xref: /openbmc/linux/drivers/crypto/qce/sha.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <crypto/internal/hash.h>
17 
18 #include "common.h"
19 #include "core.h"
20 #include "sha.h"
21 
22 /* crypto hw padding constant for first operation */
23 #define SHA_PADDING		64
24 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
25 
26 static LIST_HEAD(ahash_algs);
27 
28 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30 };
31 
32 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35 };
36 
37 static void qce_ahash_done(void *data)
38 {
39 	struct crypto_async_request *async_req = data;
40 	struct ahash_request *req = ahash_request_cast(async_req);
41 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 	struct qce_device *qce = tmpl->qce;
45 	struct qce_result_dump *result = qce->dma.result_buf;
46 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 	int error;
48 	u32 status;
49 
50 	error = qce_dma_terminate_all(&qce->dma);
51 	if (error)
52 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53 
54 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
55 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
56 
57 	memcpy(rctx->digest, result->auth_iv, digestsize);
58 	if (req->result)
59 		memcpy(req->result, result->auth_iv, digestsize);
60 
61 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
62 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
63 
64 	error = qce_check_status(qce, &status);
65 	if (error < 0)
66 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
67 
68 	req->src = rctx->src_orig;
69 	req->nbytes = rctx->nbytes_orig;
70 	rctx->last_blk = false;
71 	rctx->first_blk = false;
72 
73 	qce->async_req_done(tmpl->qce, error);
74 }
75 
76 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
77 {
78 	struct ahash_request *req = ahash_request_cast(async_req);
79 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
80 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
81 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
82 	struct qce_device *qce = tmpl->qce;
83 	unsigned long flags = rctx->flags;
84 	int ret;
85 
86 	if (IS_SHA_HMAC(flags)) {
87 		rctx->authkey = ctx->authkey;
88 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
89 	} else if (IS_CMAC(flags)) {
90 		rctx->authkey = ctx->authkey;
91 		rctx->authklen = AES_KEYSIZE_128;
92 	}
93 
94 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
95 	if (rctx->src_nents < 0) {
96 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
97 		return rctx->src_nents;
98 	}
99 
100 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
101 	if (ret < 0)
102 		return ret;
103 
104 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
105 
106 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
107 	if (ret < 0)
108 		goto error_unmap_src;
109 
110 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
111 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
112 	if (ret)
113 		goto error_unmap_dst;
114 
115 	qce_dma_issue_pending(&qce->dma);
116 
117 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
118 	if (ret)
119 		goto error_terminate;
120 
121 	return 0;
122 
123 error_terminate:
124 	qce_dma_terminate_all(&qce->dma);
125 error_unmap_dst:
126 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
127 error_unmap_src:
128 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
129 	return ret;
130 }
131 
132 static int qce_ahash_init(struct ahash_request *req)
133 {
134 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
135 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
136 	const u32 *std_iv = tmpl->std_iv;
137 
138 	memset(rctx, 0, sizeof(*rctx));
139 	rctx->first_blk = true;
140 	rctx->last_blk = false;
141 	rctx->flags = tmpl->alg_flags;
142 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
143 
144 	return 0;
145 }
146 
147 static int qce_ahash_export(struct ahash_request *req, void *out)
148 {
149 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
150 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 	unsigned long flags = rctx->flags;
152 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
153 	unsigned int blocksize =
154 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
155 
156 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
157 		struct sha1_state *out_state = out;
158 
159 		out_state->count = rctx->count;
160 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
161 				       rctx->digest, digestsize);
162 		memcpy(out_state->buffer, rctx->buf, blocksize);
163 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
164 		struct sha256_state *out_state = out;
165 
166 		out_state->count = rctx->count;
167 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
168 				       rctx->digest, digestsize);
169 		memcpy(out_state->buf, rctx->buf, blocksize);
170 	} else {
171 		return -EINVAL;
172 	}
173 
174 	return 0;
175 }
176 
177 static int qce_import_common(struct ahash_request *req, u64 in_count,
178 			     const u32 *state, const u8 *buffer, bool hmac)
179 {
180 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
181 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
182 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
183 	unsigned int blocksize;
184 	u64 count = in_count;
185 
186 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
187 	rctx->count = in_count;
188 	memcpy(rctx->buf, buffer, blocksize);
189 
190 	if (in_count <= blocksize) {
191 		rctx->first_blk = 1;
192 	} else {
193 		rctx->first_blk = 0;
194 		/*
195 		 * For HMAC, there is a hardware padding done when first block
196 		 * is set. Therefore the byte_count must be incremened by 64
197 		 * after the first block operation.
198 		 */
199 		if (hmac)
200 			count += SHA_PADDING;
201 	}
202 
203 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
204 	rctx->byte_count[1] = (__force __be32)(count >> 32);
205 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
206 			       digestsize);
207 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
208 
209 	return 0;
210 }
211 
212 static int qce_ahash_import(struct ahash_request *req, const void *in)
213 {
214 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
215 	unsigned long flags = rctx->flags;
216 	bool hmac = IS_SHA_HMAC(flags);
217 	int ret = -EINVAL;
218 
219 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220 		const struct sha1_state *state = in;
221 
222 		ret = qce_import_common(req, state->count, state->state,
223 					state->buffer, hmac);
224 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225 		const struct sha256_state *state = in;
226 
227 		ret = qce_import_common(req, state->count, state->state,
228 					state->buf, hmac);
229 	}
230 
231 	return ret;
232 }
233 
234 static int qce_ahash_update(struct ahash_request *req)
235 {
236 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239 	struct qce_device *qce = tmpl->qce;
240 	struct scatterlist *sg_last, *sg;
241 	unsigned int total, len;
242 	unsigned int hash_later;
243 	unsigned int nbytes;
244 	unsigned int blocksize;
245 
246 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247 	rctx->count += req->nbytes;
248 
249 	/* check for buffer from previous updates and append it */
250 	total = req->nbytes + rctx->buflen;
251 
252 	if (total <= blocksize) {
253 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254 					 0, req->nbytes, 0);
255 		rctx->buflen += req->nbytes;
256 		return 0;
257 	}
258 
259 	/* save the original req structure fields */
260 	rctx->src_orig = req->src;
261 	rctx->nbytes_orig = req->nbytes;
262 
263 	/*
264 	 * if we have data from previous update copy them on buffer. The old
265 	 * data will be combined with current request bytes.
266 	 */
267 	if (rctx->buflen)
268 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269 
270 	/* calculate how many bytes will be hashed later */
271 	hash_later = total % blocksize;
272 	if (hash_later) {
273 		unsigned int src_offset = req->nbytes - hash_later;
274 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275 					 hash_later, 0);
276 	}
277 
278 	/* here nbytes is multiple of blocksize */
279 	nbytes = total - hash_later;
280 
281 	len = rctx->buflen;
282 	sg = sg_last = req->src;
283 
284 	while (len < nbytes && sg) {
285 		if (len + sg_dma_len(sg) > nbytes)
286 			break;
287 		len += sg_dma_len(sg);
288 		sg_last = sg;
289 		sg = sg_next(sg);
290 	}
291 
292 	if (!sg_last)
293 		return -EINVAL;
294 
295 	sg_mark_end(sg_last);
296 
297 	if (rctx->buflen) {
298 		sg_init_table(rctx->sg, 2);
299 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
300 		sg_chain(rctx->sg, 2, req->src);
301 		req->src = rctx->sg;
302 	}
303 
304 	req->nbytes = nbytes;
305 	rctx->buflen = hash_later;
306 
307 	return qce->async_req_enqueue(tmpl->qce, &req->base);
308 }
309 
310 static int qce_ahash_final(struct ahash_request *req)
311 {
312 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
313 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
314 	struct qce_device *qce = tmpl->qce;
315 
316 	if (!rctx->buflen)
317 		return 0;
318 
319 	rctx->last_blk = true;
320 
321 	rctx->src_orig = req->src;
322 	rctx->nbytes_orig = req->nbytes;
323 
324 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
325 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
326 
327 	req->src = rctx->sg;
328 	req->nbytes = rctx->buflen;
329 
330 	return qce->async_req_enqueue(tmpl->qce, &req->base);
331 }
332 
333 static int qce_ahash_digest(struct ahash_request *req)
334 {
335 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
336 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
337 	struct qce_device *qce = tmpl->qce;
338 	int ret;
339 
340 	ret = qce_ahash_init(req);
341 	if (ret)
342 		return ret;
343 
344 	rctx->src_orig = req->src;
345 	rctx->nbytes_orig = req->nbytes;
346 	rctx->first_blk = true;
347 	rctx->last_blk = true;
348 
349 	return qce->async_req_enqueue(tmpl->qce, &req->base);
350 }
351 
352 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
353 				 unsigned int keylen)
354 {
355 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
356 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
357 	struct crypto_wait wait;
358 	struct ahash_request *req;
359 	struct scatterlist sg;
360 	unsigned int blocksize;
361 	struct crypto_ahash *ahash_tfm;
362 	u8 *buf;
363 	int ret;
364 	const char *alg_name;
365 
366 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
367 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
368 
369 	if (keylen <= blocksize) {
370 		memcpy(ctx->authkey, key, keylen);
371 		return 0;
372 	}
373 
374 	if (digestsize == SHA1_DIGEST_SIZE)
375 		alg_name = "sha1-qce";
376 	else if (digestsize == SHA256_DIGEST_SIZE)
377 		alg_name = "sha256-qce";
378 	else
379 		return -EINVAL;
380 
381 	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
382 				       CRYPTO_ALG_TYPE_AHASH_MASK);
383 	if (IS_ERR(ahash_tfm))
384 		return PTR_ERR(ahash_tfm);
385 
386 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
387 	if (!req) {
388 		ret = -ENOMEM;
389 		goto err_free_ahash;
390 	}
391 
392 	crypto_init_wait(&wait);
393 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
394 				   crypto_req_done, &wait);
395 	crypto_ahash_clear_flags(ahash_tfm, ~0);
396 
397 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
398 	if (!buf) {
399 		ret = -ENOMEM;
400 		goto err_free_req;
401 	}
402 
403 	memcpy(buf, key, keylen);
404 	sg_init_one(&sg, buf, keylen);
405 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
406 
407 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
408 	if (ret)
409 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
410 
411 	kfree(buf);
412 err_free_req:
413 	ahash_request_free(req);
414 err_free_ahash:
415 	crypto_free_ahash(ahash_tfm);
416 	return ret;
417 }
418 
419 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
420 {
421 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
422 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
423 
424 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
425 	memset(ctx, 0, sizeof(*ctx));
426 	return 0;
427 }
428 
429 struct qce_ahash_def {
430 	unsigned long flags;
431 	const char *name;
432 	const char *drv_name;
433 	unsigned int digestsize;
434 	unsigned int blocksize;
435 	unsigned int statesize;
436 	const u32 *std_iv;
437 };
438 
439 static const struct qce_ahash_def ahash_def[] = {
440 	{
441 		.flags		= QCE_HASH_SHA1,
442 		.name		= "sha1",
443 		.drv_name	= "sha1-qce",
444 		.digestsize	= SHA1_DIGEST_SIZE,
445 		.blocksize	= SHA1_BLOCK_SIZE,
446 		.statesize	= sizeof(struct sha1_state),
447 		.std_iv		= std_iv_sha1,
448 	},
449 	{
450 		.flags		= QCE_HASH_SHA256,
451 		.name		= "sha256",
452 		.drv_name	= "sha256-qce",
453 		.digestsize	= SHA256_DIGEST_SIZE,
454 		.blocksize	= SHA256_BLOCK_SIZE,
455 		.statesize	= sizeof(struct sha256_state),
456 		.std_iv		= std_iv_sha256,
457 	},
458 	{
459 		.flags		= QCE_HASH_SHA1_HMAC,
460 		.name		= "hmac(sha1)",
461 		.drv_name	= "hmac-sha1-qce",
462 		.digestsize	= SHA1_DIGEST_SIZE,
463 		.blocksize	= SHA1_BLOCK_SIZE,
464 		.statesize	= sizeof(struct sha1_state),
465 		.std_iv		= std_iv_sha1,
466 	},
467 	{
468 		.flags		= QCE_HASH_SHA256_HMAC,
469 		.name		= "hmac(sha256)",
470 		.drv_name	= "hmac-sha256-qce",
471 		.digestsize	= SHA256_DIGEST_SIZE,
472 		.blocksize	= SHA256_BLOCK_SIZE,
473 		.statesize	= sizeof(struct sha256_state),
474 		.std_iv		= std_iv_sha256,
475 	},
476 };
477 
478 static int qce_ahash_register_one(const struct qce_ahash_def *def,
479 				  struct qce_device *qce)
480 {
481 	struct qce_alg_template *tmpl;
482 	struct ahash_alg *alg;
483 	struct crypto_alg *base;
484 	int ret;
485 
486 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
487 	if (!tmpl)
488 		return -ENOMEM;
489 
490 	tmpl->std_iv = def->std_iv;
491 
492 	alg = &tmpl->alg.ahash;
493 	alg->init = qce_ahash_init;
494 	alg->update = qce_ahash_update;
495 	alg->final = qce_ahash_final;
496 	alg->digest = qce_ahash_digest;
497 	alg->export = qce_ahash_export;
498 	alg->import = qce_ahash_import;
499 	if (IS_SHA_HMAC(def->flags))
500 		alg->setkey = qce_ahash_hmac_setkey;
501 	alg->halg.digestsize = def->digestsize;
502 	alg->halg.statesize = def->statesize;
503 
504 	base = &alg->halg.base;
505 	base->cra_blocksize = def->blocksize;
506 	base->cra_priority = 300;
507 	base->cra_flags = CRYPTO_ALG_ASYNC;
508 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
509 	base->cra_alignmask = 0;
510 	base->cra_module = THIS_MODULE;
511 	base->cra_init = qce_ahash_cra_init;
512 	INIT_LIST_HEAD(&base->cra_list);
513 
514 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
515 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
516 		 def->drv_name);
517 
518 	INIT_LIST_HEAD(&tmpl->entry);
519 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
520 	tmpl->alg_flags = def->flags;
521 	tmpl->qce = qce;
522 
523 	ret = crypto_register_ahash(alg);
524 	if (ret) {
525 		kfree(tmpl);
526 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
527 		return ret;
528 	}
529 
530 	list_add_tail(&tmpl->entry, &ahash_algs);
531 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
532 	return 0;
533 }
534 
535 static void qce_ahash_unregister(struct qce_device *qce)
536 {
537 	struct qce_alg_template *tmpl, *n;
538 
539 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
540 		crypto_unregister_ahash(&tmpl->alg.ahash);
541 		list_del(&tmpl->entry);
542 		kfree(tmpl);
543 	}
544 }
545 
546 static int qce_ahash_register(struct qce_device *qce)
547 {
548 	int ret, i;
549 
550 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
551 		ret = qce_ahash_register_one(&ahash_def[i], qce);
552 		if (ret)
553 			goto err;
554 	}
555 
556 	return 0;
557 err:
558 	qce_ahash_unregister(qce);
559 	return ret;
560 }
561 
562 const struct qce_algo_ops ahash_ops = {
563 	.type = CRYPTO_ALG_TYPE_AHASH,
564 	.register_algs = qce_ahash_register,
565 	.unregister_algs = qce_ahash_unregister,
566 	.async_req_handle = qce_ahash_async_req_handle,
567 };
568