xref: /openbmc/linux/drivers/crypto/qce/sha.c (revision 0f4630f3)
1 /*
2  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <crypto/internal/hash.h>
17 
18 #include "common.h"
19 #include "core.h"
20 #include "sha.h"
21 
22 /* crypto hw padding constant for first operation */
23 #define SHA_PADDING		64
24 #define SHA_PADDING_MASK	(SHA_PADDING - 1)
25 
26 static LIST_HEAD(ahash_algs);
27 
28 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30 };
31 
32 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35 };
36 
37 static void qce_ahash_done(void *data)
38 {
39 	struct crypto_async_request *async_req = data;
40 	struct ahash_request *req = ahash_request_cast(async_req);
41 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 	struct qce_device *qce = tmpl->qce;
45 	struct qce_result_dump *result = qce->dma.result_buf;
46 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 	int error;
48 	u32 status;
49 
50 	error = qce_dma_terminate_all(&qce->dma);
51 	if (error)
52 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53 
54 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
55 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
56 
57 	memcpy(rctx->digest, result->auth_iv, digestsize);
58 	if (req->result)
59 		memcpy(req->result, result->auth_iv, digestsize);
60 
61 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
62 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
63 
64 	error = qce_check_status(qce, &status);
65 	if (error < 0)
66 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
67 
68 	req->src = rctx->src_orig;
69 	req->nbytes = rctx->nbytes_orig;
70 	rctx->last_blk = false;
71 	rctx->first_blk = false;
72 
73 	qce->async_req_done(tmpl->qce, error);
74 }
75 
76 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
77 {
78 	struct ahash_request *req = ahash_request_cast(async_req);
79 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
80 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
81 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
82 	struct qce_device *qce = tmpl->qce;
83 	unsigned long flags = rctx->flags;
84 	int ret;
85 
86 	if (IS_SHA_HMAC(flags)) {
87 		rctx->authkey = ctx->authkey;
88 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
89 	} else if (IS_CMAC(flags)) {
90 		rctx->authkey = ctx->authkey;
91 		rctx->authklen = AES_KEYSIZE_128;
92 	}
93 
94 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
95 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
96 	if (ret < 0)
97 		return ret;
98 
99 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
100 
101 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
102 	if (ret < 0)
103 		goto error_unmap_src;
104 
105 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
106 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
107 	if (ret)
108 		goto error_unmap_dst;
109 
110 	qce_dma_issue_pending(&qce->dma);
111 
112 	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
113 	if (ret)
114 		goto error_terminate;
115 
116 	return 0;
117 
118 error_terminate:
119 	qce_dma_terminate_all(&qce->dma);
120 error_unmap_dst:
121 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
122 error_unmap_src:
123 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
124 	return ret;
125 }
126 
127 static int qce_ahash_init(struct ahash_request *req)
128 {
129 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
130 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
131 	const u32 *std_iv = tmpl->std_iv;
132 
133 	memset(rctx, 0, sizeof(*rctx));
134 	rctx->first_blk = true;
135 	rctx->last_blk = false;
136 	rctx->flags = tmpl->alg_flags;
137 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
138 
139 	return 0;
140 }
141 
142 static int qce_ahash_export(struct ahash_request *req, void *out)
143 {
144 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
145 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
146 	unsigned long flags = rctx->flags;
147 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
148 	unsigned int blocksize =
149 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
150 
151 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
152 		struct sha1_state *out_state = out;
153 
154 		out_state->count = rctx->count;
155 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
156 				       rctx->digest, digestsize);
157 		memcpy(out_state->buffer, rctx->buf, blocksize);
158 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
159 		struct sha256_state *out_state = out;
160 
161 		out_state->count = rctx->count;
162 		qce_cpu_to_be32p_array((__be32 *)out_state->state,
163 				       rctx->digest, digestsize);
164 		memcpy(out_state->buf, rctx->buf, blocksize);
165 	} else {
166 		return -EINVAL;
167 	}
168 
169 	return 0;
170 }
171 
172 static int qce_import_common(struct ahash_request *req, u64 in_count,
173 			     const u32 *state, const u8 *buffer, bool hmac)
174 {
175 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
176 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
177 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
178 	unsigned int blocksize;
179 	u64 count = in_count;
180 
181 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
182 	rctx->count = in_count;
183 	memcpy(rctx->buf, buffer, blocksize);
184 
185 	if (in_count <= blocksize) {
186 		rctx->first_blk = 1;
187 	} else {
188 		rctx->first_blk = 0;
189 		/*
190 		 * For HMAC, there is a hardware padding done when first block
191 		 * is set. Therefore the byte_count must be incremened by 64
192 		 * after the first block operation.
193 		 */
194 		if (hmac)
195 			count += SHA_PADDING;
196 	}
197 
198 	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
199 	rctx->byte_count[1] = (__force __be32)(count >> 32);
200 	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
201 			       digestsize);
202 	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
203 
204 	return 0;
205 }
206 
207 static int qce_ahash_import(struct ahash_request *req, const void *in)
208 {
209 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
210 	unsigned long flags = rctx->flags;
211 	bool hmac = IS_SHA_HMAC(flags);
212 	int ret = -EINVAL;
213 
214 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
215 		const struct sha1_state *state = in;
216 
217 		ret = qce_import_common(req, state->count, state->state,
218 					state->buffer, hmac);
219 	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
220 		const struct sha256_state *state = in;
221 
222 		ret = qce_import_common(req, state->count, state->state,
223 					state->buf, hmac);
224 	}
225 
226 	return ret;
227 }
228 
229 static int qce_ahash_update(struct ahash_request *req)
230 {
231 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
232 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
233 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
234 	struct qce_device *qce = tmpl->qce;
235 	struct scatterlist *sg_last, *sg;
236 	unsigned int total, len;
237 	unsigned int hash_later;
238 	unsigned int nbytes;
239 	unsigned int blocksize;
240 
241 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
242 	rctx->count += req->nbytes;
243 
244 	/* check for buffer from previous updates and append it */
245 	total = req->nbytes + rctx->buflen;
246 
247 	if (total <= blocksize) {
248 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
249 					 0, req->nbytes, 0);
250 		rctx->buflen += req->nbytes;
251 		return 0;
252 	}
253 
254 	/* save the original req structure fields */
255 	rctx->src_orig = req->src;
256 	rctx->nbytes_orig = req->nbytes;
257 
258 	/*
259 	 * if we have data from previous update copy them on buffer. The old
260 	 * data will be combined with current request bytes.
261 	 */
262 	if (rctx->buflen)
263 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
264 
265 	/* calculate how many bytes will be hashed later */
266 	hash_later = total % blocksize;
267 	if (hash_later) {
268 		unsigned int src_offset = req->nbytes - hash_later;
269 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
270 					 hash_later, 0);
271 	}
272 
273 	/* here nbytes is multiple of blocksize */
274 	nbytes = total - hash_later;
275 
276 	len = rctx->buflen;
277 	sg = sg_last = req->src;
278 
279 	while (len < nbytes && sg) {
280 		if (len + sg_dma_len(sg) > nbytes)
281 			break;
282 		len += sg_dma_len(sg);
283 		sg_last = sg;
284 		sg = sg_next(sg);
285 	}
286 
287 	if (!sg_last)
288 		return -EINVAL;
289 
290 	sg_mark_end(sg_last);
291 
292 	if (rctx->buflen) {
293 		sg_init_table(rctx->sg, 2);
294 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
295 		sg_chain(rctx->sg, 2, req->src);
296 		req->src = rctx->sg;
297 	}
298 
299 	req->nbytes = nbytes;
300 	rctx->buflen = hash_later;
301 
302 	return qce->async_req_enqueue(tmpl->qce, &req->base);
303 }
304 
305 static int qce_ahash_final(struct ahash_request *req)
306 {
307 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
308 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
309 	struct qce_device *qce = tmpl->qce;
310 
311 	if (!rctx->buflen)
312 		return 0;
313 
314 	rctx->last_blk = true;
315 
316 	rctx->src_orig = req->src;
317 	rctx->nbytes_orig = req->nbytes;
318 
319 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
320 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
321 
322 	req->src = rctx->sg;
323 	req->nbytes = rctx->buflen;
324 
325 	return qce->async_req_enqueue(tmpl->qce, &req->base);
326 }
327 
328 static int qce_ahash_digest(struct ahash_request *req)
329 {
330 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
331 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
332 	struct qce_device *qce = tmpl->qce;
333 	int ret;
334 
335 	ret = qce_ahash_init(req);
336 	if (ret)
337 		return ret;
338 
339 	rctx->src_orig = req->src;
340 	rctx->nbytes_orig = req->nbytes;
341 	rctx->first_blk = true;
342 	rctx->last_blk = true;
343 
344 	return qce->async_req_enqueue(tmpl->qce, &req->base);
345 }
346 
347 struct qce_ahash_result {
348 	struct completion completion;
349 	int error;
350 };
351 
352 static void qce_digest_complete(struct crypto_async_request *req, int error)
353 {
354 	struct qce_ahash_result *result = req->data;
355 
356 	if (error == -EINPROGRESS)
357 		return;
358 
359 	result->error = error;
360 	complete(&result->completion);
361 }
362 
363 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
364 				 unsigned int keylen)
365 {
366 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
367 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
368 	struct qce_ahash_result result;
369 	struct ahash_request *req;
370 	struct scatterlist sg;
371 	unsigned int blocksize;
372 	struct crypto_ahash *ahash_tfm;
373 	u8 *buf;
374 	int ret;
375 	const char *alg_name;
376 
377 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
378 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
379 
380 	if (keylen <= blocksize) {
381 		memcpy(ctx->authkey, key, keylen);
382 		return 0;
383 	}
384 
385 	if (digestsize == SHA1_DIGEST_SIZE)
386 		alg_name = "sha1-qce";
387 	else if (digestsize == SHA256_DIGEST_SIZE)
388 		alg_name = "sha256-qce";
389 	else
390 		return -EINVAL;
391 
392 	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
393 				       CRYPTO_ALG_TYPE_AHASH_MASK);
394 	if (IS_ERR(ahash_tfm))
395 		return PTR_ERR(ahash_tfm);
396 
397 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
398 	if (!req) {
399 		ret = -ENOMEM;
400 		goto err_free_ahash;
401 	}
402 
403 	init_completion(&result.completion);
404 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
405 				   qce_digest_complete, &result);
406 	crypto_ahash_clear_flags(ahash_tfm, ~0);
407 
408 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
409 	if (!buf) {
410 		ret = -ENOMEM;
411 		goto err_free_req;
412 	}
413 
414 	memcpy(buf, key, keylen);
415 	sg_init_one(&sg, buf, keylen);
416 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
417 
418 	ret = crypto_ahash_digest(req);
419 	if (ret == -EINPROGRESS || ret == -EBUSY) {
420 		ret = wait_for_completion_interruptible(&result.completion);
421 		if (!ret)
422 			ret = result.error;
423 	}
424 
425 	if (ret)
426 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
427 
428 	kfree(buf);
429 err_free_req:
430 	ahash_request_free(req);
431 err_free_ahash:
432 	crypto_free_ahash(ahash_tfm);
433 	return ret;
434 }
435 
436 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
437 {
438 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
439 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
440 
441 	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
442 	memset(ctx, 0, sizeof(*ctx));
443 	return 0;
444 }
445 
446 struct qce_ahash_def {
447 	unsigned long flags;
448 	const char *name;
449 	const char *drv_name;
450 	unsigned int digestsize;
451 	unsigned int blocksize;
452 	unsigned int statesize;
453 	const u32 *std_iv;
454 };
455 
456 static const struct qce_ahash_def ahash_def[] = {
457 	{
458 		.flags		= QCE_HASH_SHA1,
459 		.name		= "sha1",
460 		.drv_name	= "sha1-qce",
461 		.digestsize	= SHA1_DIGEST_SIZE,
462 		.blocksize	= SHA1_BLOCK_SIZE,
463 		.statesize	= sizeof(struct sha1_state),
464 		.std_iv		= std_iv_sha1,
465 	},
466 	{
467 		.flags		= QCE_HASH_SHA256,
468 		.name		= "sha256",
469 		.drv_name	= "sha256-qce",
470 		.digestsize	= SHA256_DIGEST_SIZE,
471 		.blocksize	= SHA256_BLOCK_SIZE,
472 		.statesize	= sizeof(struct sha256_state),
473 		.std_iv		= std_iv_sha256,
474 	},
475 	{
476 		.flags		= QCE_HASH_SHA1_HMAC,
477 		.name		= "hmac(sha1)",
478 		.drv_name	= "hmac-sha1-qce",
479 		.digestsize	= SHA1_DIGEST_SIZE,
480 		.blocksize	= SHA1_BLOCK_SIZE,
481 		.statesize	= sizeof(struct sha1_state),
482 		.std_iv		= std_iv_sha1,
483 	},
484 	{
485 		.flags		= QCE_HASH_SHA256_HMAC,
486 		.name		= "hmac(sha256)",
487 		.drv_name	= "hmac-sha256-qce",
488 		.digestsize	= SHA256_DIGEST_SIZE,
489 		.blocksize	= SHA256_BLOCK_SIZE,
490 		.statesize	= sizeof(struct sha256_state),
491 		.std_iv		= std_iv_sha256,
492 	},
493 };
494 
495 static int qce_ahash_register_one(const struct qce_ahash_def *def,
496 				  struct qce_device *qce)
497 {
498 	struct qce_alg_template *tmpl;
499 	struct ahash_alg *alg;
500 	struct crypto_alg *base;
501 	int ret;
502 
503 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
504 	if (!tmpl)
505 		return -ENOMEM;
506 
507 	tmpl->std_iv = def->std_iv;
508 
509 	alg = &tmpl->alg.ahash;
510 	alg->init = qce_ahash_init;
511 	alg->update = qce_ahash_update;
512 	alg->final = qce_ahash_final;
513 	alg->digest = qce_ahash_digest;
514 	alg->export = qce_ahash_export;
515 	alg->import = qce_ahash_import;
516 	if (IS_SHA_HMAC(def->flags))
517 		alg->setkey = qce_ahash_hmac_setkey;
518 	alg->halg.digestsize = def->digestsize;
519 	alg->halg.statesize = def->statesize;
520 
521 	base = &alg->halg.base;
522 	base->cra_blocksize = def->blocksize;
523 	base->cra_priority = 300;
524 	base->cra_flags = CRYPTO_ALG_ASYNC;
525 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
526 	base->cra_alignmask = 0;
527 	base->cra_module = THIS_MODULE;
528 	base->cra_init = qce_ahash_cra_init;
529 	INIT_LIST_HEAD(&base->cra_list);
530 
531 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
532 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
533 		 def->drv_name);
534 
535 	INIT_LIST_HEAD(&tmpl->entry);
536 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
537 	tmpl->alg_flags = def->flags;
538 	tmpl->qce = qce;
539 
540 	ret = crypto_register_ahash(alg);
541 	if (ret) {
542 		kfree(tmpl);
543 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
544 		return ret;
545 	}
546 
547 	list_add_tail(&tmpl->entry, &ahash_algs);
548 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
549 	return 0;
550 }
551 
552 static void qce_ahash_unregister(struct qce_device *qce)
553 {
554 	struct qce_alg_template *tmpl, *n;
555 
556 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
557 		crypto_unregister_ahash(&tmpl->alg.ahash);
558 		list_del(&tmpl->entry);
559 		kfree(tmpl);
560 	}
561 }
562 
563 static int qce_ahash_register(struct qce_device *qce)
564 {
565 	int ret, i;
566 
567 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
568 		ret = qce_ahash_register_one(&ahash_def[i], qce);
569 		if (ret)
570 			goto err;
571 	}
572 
573 	return 0;
574 err:
575 	qce_ahash_unregister(qce);
576 	return ret;
577 }
578 
579 const struct qce_algo_ops ahash_ops = {
580 	.type = CRYPTO_ALG_TYPE_AHASH,
581 	.register_algs = qce_ahash_register,
582 	.unregister_algs = qce_ahash_unregister,
583 	.async_req_handle = qce_ahash_async_req_handle,
584 };
585