xref: /openbmc/linux/drivers/crypto/qce/common.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12 
13 #include "cipher.h"
14 #include "common.h"
15 #include "core.h"
16 #include "regs-v5.h"
17 #include "sha.h"
18 
19 static inline u32 qce_read(struct qce_device *qce, u32 offset)
20 {
21 	return readl(qce->base + offset);
22 }
23 
24 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
25 {
26 	writel(val, qce->base + offset);
27 }
28 
29 static inline void qce_write_array(struct qce_device *qce, u32 offset,
30 				   const u32 *val, unsigned int len)
31 {
32 	int i;
33 
34 	for (i = 0; i < len; i++)
35 		qce_write(qce, offset + i * sizeof(u32), val[i]);
36 }
37 
38 static inline void
39 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
40 {
41 	int i;
42 
43 	for (i = 0; i < len; i++)
44 		qce_write(qce, offset + i * sizeof(u32), 0);
45 }
46 
47 static u32 qce_config_reg(struct qce_device *qce, int little)
48 {
49 	u32 beats = (qce->burst_size >> 3) - 1;
50 	u32 pipe_pair = qce->pipe_pair_id;
51 	u32 config;
52 
53 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
54 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
55 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
56 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
57 	config &= ~HIGH_SPD_EN_N_SHIFT;
58 
59 	if (little)
60 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
61 
62 	return config;
63 }
64 
65 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
66 {
67 	__be32 *d = dst;
68 	const u8 *s = src;
69 	unsigned int n;
70 
71 	n = len / sizeof(u32);
72 	for (; n > 0; n--) {
73 		*d = cpu_to_be32p((const __u32 *) s);
74 		s += sizeof(__u32);
75 		d++;
76 	}
77 }
78 
79 static void qce_setup_config(struct qce_device *qce)
80 {
81 	u32 config;
82 
83 	/* get big endianness */
84 	config = qce_config_reg(qce, 0);
85 
86 	/* clear status */
87 	qce_write(qce, REG_STATUS, 0);
88 	qce_write(qce, REG_CONFIG, config);
89 }
90 
91 static inline void qce_crypto_go(struct qce_device *qce)
92 {
93 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
94 }
95 
96 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
97 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
98 {
99 	u32 cfg = 0;
100 
101 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
102 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
103 	else
104 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
105 
106 	if (IS_CCM(flags) || IS_CMAC(flags)) {
107 		if (key_size == AES_KEYSIZE_128)
108 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
109 		else if (key_size == AES_KEYSIZE_256)
110 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
111 	}
112 
113 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
114 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
115 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
116 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
117 	else if (IS_CMAC(flags))
118 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
119 
120 	if (IS_SHA1(flags) || IS_SHA256(flags))
121 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
122 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
123 		 IS_CBC(flags) || IS_CTR(flags))
124 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
125 	else if (IS_AES(flags) && IS_CCM(flags))
126 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
127 	else if (IS_AES(flags) && IS_CMAC(flags))
128 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
129 
130 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
131 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
132 
133 	if (IS_CCM(flags))
134 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
135 
136 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
137 	    IS_CMAC(flags))
138 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
139 
140 	return cfg;
141 }
142 
143 static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
144 {
145 	struct ahash_request *req = ahash_request_cast(async_req);
146 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
147 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
148 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
149 	struct qce_device *qce = tmpl->qce;
150 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
151 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
152 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
153 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
154 	u32 auth_cfg = 0, config;
155 	unsigned int iv_words;
156 
157 	/* if not the last, the size has to be on the block boundary */
158 	if (!rctx->last_blk && req->nbytes % blocksize)
159 		return -EINVAL;
160 
161 	qce_setup_config(qce);
162 
163 	if (IS_CMAC(rctx->flags)) {
164 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
165 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
166 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
167 		qce_clear_array(qce, REG_AUTH_IV0, 16);
168 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
169 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
170 
171 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
172 	}
173 
174 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
175 		u32 authkey_words = rctx->authklen / sizeof(u32);
176 
177 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
178 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
179 				authkey_words);
180 	}
181 
182 	if (IS_CMAC(rctx->flags))
183 		goto go_proc;
184 
185 	if (rctx->first_blk)
186 		memcpy(auth, rctx->digest, digestsize);
187 	else
188 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
189 
190 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
191 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
192 
193 	if (rctx->first_blk)
194 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
195 	else
196 		qce_write_array(qce, REG_AUTH_BYTECNT0,
197 				(u32 *)rctx->byte_count, 2);
198 
199 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
200 
201 	if (rctx->last_blk)
202 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
203 	else
204 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
205 
206 	if (rctx->first_blk)
207 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
208 	else
209 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
210 
211 go_proc:
212 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
213 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
214 	qce_write(qce, REG_AUTH_SEG_START, 0);
215 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
216 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
217 
218 	/* get little endianness */
219 	config = qce_config_reg(qce, 1);
220 	qce_write(qce, REG_CONFIG, config);
221 
222 	qce_crypto_go(qce);
223 
224 	return 0;
225 }
226 #endif
227 
228 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
229 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
230 {
231 	u32 cfg = 0;
232 
233 	if (IS_AES(flags)) {
234 		if (aes_key_size == AES_KEYSIZE_128)
235 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
236 		else if (aes_key_size == AES_KEYSIZE_256)
237 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
238 	}
239 
240 	if (IS_AES(flags))
241 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
242 	else if (IS_DES(flags) || IS_3DES(flags))
243 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
244 
245 	if (IS_DES(flags))
246 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
247 
248 	if (IS_3DES(flags))
249 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
250 
251 	switch (flags & QCE_MODE_MASK) {
252 	case QCE_MODE_ECB:
253 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
254 		break;
255 	case QCE_MODE_CBC:
256 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
257 		break;
258 	case QCE_MODE_CTR:
259 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
260 		break;
261 	case QCE_MODE_XTS:
262 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
263 		break;
264 	case QCE_MODE_CCM:
265 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
266 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
267 		break;
268 	default:
269 		return ~0;
270 	}
271 
272 	return cfg;
273 }
274 
275 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
276 {
277 	u8 swap[QCE_AES_IV_LENGTH];
278 	u32 i, j;
279 
280 	if (ivsize > QCE_AES_IV_LENGTH)
281 		return;
282 
283 	memset(swap, 0, QCE_AES_IV_LENGTH);
284 
285 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
286 	     i < QCE_AES_IV_LENGTH; i++, j--)
287 		swap[i] = src[j];
288 
289 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
290 }
291 
292 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
293 		       unsigned int enckeylen, unsigned int cryptlen)
294 {
295 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
296 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
297 
298 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
299 			       enckeylen / 2);
300 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
301 
302 	/* Set data unit size to cryptlen. Anything else causes
303 	 * crypto engine to return back incorrect results.
304 	 */
305 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
306 }
307 
308 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
309 {
310 	struct skcipher_request *req = skcipher_request_cast(async_req);
311 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
312 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
313 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
314 	struct qce_device *qce = tmpl->qce;
315 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
316 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
317 	unsigned int enckey_words, enciv_words;
318 	unsigned int keylen;
319 	u32 encr_cfg = 0, auth_cfg = 0, config;
320 	unsigned int ivsize = rctx->ivsize;
321 	unsigned long flags = rctx->flags;
322 
323 	qce_setup_config(qce);
324 
325 	if (IS_XTS(flags))
326 		keylen = ctx->enc_keylen / 2;
327 	else
328 		keylen = ctx->enc_keylen;
329 
330 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
331 	enckey_words = keylen / sizeof(u32);
332 
333 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
334 
335 	encr_cfg = qce_encr_cfg(flags, keylen);
336 
337 	if (IS_DES(flags)) {
338 		enciv_words = 2;
339 		enckey_words = 2;
340 	} else if (IS_3DES(flags)) {
341 		enciv_words = 2;
342 		enckey_words = 6;
343 	} else if (IS_AES(flags)) {
344 		if (IS_XTS(flags))
345 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
346 				   rctx->cryptlen);
347 		enciv_words = 4;
348 	} else {
349 		return -EINVAL;
350 	}
351 
352 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
353 
354 	if (!IS_ECB(flags)) {
355 		if (IS_XTS(flags))
356 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
357 		else
358 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
359 
360 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
361 	}
362 
363 	if (IS_ENCRYPT(flags))
364 		encr_cfg |= BIT(ENCODE_SHIFT);
365 
366 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
367 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
368 	qce_write(qce, REG_ENCR_SEG_START, 0);
369 
370 	if (IS_CTR(flags)) {
371 		qce_write(qce, REG_CNTR_MASK, ~0);
372 		qce_write(qce, REG_CNTR_MASK0, ~0);
373 		qce_write(qce, REG_CNTR_MASK1, ~0);
374 		qce_write(qce, REG_CNTR_MASK2, ~0);
375 	}
376 
377 	qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
378 
379 	/* get little endianness */
380 	config = qce_config_reg(qce, 1);
381 	qce_write(qce, REG_CONFIG, config);
382 
383 	qce_crypto_go(qce);
384 
385 	return 0;
386 }
387 #endif
388 
389 int qce_start(struct crypto_async_request *async_req, u32 type)
390 {
391 	switch (type) {
392 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
393 	case CRYPTO_ALG_TYPE_SKCIPHER:
394 		return qce_setup_regs_skcipher(async_req);
395 #endif
396 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
397 	case CRYPTO_ALG_TYPE_AHASH:
398 		return qce_setup_regs_ahash(async_req);
399 #endif
400 	default:
401 		return -EINVAL;
402 	}
403 }
404 
405 #define STATUS_ERRORS	\
406 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
407 
408 int qce_check_status(struct qce_device *qce, u32 *status)
409 {
410 	int ret = 0;
411 
412 	*status = qce_read(qce, REG_STATUS);
413 
414 	/*
415 	 * Don't use result dump status. The operation may not be complete.
416 	 * Instead, use the status we just read from device. In case, we need to
417 	 * use result_status from result dump the result_status needs to be byte
418 	 * swapped, since we set the device to little endian.
419 	 */
420 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
421 		ret = -ENXIO;
422 
423 	return ret;
424 }
425 
426 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
427 {
428 	u32 val;
429 
430 	val = qce_read(qce, REG_VERSION);
431 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
432 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
433 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
434 }
435