xref: /openbmc/linux/drivers/crypto/qce/sha.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
10 
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
14 
15 struct qce_sha_saved_state {
16 	u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
17 	u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
18 	__be32 byte_count[2];
19 	unsigned int pending_buflen;
20 	unsigned int flags;
21 	u64 count;
22 	bool first_blk;
23 };
24 
25 static LIST_HEAD(ahash_algs);
26 
27 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
28 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
29 };
30 
31 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
32 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
33 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
34 };
35 
36 static void qce_ahash_done(void *data)
37 {
38 	struct crypto_async_request *async_req = data;
39 	struct ahash_request *req = ahash_request_cast(async_req);
40 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
41 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
42 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
43 	struct qce_device *qce = tmpl->qce;
44 	struct qce_result_dump *result = qce->dma.result_buf;
45 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
46 	int error;
47 	u32 status;
48 
49 	error = qce_dma_terminate_all(&qce->dma);
50 	if (error)
51 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
52 
53 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
54 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
55 
56 	memcpy(rctx->digest, result->auth_iv, digestsize);
57 	if (req->result && rctx->last_blk)
58 		memcpy(req->result, result->auth_iv, digestsize);
59 
60 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
61 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
62 
63 	error = qce_check_status(qce, &status);
64 	if (error < 0)
65 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
66 
67 	req->src = rctx->src_orig;
68 	req->nbytes = rctx->nbytes_orig;
69 	rctx->last_blk = false;
70 	rctx->first_blk = false;
71 
72 	qce->async_req_done(tmpl->qce, error);
73 }
74 
75 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
76 {
77 	struct ahash_request *req = ahash_request_cast(async_req);
78 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
79 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
80 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
81 	struct qce_device *qce = tmpl->qce;
82 	unsigned long flags = rctx->flags;
83 	int ret;
84 
85 	if (IS_SHA_HMAC(flags)) {
86 		rctx->authkey = ctx->authkey;
87 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
88 	} else if (IS_CMAC(flags)) {
89 		rctx->authkey = ctx->authkey;
90 		rctx->authklen = AES_KEYSIZE_128;
91 	}
92 
93 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
94 	if (rctx->src_nents < 0) {
95 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
96 		return rctx->src_nents;
97 	}
98 
99 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
100 	if (ret < 0)
101 		return ret;
102 
103 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
104 
105 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
106 	if (ret < 0)
107 		goto error_unmap_src;
108 
109 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
110 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
111 	if (ret)
112 		goto error_unmap_dst;
113 
114 	qce_dma_issue_pending(&qce->dma);
115 
116 	ret = qce_start(async_req, tmpl->crypto_alg_type);
117 	if (ret)
118 		goto error_terminate;
119 
120 	return 0;
121 
122 error_terminate:
123 	qce_dma_terminate_all(&qce->dma);
124 error_unmap_dst:
125 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
126 error_unmap_src:
127 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
128 	return ret;
129 }
130 
131 static int qce_ahash_init(struct ahash_request *req)
132 {
133 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
134 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
135 	const u32 *std_iv = tmpl->std_iv;
136 
137 	memset(rctx, 0, sizeof(*rctx));
138 	rctx->first_blk = true;
139 	rctx->last_blk = false;
140 	rctx->flags = tmpl->alg_flags;
141 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
142 
143 	return 0;
144 }
145 
146 static int qce_ahash_export(struct ahash_request *req, void *out)
147 {
148 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
149 	struct qce_sha_saved_state *export_state = out;
150 
151 	memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
152 	memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
153 	export_state->byte_count[0] = rctx->byte_count[0];
154 	export_state->byte_count[1] = rctx->byte_count[1];
155 	export_state->pending_buflen = rctx->buflen;
156 	export_state->count = rctx->count;
157 	export_state->first_blk = rctx->first_blk;
158 	export_state->flags = rctx->flags;
159 
160 	return 0;
161 }
162 
163 static int qce_ahash_import(struct ahash_request *req, const void *in)
164 {
165 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
166 	const struct qce_sha_saved_state *import_state = in;
167 
168 	memset(rctx, 0, sizeof(*rctx));
169 	rctx->count = import_state->count;
170 	rctx->buflen = import_state->pending_buflen;
171 	rctx->first_blk = import_state->first_blk;
172 	rctx->flags = import_state->flags;
173 	rctx->byte_count[0] = import_state->byte_count[0];
174 	rctx->byte_count[1] = import_state->byte_count[1];
175 	memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
176 	memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
177 
178 	return 0;
179 }
180 
181 static int qce_ahash_update(struct ahash_request *req)
182 {
183 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
184 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
185 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
186 	struct qce_device *qce = tmpl->qce;
187 	struct scatterlist *sg_last, *sg;
188 	unsigned int total, len;
189 	unsigned int hash_later;
190 	unsigned int nbytes;
191 	unsigned int blocksize;
192 
193 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
194 	rctx->count += req->nbytes;
195 
196 	/* check for buffer from previous updates and append it */
197 	total = req->nbytes + rctx->buflen;
198 
199 	if (total <= blocksize) {
200 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
201 					 0, req->nbytes, 0);
202 		rctx->buflen += req->nbytes;
203 		return 0;
204 	}
205 
206 	/* save the original req structure fields */
207 	rctx->src_orig = req->src;
208 	rctx->nbytes_orig = req->nbytes;
209 
210 	/*
211 	 * if we have data from previous update copy them on buffer. The old
212 	 * data will be combined with current request bytes.
213 	 */
214 	if (rctx->buflen)
215 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
216 
217 	/* calculate how many bytes will be hashed later */
218 	hash_later = total % blocksize;
219 
220 	/*
221 	 * At this point, there is more than one block size of data.  If
222 	 * the available data to transfer is exactly a multiple of block
223 	 * size, save the last block to be transferred in qce_ahash_final
224 	 * (with the last block bit set) if this is indeed the end of data
225 	 * stream. If not this saved block will be transferred as part of
226 	 * next update. If this block is not held back and if this is
227 	 * indeed the end of data stream, the digest obtained will be wrong
228 	 * since qce_ahash_final will see that rctx->buflen is 0 and return
229 	 * doing nothing which in turn means that a digest will not be
230 	 * copied to the destination result buffer.  qce_ahash_final cannot
231 	 * be made to alter this behavior and allowed to proceed if
232 	 * rctx->buflen is 0 because the crypto engine BAM does not allow
233 	 * for zero length transfers.
234 	 */
235 	if (!hash_later)
236 		hash_later = blocksize;
237 
238 	if (hash_later) {
239 		unsigned int src_offset = req->nbytes - hash_later;
240 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
241 					 hash_later, 0);
242 	}
243 
244 	/* here nbytes is multiple of blocksize */
245 	nbytes = total - hash_later;
246 
247 	len = rctx->buflen;
248 	sg = sg_last = req->src;
249 
250 	while (len < nbytes && sg) {
251 		if (len + sg_dma_len(sg) > nbytes)
252 			break;
253 		len += sg_dma_len(sg);
254 		sg_last = sg;
255 		sg = sg_next(sg);
256 	}
257 
258 	if (!sg_last)
259 		return -EINVAL;
260 
261 	if (rctx->buflen) {
262 		sg_init_table(rctx->sg, 2);
263 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
264 		sg_chain(rctx->sg, 2, req->src);
265 		req->src = rctx->sg;
266 	}
267 
268 	req->nbytes = nbytes;
269 	rctx->buflen = hash_later;
270 
271 	return qce->async_req_enqueue(tmpl->qce, &req->base);
272 }
273 
274 static int qce_ahash_final(struct ahash_request *req)
275 {
276 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
277 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
278 	struct qce_device *qce = tmpl->qce;
279 
280 	if (!rctx->buflen) {
281 		if (tmpl->hash_zero)
282 			memcpy(req->result, tmpl->hash_zero,
283 					tmpl->alg.ahash.halg.digestsize);
284 		return 0;
285 	}
286 
287 	rctx->last_blk = true;
288 
289 	rctx->src_orig = req->src;
290 	rctx->nbytes_orig = req->nbytes;
291 
292 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
293 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
294 
295 	req->src = rctx->sg;
296 	req->nbytes = rctx->buflen;
297 
298 	return qce->async_req_enqueue(tmpl->qce, &req->base);
299 }
300 
301 static int qce_ahash_digest(struct ahash_request *req)
302 {
303 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
304 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
305 	struct qce_device *qce = tmpl->qce;
306 	int ret;
307 
308 	ret = qce_ahash_init(req);
309 	if (ret)
310 		return ret;
311 
312 	rctx->src_orig = req->src;
313 	rctx->nbytes_orig = req->nbytes;
314 	rctx->first_blk = true;
315 	rctx->last_blk = true;
316 
317 	if (!rctx->nbytes_orig) {
318 		if (tmpl->hash_zero)
319 			memcpy(req->result, tmpl->hash_zero,
320 					tmpl->alg.ahash.halg.digestsize);
321 		return 0;
322 	}
323 
324 	return qce->async_req_enqueue(tmpl->qce, &req->base);
325 }
326 
327 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
328 				 unsigned int keylen)
329 {
330 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
331 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
332 	struct crypto_wait wait;
333 	struct ahash_request *req;
334 	struct scatterlist sg;
335 	unsigned int blocksize;
336 	struct crypto_ahash *ahash_tfm;
337 	u8 *buf;
338 	int ret;
339 	const char *alg_name;
340 
341 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
342 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
343 
344 	if (keylen <= blocksize) {
345 		memcpy(ctx->authkey, key, keylen);
346 		return 0;
347 	}
348 
349 	if (digestsize == SHA1_DIGEST_SIZE)
350 		alg_name = "sha1-qce";
351 	else if (digestsize == SHA256_DIGEST_SIZE)
352 		alg_name = "sha256-qce";
353 	else
354 		return -EINVAL;
355 
356 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
357 	if (IS_ERR(ahash_tfm))
358 		return PTR_ERR(ahash_tfm);
359 
360 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
361 	if (!req) {
362 		ret = -ENOMEM;
363 		goto err_free_ahash;
364 	}
365 
366 	crypto_init_wait(&wait);
367 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
368 				   crypto_req_done, &wait);
369 	crypto_ahash_clear_flags(ahash_tfm, ~0);
370 
371 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
372 	if (!buf) {
373 		ret = -ENOMEM;
374 		goto err_free_req;
375 	}
376 
377 	memcpy(buf, key, keylen);
378 	sg_init_one(&sg, buf, keylen);
379 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
380 
381 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
382 
383 	kfree(buf);
384 err_free_req:
385 	ahash_request_free(req);
386 err_free_ahash:
387 	crypto_free_ahash(ahash_tfm);
388 	return ret;
389 }
390 
391 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
392 {
393 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
394 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
395 
396 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
397 	memset(ctx, 0, sizeof(*ctx));
398 	return 0;
399 }
400 
401 struct qce_ahash_def {
402 	unsigned long flags;
403 	const char *name;
404 	const char *drv_name;
405 	unsigned int digestsize;
406 	unsigned int blocksize;
407 	unsigned int statesize;
408 	const u32 *std_iv;
409 };
410 
411 static const struct qce_ahash_def ahash_def[] = {
412 	{
413 		.flags		= QCE_HASH_SHA1,
414 		.name		= "sha1",
415 		.drv_name	= "sha1-qce",
416 		.digestsize	= SHA1_DIGEST_SIZE,
417 		.blocksize	= SHA1_BLOCK_SIZE,
418 		.statesize	= sizeof(struct qce_sha_saved_state),
419 		.std_iv		= std_iv_sha1,
420 	},
421 	{
422 		.flags		= QCE_HASH_SHA256,
423 		.name		= "sha256",
424 		.drv_name	= "sha256-qce",
425 		.digestsize	= SHA256_DIGEST_SIZE,
426 		.blocksize	= SHA256_BLOCK_SIZE,
427 		.statesize	= sizeof(struct qce_sha_saved_state),
428 		.std_iv		= std_iv_sha256,
429 	},
430 	{
431 		.flags		= QCE_HASH_SHA1_HMAC,
432 		.name		= "hmac(sha1)",
433 		.drv_name	= "hmac-sha1-qce",
434 		.digestsize	= SHA1_DIGEST_SIZE,
435 		.blocksize	= SHA1_BLOCK_SIZE,
436 		.statesize	= sizeof(struct qce_sha_saved_state),
437 		.std_iv		= std_iv_sha1,
438 	},
439 	{
440 		.flags		= QCE_HASH_SHA256_HMAC,
441 		.name		= "hmac(sha256)",
442 		.drv_name	= "hmac-sha256-qce",
443 		.digestsize	= SHA256_DIGEST_SIZE,
444 		.blocksize	= SHA256_BLOCK_SIZE,
445 		.statesize	= sizeof(struct qce_sha_saved_state),
446 		.std_iv		= std_iv_sha256,
447 	},
448 };
449 
450 static int qce_ahash_register_one(const struct qce_ahash_def *def,
451 				  struct qce_device *qce)
452 {
453 	struct qce_alg_template *tmpl;
454 	struct ahash_alg *alg;
455 	struct crypto_alg *base;
456 	int ret;
457 
458 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
459 	if (!tmpl)
460 		return -ENOMEM;
461 
462 	tmpl->std_iv = def->std_iv;
463 
464 	alg = &tmpl->alg.ahash;
465 	alg->init = qce_ahash_init;
466 	alg->update = qce_ahash_update;
467 	alg->final = qce_ahash_final;
468 	alg->digest = qce_ahash_digest;
469 	alg->export = qce_ahash_export;
470 	alg->import = qce_ahash_import;
471 	if (IS_SHA_HMAC(def->flags))
472 		alg->setkey = qce_ahash_hmac_setkey;
473 	alg->halg.digestsize = def->digestsize;
474 	alg->halg.statesize = def->statesize;
475 
476 	if (IS_SHA1(def->flags))
477 		tmpl->hash_zero = sha1_zero_message_hash;
478 	else if (IS_SHA256(def->flags))
479 		tmpl->hash_zero = sha256_zero_message_hash;
480 
481 	base = &alg->halg.base;
482 	base->cra_blocksize = def->blocksize;
483 	base->cra_priority = 300;
484 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
485 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
486 	base->cra_alignmask = 0;
487 	base->cra_module = THIS_MODULE;
488 	base->cra_init = qce_ahash_cra_init;
489 
490 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
491 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
492 		 def->drv_name);
493 
494 	INIT_LIST_HEAD(&tmpl->entry);
495 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
496 	tmpl->alg_flags = def->flags;
497 	tmpl->qce = qce;
498 
499 	ret = crypto_register_ahash(alg);
500 	if (ret) {
501 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
502 		kfree(tmpl);
503 		return ret;
504 	}
505 
506 	list_add_tail(&tmpl->entry, &ahash_algs);
507 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
508 	return 0;
509 }
510 
511 static void qce_ahash_unregister(struct qce_device *qce)
512 {
513 	struct qce_alg_template *tmpl, *n;
514 
515 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
516 		crypto_unregister_ahash(&tmpl->alg.ahash);
517 		list_del(&tmpl->entry);
518 		kfree(tmpl);
519 	}
520 }
521 
522 static int qce_ahash_register(struct qce_device *qce)
523 {
524 	int ret, i;
525 
526 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
527 		ret = qce_ahash_register_one(&ahash_def[i], qce);
528 		if (ret)
529 			goto err;
530 	}
531 
532 	return 0;
533 err:
534 	qce_ahash_unregister(qce);
535 	return ret;
536 }
537 
538 const struct qce_algo_ops ahash_ops = {
539 	.type = CRYPTO_ALG_TYPE_AHASH,
540 	.register_algs = qce_ahash_register,
541 	.unregister_algs = qce_ahash_unregister,
542 	.async_req_handle = qce_ahash_async_req_handle,
543 };
544