
1608
1609 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1610 crypto_ahash_digestsize(tfm));
1611
1612 switch (crypto_ahash_digestsize(tfm)) {
1613 case MD5_DIGEST_SIZE:
1614 ctx->engine = SSS_HASH_ENGINE_MD5;
1615 ctx->nregs = HASH_MD5_MAX_REG;
1616 break;
1617 case SHA1_DIGEST_SIZE:
1618 ctx->engine = SSS_HASH_ENGINE_SHA1;
1619 ctx->nregs = HASH_SHA1_MAX_REG;
1620 break;
1621 case SHA256_DIGEST_SIZE:
1622 ctx->engine = SSS_HASH_ENGINE_SHA256;
1623 ctx->nregs = HASH_SHA256_MAX_REG;
1624 break;
1625 default:
1626 ctx->error = true;
1627 return -EINVAL;
1628 }
1629
1630 return 0;
1631 }
1632
1633 /**
1634 * s5p_hash_digest - calculate digest from req->src
1635 * @req: AHASH request
1636 *
1637 * Return values: see s5p_hash_final above.
1638 */
s5p_hash_digest(struct ahash_request * req)1639 static int s5p_hash_digest(struct ahash_request *req)
1640 {
1641 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1642 }
1643
1644 /**
1645 * s5p_hash_cra_init_alg - init crypto alg transformation
1646 * @tfm: crypto transformation
1647 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1648 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1649 {
1650 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1651 const char *alg_name = crypto_tfm_alg_name(tfm);
1652
1653 tctx->dd = s5p_dev;
1654 /* Allocate a fallback and abort if it failed. */
1655 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1656 CRYPTO_ALG_NEED_FALLBACK);
1657 if (IS_ERR(tctx->fallback)) {
1658 pr_err("fallback alloc fails for '%s'\n", alg_name);
1659 return PTR_ERR(tctx->fallback);
1660 }
1661
1662 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1663 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1664
1665 return 0;
1666 }
1667
1668 /**
1669 * s5p_hash_cra_init - init crypto tfm
1670 * @tfm: crypto transformation
1671 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1672 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1673 {
1674 return s5p_hash_cra_init_alg(tfm);
1675 }
1676
1677 /**
1678 * s5p_hash_cra_exit - exit crypto tfm
1679 * @tfm: crypto transformation
1680 *
1681 * free allocated fallback
1682 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1683 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1684 {
1685 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1686
1687 crypto_free_shash(tctx->fallback);
1688 tctx->fallback = NULL;
1689 }
1690
1691 /**
1692 * s5p_hash_export - export hash state
1693 * @req: AHASH request
1694 * @out: buffer for exported state
1695 */
s5p_hash_export(struct ahash_request * req,void * out)1696 static int s5p_hash_export(struct ahash_request *req, void *out)
1697 {
1698 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1699
1700 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1701
1702 return 0;
1703 }
1704
1705 /**
1706 * s5p_hash_import - import hash state
1707 * @req: AHASH request
1708 * @in: buffer with state to be imported from
1709 */
s5p_hash_import(struct ahash_request * req,const void * in)1710 static int s5p_hash_import(struct ahash_request *req, const void *in)
1711 {
1712 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1713 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1714 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1715 const struct s5p_hash_reqctx *ctx_in = in;
1716
1717 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1718 if (ctx_in->bufcnt > BUFLEN) {
1719 ctx->error = true;
1720 return -EINVAL;
1721 }
1722
1723 ctx->dd = tctx->dd;
1724 ctx->error = false;
1725
1726 return 0;
1727 }
1728
1729 static struct ahash_alg algs_sha1_md5_sha256[] = {
1730 {
1731 .init = s5p_hash_init,
1732 .update = s5p_hash_update,
1733 .final = s5p_hash_final,
1734 .finup = s5p_hash_finup,
1735 .digest = s5p_hash_digest,
1736 .export = s5p_hash_export,
1737 .import = s5p_hash_import,
1738 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1739 .halg.digestsize = SHA1_DIGEST_SIZE,
1740 .halg.base = {
1741 .cra_name = "sha1",
1742 .cra_driver_name = "exynos-sha1",
1743 .cra_priority = 100,
1744 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1745 CRYPTO_ALG_ASYNC |
1746 CRYPTO_ALG_NEED_FALLBACK,
1747 .cra_blocksize = HASH_BLOCK_SIZE,
1748 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1749 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1750 .cra_module = THIS_MODULE,
1751 .cra_init = s5p_hash_cra_init,
1752 .cra_exit = s5p_hash_cra_exit,
1753 }
1754 },
1755 {
1756 .init = s5p_hash_init,
1757 .update = s5p_hash_update,
1758 .final = s5p_hash_final,
1759 .finup = s5p_hash_finup,
1760 .digest = s5p_hash_digest,
1761 .export = s5p_hash_export,
1762 .import = s5p_hash_import,
1763 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1764 .halg.digestsize = MD5_DIGEST_SIZE,
1765 .halg.base = {
1766 .cra_name = "md5",
1767 .cra_driver_name = "exynos-md5",
1768 .cra_priority = 100,
1769 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1770 CRYPTO_ALG_ASYNC |
1771 CRYPTO_ALG_NEED_FALLBACK,
1772 .cra_blocksize = HASH_BLOCK_SIZE,
1773 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1774 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1775 .cra_module = THIS_MODULE,
1776 .cra_init = s5p_hash_cra_init,
1777 .cra_exit = s5p_hash_cra_exit,
1778 }
1779 },
1780 {
1781 .init = s5p_hash_init,
1782 .update = s5p_hash_update,
1783 .final = s5p_hash_final,
1784 .finup = s5p_hash_finup,
1785 .digest = s5p_hash_digest,
1786 .export = s5p_hash_export,
1787 .import = s5p_hash_import,
1788 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1789 .halg.digestsize = SHA256_DIGEST_SIZE,
1790 .halg.base = {
1791 .cra_name = "sha256",
1792 .cra_driver_name = "exynos-sha256",
1793 .cra_priority = 100,
1794 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1795 CRYPTO_ALG_ASYNC |
1796 CRYPTO_ALG_NEED_FALLBACK,
1797 .cra_blocksize = HASH_BLOCK_SIZE,
1798 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1799 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1800 .cra_module = THIS_MODULE,
1801 .cra_init = s5p_hash_cra_init,
1802 .cra_exit = s5p_hash_cra_exit,
1803 }
1804 }
1805
1806 };
1807
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1808 static void s5p_set_aes(struct s5p_aes_dev *dev,
1809 const u8 *key, const u8 *iv, const u8 *ctr,
1810 unsigned int keylen)
1811 {
1812 void __iomem *keystart;
1813
1814 if (iv)
1815 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1816 AES_BLOCK_SIZE);
1817
1818 if (ctr)
1819 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1820 AES_BLOCK_SIZE);
1821
1822 if (keylen == AES_KEYSIZE_256)
1823 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1824 else if (keylen == AES_KEYSIZE_192)
1825 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1826 else
1827 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1828
1829 memcpy_toio(keystart, key, keylen);
1830 }
1831
s5p_is_sg_aligned(struct scatterlist * sg)1832 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1833 {
1834 while (sg) {
1835 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1836 return false;
1837 sg = sg_next(sg);
1838 }
1839
1840 return true;
1841 }
1842
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1843 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1844 struct skcipher_request *req)
1845 {
1846 struct scatterlist *sg;
1847 int err;
1848
1849 dev->sg_src_cpy = NULL;
1850 sg = req->src;
1851 if (!s5p_is_sg_aligned(sg)) {
1852 dev_dbg(dev->dev,
1853 "At least one unaligned source scatter list, making a copy\n");
1854 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1855 if (err)
1856 return err;
1857
1858 sg = dev->sg_src_cpy;
1859 }
1860
1861 err = s5p_set_indata(dev, sg);
1862 if (err) {
1863 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1864 return err;
1865 }
1866
1867 return 0;
1868 }
1869
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1870 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1871 struct skcipher_request *req)
1872 {
1873 struct scatterlist *sg;
1874 int err;
1875
1876 dev->sg_dst_cpy = NULL;
1877 sg = req->dst;
1878 if (!s5p_is_sg_aligned(sg)) {
1879 dev_dbg(dev->dev,
1880 "At least one unaligned dest scatter list, making a copy\n");
1881 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1882 if (err)
1883 return err;
1884
1885 sg = dev->sg_dst_cpy;
1886 }
1887
1888 err = s5p_set_outdata(dev, sg);
1889 if (err) {
1890 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1891 return err;
1892 }
1893
1894 return 0;
1895 }
1896
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1897 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1898 {
1899 struct skcipher_request *req = dev->req;
1900 u32 aes_control;
1901 unsigned long flags;
1902 int err;
1903 u8 *iv, *ctr;
1904
1905 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1906 aes_control = SSS_AES_KEY_CHANGE_MODE;
1907 if (mode & FLAGS_AES_DECRYPT)
1908 aes_control |= SSS_AES_MODE_DECRYPT;
1909
1910 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1911 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1912 iv = req->iv;
1913 ctr = NULL;
1914 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1915 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1916 iv = NULL;
1917 ctr = req->iv;
1918 } else {
1919 iv = NULL; /* AES_ECB */
1920 ctr = NULL;
1921 }
1922
1923 if (dev->ctx->keylen == AES_KEYSIZE_192)
1924 aes_control |= SSS_AES_KEY_SIZE_192;
1925 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1926 aes_control |= SSS_AES_KEY_SIZE_256;
1927
1928 aes_control |= SSS_AES_FIFO_MODE;
1929
1930 /* as a variant it is possible to use byte swapping on DMA side */
1931 aes_control |= SSS_AES_BYTESWAP_DI
1932 | SSS_AES_BYTESWAP_DO
1933 | SSS_AES_BYTESWAP_IV
1934 | SSS_AES_BYTESWAP_KEY
1935 | SSS_AES_BYTESWAP_CNT;
1936
1937 spin_lock_irqsave(&dev->lock, flags);
1938
1939 SSS_WRITE(dev, FCINTENCLR,
1940 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1941 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1942
1943 err = s5p_set_indata_start(dev, req);
1944 if (err)
1945 goto indata_error;
1946
1947 err = s5p_set_outdata_start(dev, req);
1948 if (err)
1949 goto outdata_error;
1950
1951 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1952 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1953
1954 s5p_set_dma_indata(dev, dev->sg_src);
1955 s5p_set_dma_outdata(dev, dev->sg_dst);
1956
1957 SSS_WRITE(dev, FCINTENSET,
1958 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1959
1960 spin_unlock_irqrestore(&dev->lock, flags);
1961
1962 return;
1963
1964 outdata_error:
1965 s5p_unset_indata(dev);
1966
1967 indata_error:
1968 s5p_sg_done(dev);
1969 dev->busy = false;
1970 spin_unlock_irqrestore(&dev->lock, flags);
1971 s5p_aes_complete(req, err);
1972 }
1973
s5p_tasklet_cb(unsigned long data)1974 static void s5p_tasklet_cb(unsigned long data)
1975 {
1976 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1977 struct crypto_async_request *async_req, *backlog;
1978 struct s5p_aes_reqctx *reqctx;
1979 unsigned long flags;
1980
1981 spin_lock_irqsave(&dev->lock, flags);
1982 backlog = crypto_get_backlog(&dev->queue);
1983 async_req = crypto_dequeue_request(&dev->queue);
1984
1985 if (!async_req) {
1986 dev->busy = false;
1987 spin_unlock_irqrestore(&dev->lock, flags);
1988 return;
1989 }
1990 spin_unlock_irqrestore(&dev->lock, flags);
1991
1992 if (backlog)
1993 crypto_request_complete(backlog, -EINPROGRESS);
1994
1995 dev->req = skcipher_request_cast(async_req);
1996 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1997 reqctx = skcipher_request_ctx(dev->req);
1998
1999 s5p_aes_crypt_start(dev, reqctx->mode);
2000 }
2001
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)2002 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2003 struct skcipher_request *req)
2004 {
2005 unsigned long flags;
2006 int err;
2007
2008 spin_lock_irqsave(&dev->lock, flags);
2009 err = crypto_enqueue_request(&dev->queue, &req->base);
2010 if (dev->busy) {
2011 spin_unlock_irqrestore(&dev->lock, flags);
2012 return err;
2013 }
2014 dev->busy = true;
2015
2016 spin_unlock_irqrestore(&dev->lock, flags);
2017
2018 tasklet_schedule(&dev->tasklet);
2019
2020 return err;
2021 }
2022
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2023 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2024 {
2025 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2026 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2027 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2028 struct s5p_aes_dev *dev = ctx->dev;
2029
2030 if (!req->cryptlen)
2031 return 0;
2032
2033 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2034 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2035 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2036 return -EINVAL;
2037 }
2038
2039 reqctx->mode = mode;
2040
2041 return s5p_aes_handle_req(dev, req);
2042 }
2043
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2044 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2045 const u8 *key, unsigned int keylen)
2046 {
2047 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2048 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2049
2050 if (keylen != AES_KEYSIZE_128 &&
2051 keylen != AES_KEYSIZE_192 &&
2052 keylen != AES_KEYSIZE_256)
2053 return -EINVAL;
2054
2055 memcpy(ctx->aes_key, key, keylen);
2056 ctx->keylen = keylen;
2057
2058 return 0;
2059 }
2060
s5p_aes_ecb_encrypt(struct skcipher_request * req)2061 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2062 {
2063 return s5p_aes_crypt(req, 0);
2064 }
2065
s5p_aes_ecb_decrypt(struct skcipher_request * req)2066 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2067 {
2068 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2069 }
2070
s5p_aes_cbc_encrypt(struct skcipher_request * req)2071 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2072 {
2073 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2074 }
2075
s5p_aes_cbc_decrypt(struct skcipher_request * req)2076 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2077 {
2078 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2079 }
2080
s5p_aes_ctr_crypt(struct skcipher_request * req)2081 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2082 {
2083 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2084 }
2085
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2086 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2087 {
2088 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2089
2090 ctx->dev = s5p_dev;
2091 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2092
2093 return 0;
2094 }
2095
2096 static struct skcipher_alg algs[] = {
2097 {
2098 .base.cra_name = "ecb(aes)",
2099 .base.cra_driver_name = "ecb-aes-s5p",
2100 .base.cra_priority = 100,
2101 .base.cra_flags = CRYPTO_ALG_ASYNC |
2102 CRYPTO_ALG_KERN_DRIVER_ONLY,
2103 .base.cra_blocksize = AES_BLOCK_SIZE,
2104 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2105 .base.cra_alignmask = 0x0f,
2106 .base.cra_module = THIS_MODULE,
2107
2108 .min_keysize = AES_MIN_KEY_SIZE,
2109 .max_keysize = AES_MAX_KEY_SIZE,
2110 .setkey = s5p_aes_setkey,
2111 .encrypt = s5p_aes_ecb_encrypt,
2112 .decrypt = s5p_aes_ecb_decrypt,
2113 .init = s5p_aes_init_tfm,
2114 },
2115 {
2116 .base.cra_name = "cbc(aes)",
2117 .base.cra_driver_name = "cbc-aes-s5p",
2118 .base.cra_priority = 100,
2119 .base.cra_flags = CRYPTO_ALG_ASYNC |
2120 CRYPTO_ALG_KERN_DRIVER_ONLY,
2121 .base.cra_blocksize = AES_BLOCK_SIZE,
2122 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2123 .base.cra_alignmask = 0x0f,
2124 .base.cra_module = THIS_MODULE,
2125
2126 .min_keysize = AES_MIN_KEY_SIZE,
2127 .max_keysize = AES_MAX_KEY_SIZE,
2128 .ivsize = AES_BLOCK_SIZE,
2129 .setkey = s5p_aes_setkey,
2130 .encrypt = s5p_aes_cbc_encrypt,
2131 .decrypt = s5p_aes_cbc_decrypt,
2132 .init = s5p_aes_init_tfm,
2133 },
2134 {
2135 .base.cra_name = "ctr(aes)",
2136 .base.cra_driver_name = "ctr-aes-s5p",
2137 .base.cra_priority = 100,
2138 .base.cra_flags = CRYPTO_ALG_ASYNC |
2139 CRYPTO_ALG_KERN_DRIVER_ONLY,
2140 .base.cra_blocksize = 1,
2141 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2142 .base.cra_alignmask = 0x0f,
2143 .base.cra_module = THIS_MODULE,
2144
2145 .min_keysize = AES_MIN_KEY_SIZE,
2146 .max_keysize = AES_MAX_KEY_SIZE,
2147 .ivsize = AES_BLOCK_SIZE,
2148 .setkey = s5p_aes_setkey,
2149 .encrypt = s5p_aes_ctr_crypt,
2150 .decrypt = s5p_aes_ctr_crypt,
2151 .init = s5p_aes_init_tfm,
2152 },
2153 };
2154
s5p_aes_probe(struct platform_device * pdev)2155 static int s5p_aes_probe(struct platform_device *pdev)
2156 {
2157 struct device *dev = &pdev->dev;
2158 int i, j, err;
2159 const struct samsung_aes_variant *variant;
2160 struct s5p_aes_dev *pdata;
2161 struct resource *res;
2162 unsigned int hash_i;
2163
2164 if (s5p_dev)
2165 return -EEXIST;
2166
2167 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2168 if (!pdata)
2169 return -ENOMEM;
2170
2171 variant = find_s5p_sss_version(pdev);
2172 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2173 if (!res)
2174 return -EINVAL;
2175
2176 /*
2177 * Note: HASH and PRNG uses the same registers in secss, avoid
2178 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2179 * is enabled in config. We need larger size for HASH registers in
2180 * secss, current describe only AES/DES
2181 */
2182 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2183 if (variant == &exynos_aes_data) {
2184 res->end += 0x300;
2185 pdata->use_hash = true;
2186 }
2187 }
2188
2189 pdata->res = res;
2190 pdata->ioaddr = devm_ioremap_resource(dev, res);
2191 if (IS_ERR(pdata->ioaddr)) {
2192 if (!pdata->use_hash)
2193 return PTR_ERR(pdata->ioaddr);
2194 /* try AES without HASH */
2195 res->end -= 0x300;
2196 pdata->use_hash = false;
2197 pdata->ioaddr = devm_ioremap_resource(dev, res);
2198 if (IS_ERR(pdata->ioaddr))
2199 return PTR_ERR(pdata->ioaddr);
2200 }
2201
2202 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2203 if (IS_ERR(pdata->clk))
2204 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2205 "failed to find secss clock %s\n",
2206 variant->clk_names[0]);
2207
2208 err = clk_prepare_enable(pdata->clk);
2209 if (err < 0) {
2210 dev_err(dev, "Enabling clock %s failed, err %d\n",
2211 variant->clk_names[0], err);
2212 return err;
2213 }
2214
2215 if (variant->clk_names[1]) {
2216 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2217 if (IS_ERR(pdata->pclk)) {
2218 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2219 "failed to find clock %s\n",
2220 variant->clk_names[1]);
2221 goto err_clk;
2222 }
2223
2224 err = clk_prepare_enable(pdata->pclk);
2225 if (err < 0) {
2226 dev_err(dev, "Enabling clock %s failed, err %d\n",
2227 variant->clk_names[0], err);
2228 goto err_clk;
2229 }
2230 } else {
2231 pdata->pclk = NULL;
2232 }
2233
2234 spin_lock_init(&pdata->lock);
2235 spin_lock_init(&pdata->hash_lock);
2236
2237 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2238 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2239
2240 pdata->irq_fc = platform_get_irq(pdev, 0);
2241 if (pdata->irq_fc < 0) {
2242 err = pdata->irq_fc;
2243 dev_warn(dev, "feed control interrupt is not available.\n");
2244 goto err_irq;
2245 }
2246 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2247 s5p_aes_interrupt, IRQF_ONESHOT,
2248 pdev->name, pdev);
2249 if (err < 0) {
2250 dev_warn(dev, "feed control interrupt is not available.\n");
2251 goto err_irq;
2252 }
2253
2254 pdata->busy = false;
2255 pdata->dev = dev;
2256 platform_set_drvdata(pdev, pdata);
2257 s5p_dev = pdata;
2258
2259 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2260 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2261
2262 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2263 err = crypto_register_skcipher(&algs[i]);
2264 if (err)
2265 goto err_algs;
2266 }
2267
2268 if (pdata->use_hash) {
2269 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2270 (unsigned long)pdata);
2271 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2272
2273 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2274 hash_i++) {
2275 struct ahash_alg *alg;
2276
2277 alg = &algs_sha1_md5_sha256[hash_i];
2278 err = crypto_register_ahash(alg);
2279 if (err) {
2280 dev_err(dev, "can't register '%s': %d\n",
2281 alg->halg.base.cra_driver_name, err);
2282 goto err_hash;
2283 }
2284 }
2285 }
2286
2287 dev_info(dev, "s5p-sss driver registered\n");
2288
2289 return 0;
2290
2291 err_hash:
2292 for (j = hash_i - 1; j >= 0; j--)
2293 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2294
2295 tasklet_kill(&pdata->hash_tasklet);
2296 res->end -= 0x300;
2297
2298 err_algs:
2299 if (i < ARRAY_SIZE(algs))
2300 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2301 err);
2302
2303 for (j = 0; j < i; j++)
2304 crypto_unregister_skcipher(&algs[j]);
2305
2306 tasklet_kill(&pdata->tasklet);
2307
2308 err_irq:
2309 clk_disable_unprepare(pdata->pclk);
2310
2311 err_clk:
2312 clk_disable_unprepare(pdata->clk);
2313 s5p_dev = NULL;
2314
2315 return err;
2316 }
2317
s5p_aes_remove(struct platform_device * pdev)2318 static int s5p_aes_remove(struct platform_device *pdev)
2319 {
2320 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2321 int i;
2322
2323 for (i = 0; i < ARRAY_SIZE(algs); i++)
2324 crypto_unregister_skcipher(&algs[i]);
2325
2326 tasklet_kill(&pdata->tasklet);
2327 if (pdata->use_hash) {
2328 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2329 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2330
2331 pdata->res->end -= 0x300;
2332 tasklet_kill(&pdata->hash_tasklet);
2333 pdata->use_hash = false;
2334 }
2335
2336 clk_disable_unprepare(pdata->pclk);
2337
2338 clk_disable_unprepare(pdata->clk);
2339 s5p_dev = NULL;
2340
2341 return 0;
2342 }
2343
2344 static struct platform_driver s5p_aes_crypto = {
2345 .probe = s5p_aes_probe,
2346 .remove = s5p_aes_remove,
2347 .driver = {
2348 .name = "s5p-secss",
2349 .of_match_table = s5p_sss_dt_match,
2350 },
2351 };
2352
2353 module_platform_driver(s5p_aes_crypto);
2354
2355 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2356 MODULE_LICENSE("GPL v2");
2357 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2358 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2359