1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/device.h> 7 #include <linux/interrupt.h> 8 #include <crypto/internal/hash.h> 9 10 #include "common.h" 11 #include "core.h" 12 #include "sha.h" 13 14 /* crypto hw padding constant for first operation */ 15 #define SHA_PADDING 64 16 #define SHA_PADDING_MASK (SHA_PADDING - 1) 17 18 static LIST_HEAD(ahash_algs); 19 20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = { 21 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0 22 }; 23 24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = { 25 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 26 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7 27 }; 28 29 static void qce_ahash_done(void *data) 30 { 31 struct crypto_async_request *async_req = data; 32 struct ahash_request *req = ahash_request_cast(async_req); 33 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 34 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 35 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); 36 struct qce_device *qce = tmpl->qce; 37 struct qce_result_dump *result = qce->dma.result_buf; 38 unsigned int digestsize = crypto_ahash_digestsize(ahash); 39 int error; 40 u32 status; 41 42 error = qce_dma_terminate_all(&qce->dma); 43 if (error) 44 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error); 45 46 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); 47 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE); 48 49 memcpy(rctx->digest, result->auth_iv, digestsize); 50 if (req->result) 51 memcpy(req->result, result->auth_iv, digestsize); 52 53 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]); 54 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]); 55 56 error = qce_check_status(qce, &status); 57 if (error < 0) 58 dev_dbg(qce->dev, "ahash operation error (%x)\n", status); 59 60 req->src = rctx->src_orig; 61 req->nbytes = rctx->nbytes_orig; 62 rctx->last_blk = false; 63 rctx->first_blk = false; 64 65 qce->async_req_done(tmpl->qce, error); 66 } 67 68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req) 69 { 70 struct ahash_request *req = ahash_request_cast(async_req); 71 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 72 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm); 73 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); 74 struct qce_device *qce = tmpl->qce; 75 unsigned long flags = rctx->flags; 76 int ret; 77 78 if (IS_SHA_HMAC(flags)) { 79 rctx->authkey = ctx->authkey; 80 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE; 81 } else if (IS_CMAC(flags)) { 82 rctx->authkey = ctx->authkey; 83 rctx->authklen = AES_KEYSIZE_128; 84 } 85 86 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes); 87 if (rctx->src_nents < 0) { 88 dev_err(qce->dev, "Invalid numbers of src SG.\n"); 89 return rctx->src_nents; 90 } 91 92 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); 93 if (ret < 0) 94 return ret; 95 96 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); 97 98 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE); 99 if (ret < 0) 100 goto error_unmap_src; 101 102 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents, 103 &rctx->result_sg, 1, qce_ahash_done, async_req); 104 if (ret) 105 goto error_unmap_dst; 106 107 qce_dma_issue_pending(&qce->dma); 108 109 ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0); 110 if (ret) 111 goto error_terminate; 112 113 return 0; 114 115 error_terminate: 116 qce_dma_terminate_all(&qce->dma); 117 error_unmap_dst: 118 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE); 119 error_unmap_src: 120 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); 121 return ret; 122 } 123 124 static int qce_ahash_init(struct ahash_request *req) 125 { 126 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 127 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm); 128 const u32 *std_iv = tmpl->std_iv; 129 130 memset(rctx, 0, sizeof(*rctx)); 131 rctx->first_blk = true; 132 rctx->last_blk = false; 133 rctx->flags = tmpl->alg_flags; 134 memcpy(rctx->digest, std_iv, sizeof(rctx->digest)); 135 136 return 0; 137 } 138 139 static int qce_ahash_export(struct ahash_request *req, void *out) 140 { 141 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 142 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 143 unsigned long flags = rctx->flags; 144 unsigned int digestsize = crypto_ahash_digestsize(ahash); 145 unsigned int blocksize = 146 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 147 148 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) { 149 struct sha1_state *out_state = out; 150 151 out_state->count = rctx->count; 152 qce_cpu_to_be32p_array((__be32 *)out_state->state, 153 rctx->digest, digestsize); 154 memcpy(out_state->buffer, rctx->buf, blocksize); 155 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) { 156 struct sha256_state *out_state = out; 157 158 out_state->count = rctx->count; 159 qce_cpu_to_be32p_array((__be32 *)out_state->state, 160 rctx->digest, digestsize); 161 memcpy(out_state->buf, rctx->buf, blocksize); 162 } else { 163 return -EINVAL; 164 } 165 166 return 0; 167 } 168 169 static int qce_import_common(struct ahash_request *req, u64 in_count, 170 const u32 *state, const u8 *buffer, bool hmac) 171 { 172 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 173 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 174 unsigned int digestsize = crypto_ahash_digestsize(ahash); 175 unsigned int blocksize; 176 u64 count = in_count; 177 178 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 179 rctx->count = in_count; 180 memcpy(rctx->buf, buffer, blocksize); 181 182 if (in_count <= blocksize) { 183 rctx->first_blk = 1; 184 } else { 185 rctx->first_blk = 0; 186 /* 187 * For HMAC, there is a hardware padding done when first block 188 * is set. Therefore the byte_count must be incremened by 64 189 * after the first block operation. 190 */ 191 if (hmac) 192 count += SHA_PADDING; 193 } 194 195 rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK); 196 rctx->byte_count[1] = (__force __be32)(count >> 32); 197 qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state, 198 digestsize); 199 rctx->buflen = (unsigned int)(in_count & (blocksize - 1)); 200 201 return 0; 202 } 203 204 static int qce_ahash_import(struct ahash_request *req, const void *in) 205 { 206 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 207 unsigned long flags = rctx->flags; 208 bool hmac = IS_SHA_HMAC(flags); 209 int ret = -EINVAL; 210 211 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) { 212 const struct sha1_state *state = in; 213 214 ret = qce_import_common(req, state->count, state->state, 215 state->buffer, hmac); 216 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) { 217 const struct sha256_state *state = in; 218 219 ret = qce_import_common(req, state->count, state->state, 220 state->buf, hmac); 221 } 222 223 return ret; 224 } 225 226 static int qce_ahash_update(struct ahash_request *req) 227 { 228 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 229 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 230 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm); 231 struct qce_device *qce = tmpl->qce; 232 struct scatterlist *sg_last, *sg; 233 unsigned int total, len; 234 unsigned int hash_later; 235 unsigned int nbytes; 236 unsigned int blocksize; 237 238 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 239 rctx->count += req->nbytes; 240 241 /* check for buffer from previous updates and append it */ 242 total = req->nbytes + rctx->buflen; 243 244 if (total <= blocksize) { 245 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src, 246 0, req->nbytes, 0); 247 rctx->buflen += req->nbytes; 248 return 0; 249 } 250 251 /* save the original req structure fields */ 252 rctx->src_orig = req->src; 253 rctx->nbytes_orig = req->nbytes; 254 255 /* 256 * if we have data from previous update copy them on buffer. The old 257 * data will be combined with current request bytes. 258 */ 259 if (rctx->buflen) 260 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen); 261 262 /* calculate how many bytes will be hashed later */ 263 hash_later = total % blocksize; 264 if (hash_later) { 265 unsigned int src_offset = req->nbytes - hash_later; 266 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset, 267 hash_later, 0); 268 } 269 270 /* here nbytes is multiple of blocksize */ 271 nbytes = total - hash_later; 272 273 len = rctx->buflen; 274 sg = sg_last = req->src; 275 276 while (len < nbytes && sg) { 277 if (len + sg_dma_len(sg) > nbytes) 278 break; 279 len += sg_dma_len(sg); 280 sg_last = sg; 281 sg = sg_next(sg); 282 } 283 284 if (!sg_last) 285 return -EINVAL; 286 287 sg_mark_end(sg_last); 288 289 if (rctx->buflen) { 290 sg_init_table(rctx->sg, 2); 291 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen); 292 sg_chain(rctx->sg, 2, req->src); 293 req->src = rctx->sg; 294 } 295 296 req->nbytes = nbytes; 297 rctx->buflen = hash_later; 298 299 return qce->async_req_enqueue(tmpl->qce, &req->base); 300 } 301 302 static int qce_ahash_final(struct ahash_request *req) 303 { 304 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 305 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm); 306 struct qce_device *qce = tmpl->qce; 307 308 if (!rctx->buflen) 309 return 0; 310 311 rctx->last_blk = true; 312 313 rctx->src_orig = req->src; 314 rctx->nbytes_orig = req->nbytes; 315 316 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen); 317 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen); 318 319 req->src = rctx->sg; 320 req->nbytes = rctx->buflen; 321 322 return qce->async_req_enqueue(tmpl->qce, &req->base); 323 } 324 325 static int qce_ahash_digest(struct ahash_request *req) 326 { 327 struct qce_sha_reqctx *rctx = ahash_request_ctx(req); 328 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm); 329 struct qce_device *qce = tmpl->qce; 330 int ret; 331 332 ret = qce_ahash_init(req); 333 if (ret) 334 return ret; 335 336 rctx->src_orig = req->src; 337 rctx->nbytes_orig = req->nbytes; 338 rctx->first_blk = true; 339 rctx->last_blk = true; 340 341 return qce->async_req_enqueue(tmpl->qce, &req->base); 342 } 343 344 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key, 345 unsigned int keylen) 346 { 347 unsigned int digestsize = crypto_ahash_digestsize(tfm); 348 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base); 349 struct crypto_wait wait; 350 struct ahash_request *req; 351 struct scatterlist sg; 352 unsigned int blocksize; 353 struct crypto_ahash *ahash_tfm; 354 u8 *buf; 355 int ret; 356 const char *alg_name; 357 358 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 359 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 360 361 if (keylen <= blocksize) { 362 memcpy(ctx->authkey, key, keylen); 363 return 0; 364 } 365 366 if (digestsize == SHA1_DIGEST_SIZE) 367 alg_name = "sha1-qce"; 368 else if (digestsize == SHA256_DIGEST_SIZE) 369 alg_name = "sha256-qce"; 370 else 371 return -EINVAL; 372 373 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0); 374 if (IS_ERR(ahash_tfm)) 375 return PTR_ERR(ahash_tfm); 376 377 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL); 378 if (!req) { 379 ret = -ENOMEM; 380 goto err_free_ahash; 381 } 382 383 crypto_init_wait(&wait); 384 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 385 crypto_req_done, &wait); 386 crypto_ahash_clear_flags(ahash_tfm, ~0); 387 388 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL); 389 if (!buf) { 390 ret = -ENOMEM; 391 goto err_free_req; 392 } 393 394 memcpy(buf, key, keylen); 395 sg_init_one(&sg, buf, keylen); 396 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen); 397 398 ret = crypto_wait_req(crypto_ahash_digest(req), &wait); 399 if (ret) 400 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); 401 402 kfree(buf); 403 err_free_req: 404 ahash_request_free(req); 405 err_free_ahash: 406 crypto_free_ahash(ahash_tfm); 407 return ret; 408 } 409 410 static int qce_ahash_cra_init(struct crypto_tfm *tfm) 411 { 412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 413 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm); 414 415 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx)); 416 memset(ctx, 0, sizeof(*ctx)); 417 return 0; 418 } 419 420 struct qce_ahash_def { 421 unsigned long flags; 422 const char *name; 423 const char *drv_name; 424 unsigned int digestsize; 425 unsigned int blocksize; 426 unsigned int statesize; 427 const u32 *std_iv; 428 }; 429 430 static const struct qce_ahash_def ahash_def[] = { 431 { 432 .flags = QCE_HASH_SHA1, 433 .name = "sha1", 434 .drv_name = "sha1-qce", 435 .digestsize = SHA1_DIGEST_SIZE, 436 .blocksize = SHA1_BLOCK_SIZE, 437 .statesize = sizeof(struct sha1_state), 438 .std_iv = std_iv_sha1, 439 }, 440 { 441 .flags = QCE_HASH_SHA256, 442 .name = "sha256", 443 .drv_name = "sha256-qce", 444 .digestsize = SHA256_DIGEST_SIZE, 445 .blocksize = SHA256_BLOCK_SIZE, 446 .statesize = sizeof(struct sha256_state), 447 .std_iv = std_iv_sha256, 448 }, 449 { 450 .flags = QCE_HASH_SHA1_HMAC, 451 .name = "hmac(sha1)", 452 .drv_name = "hmac-sha1-qce", 453 .digestsize = SHA1_DIGEST_SIZE, 454 .blocksize = SHA1_BLOCK_SIZE, 455 .statesize = sizeof(struct sha1_state), 456 .std_iv = std_iv_sha1, 457 }, 458 { 459 .flags = QCE_HASH_SHA256_HMAC, 460 .name = "hmac(sha256)", 461 .drv_name = "hmac-sha256-qce", 462 .digestsize = SHA256_DIGEST_SIZE, 463 .blocksize = SHA256_BLOCK_SIZE, 464 .statesize = sizeof(struct sha256_state), 465 .std_iv = std_iv_sha256, 466 }, 467 }; 468 469 static int qce_ahash_register_one(const struct qce_ahash_def *def, 470 struct qce_device *qce) 471 { 472 struct qce_alg_template *tmpl; 473 struct ahash_alg *alg; 474 struct crypto_alg *base; 475 int ret; 476 477 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL); 478 if (!tmpl) 479 return -ENOMEM; 480 481 tmpl->std_iv = def->std_iv; 482 483 alg = &tmpl->alg.ahash; 484 alg->init = qce_ahash_init; 485 alg->update = qce_ahash_update; 486 alg->final = qce_ahash_final; 487 alg->digest = qce_ahash_digest; 488 alg->export = qce_ahash_export; 489 alg->import = qce_ahash_import; 490 if (IS_SHA_HMAC(def->flags)) 491 alg->setkey = qce_ahash_hmac_setkey; 492 alg->halg.digestsize = def->digestsize; 493 alg->halg.statesize = def->statesize; 494 495 base = &alg->halg.base; 496 base->cra_blocksize = def->blocksize; 497 base->cra_priority = 300; 498 base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; 499 base->cra_ctxsize = sizeof(struct qce_sha_ctx); 500 base->cra_alignmask = 0; 501 base->cra_module = THIS_MODULE; 502 base->cra_init = qce_ahash_cra_init; 503 504 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); 505 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 506 def->drv_name); 507 508 INIT_LIST_HEAD(&tmpl->entry); 509 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH; 510 tmpl->alg_flags = def->flags; 511 tmpl->qce = qce; 512 513 ret = crypto_register_ahash(alg); 514 if (ret) { 515 kfree(tmpl); 516 dev_err(qce->dev, "%s registration failed\n", base->cra_name); 517 return ret; 518 } 519 520 list_add_tail(&tmpl->entry, &ahash_algs); 521 dev_dbg(qce->dev, "%s is registered\n", base->cra_name); 522 return 0; 523 } 524 525 static void qce_ahash_unregister(struct qce_device *qce) 526 { 527 struct qce_alg_template *tmpl, *n; 528 529 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) { 530 crypto_unregister_ahash(&tmpl->alg.ahash); 531 list_del(&tmpl->entry); 532 kfree(tmpl); 533 } 534 } 535 536 static int qce_ahash_register(struct qce_device *qce) 537 { 538 int ret, i; 539 540 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) { 541 ret = qce_ahash_register_one(&ahash_def[i], qce); 542 if (ret) 543 goto err; 544 } 545 546 return 0; 547 err: 548 qce_ahash_unregister(qce); 549 return ret; 550 } 551 552 const struct qce_algo_ops ahash_ops = { 553 .type = CRYPTO_ALG_TYPE_AHASH, 554 .register_algs = qce_ahash_register, 555 .unregister_algs = qce_ahash_unregister, 556 .async_req_handle = qce_ahash_async_req_handle, 557 }; 558