xref: /openbmc/linux/drivers/crypto/qce/sha.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/interrupt.h>
8 #include <crypto/internal/hash.h>
9 
10 #include "common.h"
11 #include "core.h"
12 #include "sha.h"
13 
14 /* crypto hw padding constant for first operation */
15 #define SHA_PADDING		64
16 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
17 
18 static LIST_HEAD(ahash_algs);
19 
20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
21 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
22 };
23 
24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
25 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
26 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
27 };
28 
29 static void qce_ahash_done(void *data)
30 {
31 	struct crypto_async_request *async_req = data;
32 	struct ahash_request *req = ahash_request_cast(async_req);
33 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
34 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
35 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
36 	struct qce_device *qce = tmpl->qce;
37 	struct qce_result_dump *result = qce->dma.result_buf;
38 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
39 	int error;
40 	u32 status;
41 
42 	error = qce_dma_terminate_all(&qce->dma);
43 	if (error)
44 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
45 
46 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
47 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
48 
49 	memcpy(rctx->digest, result->auth_iv, digestsize);
50 	if (req->result)
51 		memcpy(req->result, result->auth_iv, digestsize);
52 
53 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
54 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
55 
56 	error = qce_check_status(qce, &status);
57 	if (error < 0)
58 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
59 
60 	req->src = rctx->src_orig;
61 	req->nbytes = rctx->nbytes_orig;
62 	rctx->last_blk = false;
63 	rctx->first_blk = false;
64 
65 	qce->async_req_done(tmpl->qce, error);
66 }
67 
68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
69 {
70 	struct ahash_request *req = ahash_request_cast(async_req);
71 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
72 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
73 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
74 	struct qce_device *qce = tmpl->qce;
75 	unsigned long flags = rctx->flags;
76 	int ret;
77 
78 	if (IS_SHA_HMAC(flags)) {
79 		rctx->authkey = ctx->authkey;
80 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
81 	} else if (IS_CMAC(flags)) {
82 		rctx->authkey = ctx->authkey;
83 		rctx->authklen = AES_KEYSIZE_128;
84 	}
85 
86 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
87 	if (rctx->src_nents < 0) {
88 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
89 		return rctx->src_nents;
90 	}
91 
92 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
93 	if (ret < 0)
94 		return ret;
95 
96 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
97 
98 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
99 	if (ret < 0)
100 		goto error_unmap_src;
101 
102 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
103 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
104 	if (ret)
105 		goto error_unmap_dst;
106 
107 	qce_dma_issue_pending(&qce->dma);
108 
109 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
110 	if (ret)
111 		goto error_terminate;
112 
113 	return 0;
114 
115 error_terminate:
116 	qce_dma_terminate_all(&qce->dma);
117 error_unmap_dst:
118 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
119 error_unmap_src:
120 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
121 	return ret;
122 }
123 
124 static int qce_ahash_init(struct ahash_request *req)
125 {
126 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
127 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
128 	const u32 *std_iv = tmpl->std_iv;
129 
130 	memset(rctx, 0, sizeof(*rctx));
131 	rctx->first_blk = true;
132 	rctx->last_blk = false;
133 	rctx->flags = tmpl->alg_flags;
134 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
135 
136 	return 0;
137 }
138 
139 static int qce_ahash_export(struct ahash_request *req, void *out)
140 {
141 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
142 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
143 	unsigned long flags = rctx->flags;
144 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
145 	unsigned int blocksize =
146 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
147 
148 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
149 		struct sha1_state *out_state = out;
150 
151 		out_state->count = rctx->count;
152 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
153 				       rctx->digest, digestsize);
154 		memcpy(out_state->buffer, rctx->buf, blocksize);
155 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
156 		struct sha256_state *out_state = out;
157 
158 		out_state->count = rctx->count;
159 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
160 				       rctx->digest, digestsize);
161 		memcpy(out_state->buf, rctx->buf, blocksize);
162 	} else {
163 		return -EINVAL;
164 	}
165 
166 	return 0;
167 }
168 
169 static int qce_import_common(struct ahash_request *req, u64 in_count,
170 			     const u32 *state, const u8 *buffer, bool hmac)
171 {
172 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
173 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
174 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
175 	unsigned int blocksize;
176 	u64 count = in_count;
177 
178 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
179 	rctx->count = in_count;
180 	memcpy(rctx->buf, buffer, blocksize);
181 
182 	if (in_count <= blocksize) {
183 		rctx->first_blk = 1;
184 	} else {
185 		rctx->first_blk = 0;
186 		/*
187 		 * For HMAC, there is a hardware padding done when first block
188 		 * is set. Therefore the byte_count must be incremened by 64
189 		 * after the first block operation.
190 		 */
191 		if (hmac)
192 			count += SHA_PADDING;
193 	}
194 
195 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
196 	rctx->byte_count[1] = (__force __be32)(count >> 32);
197 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
198 			       digestsize);
199 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
200 
201 	return 0;
202 }
203 
204 static int qce_ahash_import(struct ahash_request *req, const void *in)
205 {
206 	struct qce_sha_reqctx *rctx;
207 	unsigned long flags;
208 	bool hmac;
209 	int ret;
210 
211 	ret = qce_ahash_init(req);
212 	if (ret)
213 		return ret;
214 
215 	rctx = ahash_request_ctx(req);
216 	flags = rctx->flags;
217 	hmac = IS_SHA_HMAC(flags);
218 
219 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220 		const struct sha1_state *state = in;
221 
222 		ret = qce_import_common(req, state->count, state->state,
223 					state->buffer, hmac);
224 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225 		const struct sha256_state *state = in;
226 
227 		ret = qce_import_common(req, state->count, state->state,
228 					state->buf, hmac);
229 	}
230 
231 	return ret;
232 }
233 
234 static int qce_ahash_update(struct ahash_request *req)
235 {
236 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239 	struct qce_device *qce = tmpl->qce;
240 	struct scatterlist *sg_last, *sg;
241 	unsigned int total, len;
242 	unsigned int hash_later;
243 	unsigned int nbytes;
244 	unsigned int blocksize;
245 
246 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247 	rctx->count += req->nbytes;
248 
249 	/* check for buffer from previous updates and append it */
250 	total = req->nbytes + rctx->buflen;
251 
252 	if (total <= blocksize) {
253 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254 					 0, req->nbytes, 0);
255 		rctx->buflen += req->nbytes;
256 		return 0;
257 	}
258 
259 	/* save the original req structure fields */
260 	rctx->src_orig = req->src;
261 	rctx->nbytes_orig = req->nbytes;
262 
263 	/*
264 	 * if we have data from previous update copy them on buffer. The old
265 	 * data will be combined with current request bytes.
266 	 */
267 	if (rctx->buflen)
268 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269 
270 	/* calculate how many bytes will be hashed later */
271 	hash_later = total % blocksize;
272 	if (hash_later) {
273 		unsigned int src_offset = req->nbytes - hash_later;
274 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275 					 hash_later, 0);
276 	}
277 
278 	/* here nbytes is multiple of blocksize */
279 	nbytes = total - hash_later;
280 
281 	len = rctx->buflen;
282 	sg = sg_last = req->src;
283 
284 	while (len < nbytes && sg) {
285 		if (len + sg_dma_len(sg) > nbytes)
286 			break;
287 		len += sg_dma_len(sg);
288 		sg_last = sg;
289 		sg = sg_next(sg);
290 	}
291 
292 	if (!sg_last)
293 		return -EINVAL;
294 
295 	if (rctx->buflen) {
296 		sg_init_table(rctx->sg, 2);
297 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
298 		sg_chain(rctx->sg, 2, req->src);
299 		req->src = rctx->sg;
300 	}
301 
302 	req->nbytes = nbytes;
303 	rctx->buflen = hash_later;
304 
305 	return qce->async_req_enqueue(tmpl->qce, &req->base);
306 }
307 
308 static int qce_ahash_final(struct ahash_request *req)
309 {
310 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
311 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
312 	struct qce_device *qce = tmpl->qce;
313 
314 	if (!rctx->buflen) {
315 		if (tmpl->hash_zero)
316 			memcpy(req->result, tmpl->hash_zero,
317 					tmpl->alg.ahash.halg.digestsize);
318 		return 0;
319 	}
320 
321 	rctx->last_blk = true;
322 
323 	rctx->src_orig = req->src;
324 	rctx->nbytes_orig = req->nbytes;
325 
326 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
327 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
328 
329 	req->src = rctx->sg;
330 	req->nbytes = rctx->buflen;
331 
332 	return qce->async_req_enqueue(tmpl->qce, &req->base);
333 }
334 
335 static int qce_ahash_digest(struct ahash_request *req)
336 {
337 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
338 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
339 	struct qce_device *qce = tmpl->qce;
340 	int ret;
341 
342 	ret = qce_ahash_init(req);
343 	if (ret)
344 		return ret;
345 
346 	rctx->src_orig = req->src;
347 	rctx->nbytes_orig = req->nbytes;
348 	rctx->first_blk = true;
349 	rctx->last_blk = true;
350 
351 	if (!rctx->nbytes_orig) {
352 		if (tmpl->hash_zero)
353 			memcpy(req->result, tmpl->hash_zero,
354 					tmpl->alg.ahash.halg.digestsize);
355 		return 0;
356 	}
357 
358 	return qce->async_req_enqueue(tmpl->qce, &req->base);
359 }
360 
361 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
362 				 unsigned int keylen)
363 {
364 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
365 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
366 	struct crypto_wait wait;
367 	struct ahash_request *req;
368 	struct scatterlist sg;
369 	unsigned int blocksize;
370 	struct crypto_ahash *ahash_tfm;
371 	u8 *buf;
372 	int ret;
373 	const char *alg_name;
374 
375 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
376 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
377 
378 	if (keylen <= blocksize) {
379 		memcpy(ctx->authkey, key, keylen);
380 		return 0;
381 	}
382 
383 	if (digestsize == SHA1_DIGEST_SIZE)
384 		alg_name = "sha1-qce";
385 	else if (digestsize == SHA256_DIGEST_SIZE)
386 		alg_name = "sha256-qce";
387 	else
388 		return -EINVAL;
389 
390 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
391 	if (IS_ERR(ahash_tfm))
392 		return PTR_ERR(ahash_tfm);
393 
394 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
395 	if (!req) {
396 		ret = -ENOMEM;
397 		goto err_free_ahash;
398 	}
399 
400 	crypto_init_wait(&wait);
401 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
402 				   crypto_req_done, &wait);
403 	crypto_ahash_clear_flags(ahash_tfm, ~0);
404 
405 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
406 	if (!buf) {
407 		ret = -ENOMEM;
408 		goto err_free_req;
409 	}
410 
411 	memcpy(buf, key, keylen);
412 	sg_init_one(&sg, buf, keylen);
413 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
414 
415 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
416 
417 	kfree(buf);
418 err_free_req:
419 	ahash_request_free(req);
420 err_free_ahash:
421 	crypto_free_ahash(ahash_tfm);
422 	return ret;
423 }
424 
425 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
426 {
427 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
428 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
429 
430 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
431 	memset(ctx, 0, sizeof(*ctx));
432 	return 0;
433 }
434 
435 struct qce_ahash_def {
436 	unsigned long flags;
437 	const char *name;
438 	const char *drv_name;
439 	unsigned int digestsize;
440 	unsigned int blocksize;
441 	unsigned int statesize;
442 	const u32 *std_iv;
443 };
444 
445 static const struct qce_ahash_def ahash_def[] = {
446 	{
447 		.flags		= QCE_HASH_SHA1,
448 		.name		= "sha1",
449 		.drv_name	= "sha1-qce",
450 		.digestsize	= SHA1_DIGEST_SIZE,
451 		.blocksize	= SHA1_BLOCK_SIZE,
452 		.statesize	= sizeof(struct sha1_state),
453 		.std_iv		= std_iv_sha1,
454 	},
455 	{
456 		.flags		= QCE_HASH_SHA256,
457 		.name		= "sha256",
458 		.drv_name	= "sha256-qce",
459 		.digestsize	= SHA256_DIGEST_SIZE,
460 		.blocksize	= SHA256_BLOCK_SIZE,
461 		.statesize	= sizeof(struct sha256_state),
462 		.std_iv		= std_iv_sha256,
463 	},
464 	{
465 		.flags		= QCE_HASH_SHA1_HMAC,
466 		.name		= "hmac(sha1)",
467 		.drv_name	= "hmac-sha1-qce",
468 		.digestsize	= SHA1_DIGEST_SIZE,
469 		.blocksize	= SHA1_BLOCK_SIZE,
470 		.statesize	= sizeof(struct sha1_state),
471 		.std_iv		= std_iv_sha1,
472 	},
473 	{
474 		.flags		= QCE_HASH_SHA256_HMAC,
475 		.name		= "hmac(sha256)",
476 		.drv_name	= "hmac-sha256-qce",
477 		.digestsize	= SHA256_DIGEST_SIZE,
478 		.blocksize	= SHA256_BLOCK_SIZE,
479 		.statesize	= sizeof(struct sha256_state),
480 		.std_iv		= std_iv_sha256,
481 	},
482 };
483 
484 static int qce_ahash_register_one(const struct qce_ahash_def *def,
485 				  struct qce_device *qce)
486 {
487 	struct qce_alg_template *tmpl;
488 	struct ahash_alg *alg;
489 	struct crypto_alg *base;
490 	int ret;
491 
492 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
493 	if (!tmpl)
494 		return -ENOMEM;
495 
496 	tmpl->std_iv = def->std_iv;
497 
498 	alg = &tmpl->alg.ahash;
499 	alg->init = qce_ahash_init;
500 	alg->update = qce_ahash_update;
501 	alg->final = qce_ahash_final;
502 	alg->digest = qce_ahash_digest;
503 	alg->export = qce_ahash_export;
504 	alg->import = qce_ahash_import;
505 	if (IS_SHA_HMAC(def->flags))
506 		alg->setkey = qce_ahash_hmac_setkey;
507 	alg->halg.digestsize = def->digestsize;
508 	alg->halg.statesize = def->statesize;
509 
510 	if (IS_SHA1(def->flags))
511 		tmpl->hash_zero = sha1_zero_message_hash;
512 	else if (IS_SHA256(def->flags))
513 		tmpl->hash_zero = sha256_zero_message_hash;
514 
515 	base = &alg->halg.base;
516 	base->cra_blocksize = def->blocksize;
517 	base->cra_priority = 300;
518 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
519 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
520 	base->cra_alignmask = 0;
521 	base->cra_module = THIS_MODULE;
522 	base->cra_init = qce_ahash_cra_init;
523 
524 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
525 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
526 		 def->drv_name);
527 
528 	INIT_LIST_HEAD(&tmpl->entry);
529 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
530 	tmpl->alg_flags = def->flags;
531 	tmpl->qce = qce;
532 
533 	ret = crypto_register_ahash(alg);
534 	if (ret) {
535 		kfree(tmpl);
536 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537 		return ret;
538 	}
539 
540 	list_add_tail(&tmpl->entry, &ahash_algs);
541 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
542 	return 0;
543 }
544 
545 static void qce_ahash_unregister(struct qce_device *qce)
546 {
547 	struct qce_alg_template *tmpl, *n;
548 
549 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
550 		crypto_unregister_ahash(&tmpl->alg.ahash);
551 		list_del(&tmpl->entry);
552 		kfree(tmpl);
553 	}
554 }
555 
556 static int qce_ahash_register(struct qce_device *qce)
557 {
558 	int ret, i;
559 
560 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
561 		ret = qce_ahash_register_one(&ahash_def[i], qce);
562 		if (ret)
563 			goto err;
564 	}
565 
566 	return 0;
567 err:
568 	qce_ahash_unregister(qce);
569 	return ret;
570 }
571 
572 const struct qce_algo_ops ahash_ops = {
573 	.type = CRYPTO_ALG_TYPE_AHASH,
574 	.register_algs = qce_ahash_register,
575 	.unregister_algs = qce_ahash_unregister,
576 	.async_req_handle = qce_ahash_async_req_handle,
577 };
578