xref: /openbmc/linux/drivers/crypto/qce/common.c (revision c819e2cf)
1 /*
2  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/types.h>
17 #include <crypto/scatterwalk.h>
18 #include <crypto/sha.h>
19 
20 #include "cipher.h"
21 #include "common.h"
22 #include "core.h"
23 #include "regs-v5.h"
24 #include "sha.h"
25 
26 #define QCE_SECTOR_SIZE		512
27 
28 static inline u32 qce_read(struct qce_device *qce, u32 offset)
29 {
30 	return readl(qce->base + offset);
31 }
32 
33 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
34 {
35 	writel(val, qce->base + offset);
36 }
37 
38 static inline void qce_write_array(struct qce_device *qce, u32 offset,
39 				   const u32 *val, unsigned int len)
40 {
41 	int i;
42 
43 	for (i = 0; i < len; i++)
44 		qce_write(qce, offset + i * sizeof(u32), val[i]);
45 }
46 
47 static inline void
48 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
49 {
50 	int i;
51 
52 	for (i = 0; i < len; i++)
53 		qce_write(qce, offset + i * sizeof(u32), 0);
54 }
55 
56 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
57 {
58 	u32 cfg = 0;
59 
60 	if (IS_AES(flags)) {
61 		if (aes_key_size == AES_KEYSIZE_128)
62 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
63 		else if (aes_key_size == AES_KEYSIZE_256)
64 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
65 	}
66 
67 	if (IS_AES(flags))
68 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
69 	else if (IS_DES(flags) || IS_3DES(flags))
70 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
71 
72 	if (IS_DES(flags))
73 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
74 
75 	if (IS_3DES(flags))
76 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
77 
78 	switch (flags & QCE_MODE_MASK) {
79 	case QCE_MODE_ECB:
80 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
81 		break;
82 	case QCE_MODE_CBC:
83 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
84 		break;
85 	case QCE_MODE_CTR:
86 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
87 		break;
88 	case QCE_MODE_XTS:
89 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
90 		break;
91 	case QCE_MODE_CCM:
92 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
93 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
94 		break;
95 	default:
96 		return ~0;
97 	}
98 
99 	return cfg;
100 }
101 
102 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
103 {
104 	u32 cfg = 0;
105 
106 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
107 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
108 	else
109 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
110 
111 	if (IS_CCM(flags) || IS_CMAC(flags)) {
112 		if (key_size == AES_KEYSIZE_128)
113 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
114 		else if (key_size == AES_KEYSIZE_256)
115 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
116 	}
117 
118 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
119 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
120 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
121 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
122 	else if (IS_CMAC(flags))
123 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
124 
125 	if (IS_SHA1(flags) || IS_SHA256(flags))
126 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
127 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
128 		 IS_CBC(flags) || IS_CTR(flags))
129 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
130 	else if (IS_AES(flags) && IS_CCM(flags))
131 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
132 	else if (IS_AES(flags) && IS_CMAC(flags))
133 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
134 
135 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
136 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
137 
138 	if (IS_CCM(flags))
139 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
140 
141 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
142 	    IS_CMAC(flags))
143 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
144 
145 	return cfg;
146 }
147 
148 static u32 qce_config_reg(struct qce_device *qce, int little)
149 {
150 	u32 beats = (qce->burst_size >> 3) - 1;
151 	u32 pipe_pair = qce->pipe_pair_id;
152 	u32 config;
153 
154 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
155 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
156 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
157 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
158 	config &= ~HIGH_SPD_EN_N_SHIFT;
159 
160 	if (little)
161 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
162 
163 	return config;
164 }
165 
166 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
167 {
168 	__be32 *d = dst;
169 	const u8 *s = src;
170 	unsigned int n;
171 
172 	n = len / sizeof(u32);
173 	for (; n > 0; n--) {
174 		*d = cpu_to_be32p((const __u32 *) s);
175 		s += sizeof(__u32);
176 		d++;
177 	}
178 }
179 
180 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
181 {
182 	u8 swap[QCE_AES_IV_LENGTH];
183 	u32 i, j;
184 
185 	if (ivsize > QCE_AES_IV_LENGTH)
186 		return;
187 
188 	memset(swap, 0, QCE_AES_IV_LENGTH);
189 
190 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
191 	     i < QCE_AES_IV_LENGTH; i++, j--)
192 		swap[i] = src[j];
193 
194 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
195 }
196 
197 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
198 		       unsigned int enckeylen, unsigned int cryptlen)
199 {
200 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
201 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
202 	unsigned int xtsdusize;
203 
204 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
205 			       enckeylen / 2);
206 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
207 
208 	/* xts du size 512B */
209 	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
210 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
211 }
212 
213 static void qce_setup_config(struct qce_device *qce)
214 {
215 	u32 config;
216 
217 	/* get big endianness */
218 	config = qce_config_reg(qce, 0);
219 
220 	/* clear status */
221 	qce_write(qce, REG_STATUS, 0);
222 	qce_write(qce, REG_CONFIG, config);
223 }
224 
225 static inline void qce_crypto_go(struct qce_device *qce)
226 {
227 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
228 }
229 
230 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
231 				u32 totallen, u32 offset)
232 {
233 	struct ahash_request *req = ahash_request_cast(async_req);
234 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
235 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
236 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
237 	struct qce_device *qce = tmpl->qce;
238 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
239 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
240 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
241 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
242 	u32 auth_cfg = 0, config;
243 	unsigned int iv_words;
244 
245 	/* if not the last, the size has to be on the block boundary */
246 	if (!rctx->last_blk && req->nbytes % blocksize)
247 		return -EINVAL;
248 
249 	qce_setup_config(qce);
250 
251 	if (IS_CMAC(rctx->flags)) {
252 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
253 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
254 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
255 		qce_clear_array(qce, REG_AUTH_IV0, 16);
256 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
257 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
258 
259 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
260 	}
261 
262 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
263 		u32 authkey_words = rctx->authklen / sizeof(u32);
264 
265 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
266 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
267 				authkey_words);
268 	}
269 
270 	if (IS_CMAC(rctx->flags))
271 		goto go_proc;
272 
273 	if (rctx->first_blk)
274 		memcpy(auth, rctx->digest, digestsize);
275 	else
276 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
277 
278 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
279 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
280 
281 	if (rctx->first_blk)
282 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
283 	else
284 		qce_write_array(qce, REG_AUTH_BYTECNT0,
285 				(u32 *)rctx->byte_count, 2);
286 
287 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
288 
289 	if (rctx->last_blk)
290 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
291 	else
292 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
293 
294 	if (rctx->first_blk)
295 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
296 	else
297 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
298 
299 go_proc:
300 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
301 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
302 	qce_write(qce, REG_AUTH_SEG_START, 0);
303 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
304 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
305 
306 	/* get little endianness */
307 	config = qce_config_reg(qce, 1);
308 	qce_write(qce, REG_CONFIG, config);
309 
310 	qce_crypto_go(qce);
311 
312 	return 0;
313 }
314 
315 static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
316 				     u32 totallen, u32 offset)
317 {
318 	struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
319 	struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
320 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
321 	struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
322 	struct qce_device *qce = tmpl->qce;
323 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
324 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
325 	unsigned int enckey_words, enciv_words;
326 	unsigned int keylen;
327 	u32 encr_cfg = 0, auth_cfg = 0, config;
328 	unsigned int ivsize = rctx->ivsize;
329 	unsigned long flags = rctx->flags;
330 
331 	qce_setup_config(qce);
332 
333 	if (IS_XTS(flags))
334 		keylen = ctx->enc_keylen / 2;
335 	else
336 		keylen = ctx->enc_keylen;
337 
338 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
339 	enckey_words = keylen / sizeof(u32);
340 
341 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
342 
343 	encr_cfg = qce_encr_cfg(flags, keylen);
344 
345 	if (IS_DES(flags)) {
346 		enciv_words = 2;
347 		enckey_words = 2;
348 	} else if (IS_3DES(flags)) {
349 		enciv_words = 2;
350 		enckey_words = 6;
351 	} else if (IS_AES(flags)) {
352 		if (IS_XTS(flags))
353 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
354 				   rctx->cryptlen);
355 		enciv_words = 4;
356 	} else {
357 		return -EINVAL;
358 	}
359 
360 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
361 
362 	if (!IS_ECB(flags)) {
363 		if (IS_XTS(flags))
364 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
365 		else
366 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
367 
368 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
369 	}
370 
371 	if (IS_ENCRYPT(flags))
372 		encr_cfg |= BIT(ENCODE_SHIFT);
373 
374 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
375 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
376 	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
377 
378 	if (IS_CTR(flags)) {
379 		qce_write(qce, REG_CNTR_MASK, ~0);
380 		qce_write(qce, REG_CNTR_MASK0, ~0);
381 		qce_write(qce, REG_CNTR_MASK1, ~0);
382 		qce_write(qce, REG_CNTR_MASK2, ~0);
383 	}
384 
385 	qce_write(qce, REG_SEG_SIZE, totallen);
386 
387 	/* get little endianness */
388 	config = qce_config_reg(qce, 1);
389 	qce_write(qce, REG_CONFIG, config);
390 
391 	qce_crypto_go(qce);
392 
393 	return 0;
394 }
395 
396 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
397 	      u32 offset)
398 {
399 	switch (type) {
400 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
401 		return qce_setup_regs_ablkcipher(async_req, totallen, offset);
402 	case CRYPTO_ALG_TYPE_AHASH:
403 		return qce_setup_regs_ahash(async_req, totallen, offset);
404 	default:
405 		return -EINVAL;
406 	}
407 }
408 
409 #define STATUS_ERRORS	\
410 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
411 
412 int qce_check_status(struct qce_device *qce, u32 *status)
413 {
414 	int ret = 0;
415 
416 	*status = qce_read(qce, REG_STATUS);
417 
418 	/*
419 	 * Don't use result dump status. The operation may not be complete.
420 	 * Instead, use the status we just read from device. In case, we need to
421 	 * use result_status from result dump the result_status needs to be byte
422 	 * swapped, since we set the device to little endian.
423 	 */
424 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
425 		ret = -ENXIO;
426 
427 	return ret;
428 }
429 
430 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
431 {
432 	u32 val;
433 
434 	val = qce_read(qce, REG_VERSION);
435 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
436 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
437 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
438 }
439