xref: /openbmc/linux/drivers/crypto/qce/sha.c (revision 588b48ca)
1 /*
2  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <crypto/internal/hash.h>
17 
18 #include "common.h"
19 #include "core.h"
20 #include "sha.h"
21 
22 /* crypto hw padding constant for first operation */
23 #define SHA_PADDING		64
24 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
25 
26 static LIST_HEAD(ahash_algs);
27 
28 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30 };
31 
32 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35 };
36 
37 static void qce_ahash_done(void *data)
38 {
39 	struct crypto_async_request *async_req = data;
40 	struct ahash_request *req = ahash_request_cast(async_req);
41 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 	struct qce_device *qce = tmpl->qce;
45 	struct qce_result_dump *result = qce->dma.result_buf;
46 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 	int error;
48 	u32 status;
49 
50 	error = qce_dma_terminate_all(&qce->dma);
51 	if (error)
52 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53 
54 	qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
55 		    rctx->src_chained);
56 	qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
57 
58 	memcpy(rctx->digest, result->auth_iv, digestsize);
59 	if (req->result)
60 		memcpy(req->result, result->auth_iv, digestsize);
61 
62 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
63 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
64 
65 	error = qce_check_status(qce, &status);
66 	if (error < 0)
67 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
68 
69 	req->src = rctx->src_orig;
70 	req->nbytes = rctx->nbytes_orig;
71 	rctx->last_blk = false;
72 	rctx->first_blk = false;
73 
74 	qce->async_req_done(tmpl->qce, error);
75 }
76 
77 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
78 {
79 	struct ahash_request *req = ahash_request_cast(async_req);
80 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
81 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
82 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
83 	struct qce_device *qce = tmpl->qce;
84 	unsigned long flags = rctx->flags;
85 	int ret;
86 
87 	if (IS_SHA_HMAC(flags)) {
88 		rctx->authkey = ctx->authkey;
89 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
90 	} else if (IS_CMAC(flags)) {
91 		rctx->authkey = ctx->authkey;
92 		rctx->authklen = AES_KEYSIZE_128;
93 	}
94 
95 	rctx->src_nents = qce_countsg(req->src, req->nbytes,
96 				      &rctx->src_chained);
97 	ret = qce_mapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
98 			rctx->src_chained);
99 	if (ret < 0)
100 		return ret;
101 
102 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
103 
104 	ret = qce_mapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
105 	if (ret < 0)
106 		goto error_unmap_src;
107 
108 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
109 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
110 	if (ret)
111 		goto error_unmap_dst;
112 
113 	qce_dma_issue_pending(&qce->dma);
114 
115 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
116 	if (ret)
117 		goto error_terminate;
118 
119 	return 0;
120 
121 error_terminate:
122 	qce_dma_terminate_all(&qce->dma);
123 error_unmap_dst:
124 	qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
125 error_unmap_src:
126 	qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
127 		    rctx->src_chained);
128 	return ret;
129 }
130 
131 static int qce_ahash_init(struct ahash_request *req)
132 {
133 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
134 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
135 	const u32 *std_iv = tmpl->std_iv;
136 
137 	memset(rctx, 0, sizeof(*rctx));
138 	rctx->first_blk = true;
139 	rctx->last_blk = false;
140 	rctx->flags = tmpl->alg_flags;
141 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
142 
143 	return 0;
144 }
145 
146 static int qce_ahash_export(struct ahash_request *req, void *out)
147 {
148 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
149 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
150 	unsigned long flags = rctx->flags;
151 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
152 	unsigned int blocksize =
153 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
154 
155 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
156 		struct sha1_state *out_state = out;
157 
158 		out_state->count = rctx->count;
159 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
160 				       rctx->digest, digestsize);
161 		memcpy(out_state->buffer, rctx->buf, blocksize);
162 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
163 		struct sha256_state *out_state = out;
164 
165 		out_state->count = rctx->count;
166 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
167 				       rctx->digest, digestsize);
168 		memcpy(out_state->buf, rctx->buf, blocksize);
169 	} else {
170 		return -EINVAL;
171 	}
172 
173 	return 0;
174 }
175 
176 static int qce_import_common(struct ahash_request *req, u64 in_count,
177 			     const u32 *state, const u8 *buffer, bool hmac)
178 {
179 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
180 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
181 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
182 	unsigned int blocksize;
183 	u64 count = in_count;
184 
185 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
186 	rctx->count = in_count;
187 	memcpy(rctx->buf, buffer, blocksize);
188 
189 	if (in_count <= blocksize) {
190 		rctx->first_blk = 1;
191 	} else {
192 		rctx->first_blk = 0;
193 		/*
194 		 * For HMAC, there is a hardware padding done when first block
195 		 * is set. Therefore the byte_count must be incremened by 64
196 		 * after the first block operation.
197 		 */
198 		if (hmac)
199 			count += SHA_PADDING;
200 	}
201 
202 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
203 	rctx->byte_count[1] = (__force __be32)(count >> 32);
204 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
205 			       digestsize);
206 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
207 
208 	return 0;
209 }
210 
211 static int qce_ahash_import(struct ahash_request *req, const void *in)
212 {
213 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
214 	unsigned long flags = rctx->flags;
215 	bool hmac = IS_SHA_HMAC(flags);
216 	int ret = -EINVAL;
217 
218 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
219 		const struct sha1_state *state = in;
220 
221 		ret = qce_import_common(req, state->count, state->state,
222 					state->buffer, hmac);
223 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
224 		const struct sha256_state *state = in;
225 
226 		ret = qce_import_common(req, state->count, state->state,
227 					state->buf, hmac);
228 	}
229 
230 	return ret;
231 }
232 
233 static int qce_ahash_update(struct ahash_request *req)
234 {
235 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
236 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
237 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
238 	struct qce_device *qce = tmpl->qce;
239 	struct scatterlist *sg_last, *sg;
240 	unsigned int total, len;
241 	unsigned int hash_later;
242 	unsigned int nbytes;
243 	unsigned int blocksize;
244 
245 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
246 	rctx->count += req->nbytes;
247 
248 	/* check for buffer from previous updates and append it */
249 	total = req->nbytes + rctx->buflen;
250 
251 	if (total <= blocksize) {
252 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
253 					 0, req->nbytes, 0);
254 		rctx->buflen += req->nbytes;
255 		return 0;
256 	}
257 
258 	/* save the original req structure fields */
259 	rctx->src_orig = req->src;
260 	rctx->nbytes_orig = req->nbytes;
261 
262 	/*
263 	 * if we have data from previous update copy them on buffer. The old
264 	 * data will be combined with current request bytes.
265 	 */
266 	if (rctx->buflen)
267 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
268 
269 	/* calculate how many bytes will be hashed later */
270 	hash_later = total % blocksize;
271 	if (hash_later) {
272 		unsigned int src_offset = req->nbytes - hash_later;
273 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
274 					 hash_later, 0);
275 	}
276 
277 	/* here nbytes is multiple of blocksize */
278 	nbytes = total - hash_later;
279 
280 	len = rctx->buflen;
281 	sg = sg_last = req->src;
282 
283 	while (len < nbytes && sg) {
284 		if (len + sg_dma_len(sg) > nbytes)
285 			break;
286 		len += sg_dma_len(sg);
287 		sg_last = sg;
288 		sg = scatterwalk_sg_next(sg);
289 	}
290 
291 	if (!sg_last)
292 		return -EINVAL;
293 
294 	sg_mark_end(sg_last);
295 
296 	if (rctx->buflen) {
297 		sg_init_table(rctx->sg, 2);
298 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299 		scatterwalk_sg_chain(rctx->sg, 2, req->src);
300 		req->src = rctx->sg;
301 	}
302 
303 	req->nbytes = nbytes;
304 	rctx->buflen = hash_later;
305 
306 	return qce->async_req_enqueue(tmpl->qce, &req->base);
307 }
308 
309 static int qce_ahash_final(struct ahash_request *req)
310 {
311 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313 	struct qce_device *qce = tmpl->qce;
314 
315 	if (!rctx->buflen)
316 		return 0;
317 
318 	rctx->last_blk = true;
319 
320 	rctx->src_orig = req->src;
321 	rctx->nbytes_orig = req->nbytes;
322 
323 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
324 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
325 
326 	req->src = rctx->sg;
327 	req->nbytes = rctx->buflen;
328 
329 	return qce->async_req_enqueue(tmpl->qce, &req->base);
330 }
331 
332 static int qce_ahash_digest(struct ahash_request *req)
333 {
334 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
335 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
336 	struct qce_device *qce = tmpl->qce;
337 	int ret;
338 
339 	ret = qce_ahash_init(req);
340 	if (ret)
341 		return ret;
342 
343 	rctx->src_orig = req->src;
344 	rctx->nbytes_orig = req->nbytes;
345 	rctx->first_blk = true;
346 	rctx->last_blk = true;
347 
348 	return qce->async_req_enqueue(tmpl->qce, &req->base);
349 }
350 
351 struct qce_ahash_result {
352 	struct completion completion;
353 	int error;
354 };
355 
356 static void qce_digest_complete(struct crypto_async_request *req, int error)
357 {
358 	struct qce_ahash_result *result = req->data;
359 
360 	if (error == -EINPROGRESS)
361 		return;
362 
363 	result->error = error;
364 	complete(&result->completion);
365 }
366 
367 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
368 				 unsigned int keylen)
369 {
370 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
371 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
372 	struct qce_ahash_result result;
373 	struct ahash_request *req;
374 	struct scatterlist sg;
375 	unsigned int blocksize;
376 	struct crypto_ahash *ahash_tfm;
377 	u8 *buf;
378 	int ret;
379 	const char *alg_name;
380 
381 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
382 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
383 
384 	if (keylen <= blocksize) {
385 		memcpy(ctx->authkey, key, keylen);
386 		return 0;
387 	}
388 
389 	if (digestsize == SHA1_DIGEST_SIZE)
390 		alg_name = "sha1-qce";
391 	else if (digestsize == SHA256_DIGEST_SIZE)
392 		alg_name = "sha256-qce";
393 	else
394 		return -EINVAL;
395 
396 	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
397 				       CRYPTO_ALG_TYPE_AHASH_MASK);
398 	if (IS_ERR(ahash_tfm))
399 		return PTR_ERR(ahash_tfm);
400 
401 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
402 	if (!req) {
403 		ret = -ENOMEM;
404 		goto err_free_ahash;
405 	}
406 
407 	init_completion(&result.completion);
408 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
409 				   qce_digest_complete, &result);
410 	crypto_ahash_clear_flags(ahash_tfm, ~0);
411 
412 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
413 	if (!buf) {
414 		ret = -ENOMEM;
415 		goto err_free_req;
416 	}
417 
418 	memcpy(buf, key, keylen);
419 	sg_init_one(&sg, buf, keylen);
420 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
421 
422 	ret = crypto_ahash_digest(req);
423 	if (ret == -EINPROGRESS || ret == -EBUSY) {
424 		ret = wait_for_completion_interruptible(&result.completion);
425 		if (!ret)
426 			ret = result.error;
427 	}
428 
429 	if (ret)
430 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
431 
432 	kfree(buf);
433 err_free_req:
434 	ahash_request_free(req);
435 err_free_ahash:
436 	crypto_free_ahash(ahash_tfm);
437 	return ret;
438 }
439 
440 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
441 {
442 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
443 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
444 
445 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
446 	memset(ctx, 0, sizeof(*ctx));
447 	return 0;
448 }
449 
450 struct qce_ahash_def {
451 	unsigned long flags;
452 	const char *name;
453 	const char *drv_name;
454 	unsigned int digestsize;
455 	unsigned int blocksize;
456 	unsigned int statesize;
457 	const u32 *std_iv;
458 };
459 
460 static const struct qce_ahash_def ahash_def[] = {
461 	{
462 		.flags		= QCE_HASH_SHA1,
463 		.name		= "sha1",
464 		.drv_name	= "sha1-qce",
465 		.digestsize	= SHA1_DIGEST_SIZE,
466 		.blocksize	= SHA1_BLOCK_SIZE,
467 		.statesize	= sizeof(struct sha1_state),
468 		.std_iv		= std_iv_sha1,
469 	},
470 	{
471 		.flags		= QCE_HASH_SHA256,
472 		.name		= "sha256",
473 		.drv_name	= "sha256-qce",
474 		.digestsize	= SHA256_DIGEST_SIZE,
475 		.blocksize	= SHA256_BLOCK_SIZE,
476 		.statesize	= sizeof(struct sha256_state),
477 		.std_iv		= std_iv_sha256,
478 	},
479 	{
480 		.flags		= QCE_HASH_SHA1_HMAC,
481 		.name		= "hmac(sha1)",
482 		.drv_name	= "hmac-sha1-qce",
483 		.digestsize	= SHA1_DIGEST_SIZE,
484 		.blocksize	= SHA1_BLOCK_SIZE,
485 		.statesize	= sizeof(struct sha1_state),
486 		.std_iv		= std_iv_sha1,
487 	},
488 	{
489 		.flags		= QCE_HASH_SHA256_HMAC,
490 		.name		= "hmac(sha256)",
491 		.drv_name	= "hmac-sha256-qce",
492 		.digestsize	= SHA256_DIGEST_SIZE,
493 		.blocksize	= SHA256_BLOCK_SIZE,
494 		.statesize	= sizeof(struct sha256_state),
495 		.std_iv		= std_iv_sha256,
496 	},
497 };
498 
499 static int qce_ahash_register_one(const struct qce_ahash_def *def,
500 				  struct qce_device *qce)
501 {
502 	struct qce_alg_template *tmpl;
503 	struct ahash_alg *alg;
504 	struct crypto_alg *base;
505 	int ret;
506 
507 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
508 	if (!tmpl)
509 		return -ENOMEM;
510 
511 	tmpl->std_iv = def->std_iv;
512 
513 	alg = &tmpl->alg.ahash;
514 	alg->init = qce_ahash_init;
515 	alg->update = qce_ahash_update;
516 	alg->final = qce_ahash_final;
517 	alg->digest = qce_ahash_digest;
518 	alg->export = qce_ahash_export;
519 	alg->import = qce_ahash_import;
520 	if (IS_SHA_HMAC(def->flags))
521 		alg->setkey = qce_ahash_hmac_setkey;
522 	alg->halg.digestsize = def->digestsize;
523 	alg->halg.statesize = def->statesize;
524 
525 	base = &alg->halg.base;
526 	base->cra_blocksize = def->blocksize;
527 	base->cra_priority = 300;
528 	base->cra_flags = CRYPTO_ALG_ASYNC;
529 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
530 	base->cra_alignmask = 0;
531 	base->cra_module = THIS_MODULE;
532 	base->cra_init = qce_ahash_cra_init;
533 	INIT_LIST_HEAD(&base->cra_list);
534 
535 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
536 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
537 		 def->drv_name);
538 
539 	INIT_LIST_HEAD(&tmpl->entry);
540 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
541 	tmpl->alg_flags = def->flags;
542 	tmpl->qce = qce;
543 
544 	ret = crypto_register_ahash(alg);
545 	if (ret) {
546 		kfree(tmpl);
547 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
548 		return ret;
549 	}
550 
551 	list_add_tail(&tmpl->entry, &ahash_algs);
552 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
553 	return 0;
554 }
555 
556 static void qce_ahash_unregister(struct qce_device *qce)
557 {
558 	struct qce_alg_template *tmpl, *n;
559 
560 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
561 		crypto_unregister_ahash(&tmpl->alg.ahash);
562 		list_del(&tmpl->entry);
563 		kfree(tmpl);
564 	}
565 }
566 
567 static int qce_ahash_register(struct qce_device *qce)
568 {
569 	int ret, i;
570 
571 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
572 		ret = qce_ahash_register_one(&ahash_def[i], qce);
573 		if (ret)
574 			goto err;
575 	}
576 
577 	return 0;
578 err:
579 	qce_ahash_unregister(qce);
580 	return ret;
581 }
582 
583 const struct qce_algo_ops ahash_ops = {
584 	.type = CRYPTO_ALG_TYPE_AHASH,
585 	.register_algs = qce_ahash_register,
586 	.unregister_algs = qce_ahash_unregister,
587 	.async_req_handle = qce_ahash_async_req_handle,
588 };
589