xref: /openbmc/linux/drivers/crypto/qce/common.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha.h>
11 
12 #include "cipher.h"
13 #include "common.h"
14 #include "core.h"
15 #include "regs-v5.h"
16 #include "sha.h"
17 
18 #define QCE_SECTOR_SIZE		512
19 
20 static inline u32 qce_read(struct qce_device *qce, u32 offset)
21 {
22 	return readl(qce->base + offset);
23 }
24 
25 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
26 {
27 	writel(val, qce->base + offset);
28 }
29 
30 static inline void qce_write_array(struct qce_device *qce, u32 offset,
31 				   const u32 *val, unsigned int len)
32 {
33 	int i;
34 
35 	for (i = 0; i < len; i++)
36 		qce_write(qce, offset + i * sizeof(u32), val[i]);
37 }
38 
39 static inline void
40 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
41 {
42 	int i;
43 
44 	for (i = 0; i < len; i++)
45 		qce_write(qce, offset + i * sizeof(u32), 0);
46 }
47 
48 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
49 {
50 	u32 cfg = 0;
51 
52 	if (IS_AES(flags)) {
53 		if (aes_key_size == AES_KEYSIZE_128)
54 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
55 		else if (aes_key_size == AES_KEYSIZE_256)
56 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
57 	}
58 
59 	if (IS_AES(flags))
60 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
61 	else if (IS_DES(flags) || IS_3DES(flags))
62 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
63 
64 	if (IS_DES(flags))
65 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
66 
67 	if (IS_3DES(flags))
68 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
69 
70 	switch (flags & QCE_MODE_MASK) {
71 	case QCE_MODE_ECB:
72 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
73 		break;
74 	case QCE_MODE_CBC:
75 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
76 		break;
77 	case QCE_MODE_CTR:
78 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
79 		break;
80 	case QCE_MODE_XTS:
81 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
82 		break;
83 	case QCE_MODE_CCM:
84 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
85 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
86 		break;
87 	default:
88 		return ~0;
89 	}
90 
91 	return cfg;
92 }
93 
94 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
95 {
96 	u32 cfg = 0;
97 
98 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
99 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
100 	else
101 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
102 
103 	if (IS_CCM(flags) || IS_CMAC(flags)) {
104 		if (key_size == AES_KEYSIZE_128)
105 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
106 		else if (key_size == AES_KEYSIZE_256)
107 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
108 	}
109 
110 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
111 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
112 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
113 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
114 	else if (IS_CMAC(flags))
115 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
116 
117 	if (IS_SHA1(flags) || IS_SHA256(flags))
118 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
119 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
120 		 IS_CBC(flags) || IS_CTR(flags))
121 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
122 	else if (IS_AES(flags) && IS_CCM(flags))
123 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
124 	else if (IS_AES(flags) && IS_CMAC(flags))
125 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
126 
127 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
128 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
129 
130 	if (IS_CCM(flags))
131 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
132 
133 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
134 	    IS_CMAC(flags))
135 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
136 
137 	return cfg;
138 }
139 
140 static u32 qce_config_reg(struct qce_device *qce, int little)
141 {
142 	u32 beats = (qce->burst_size >> 3) - 1;
143 	u32 pipe_pair = qce->pipe_pair_id;
144 	u32 config;
145 
146 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
147 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
148 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
149 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
150 	config &= ~HIGH_SPD_EN_N_SHIFT;
151 
152 	if (little)
153 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
154 
155 	return config;
156 }
157 
158 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
159 {
160 	__be32 *d = dst;
161 	const u8 *s = src;
162 	unsigned int n;
163 
164 	n = len / sizeof(u32);
165 	for (; n > 0; n--) {
166 		*d = cpu_to_be32p((const __u32 *) s);
167 		s += sizeof(__u32);
168 		d++;
169 	}
170 }
171 
172 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
173 {
174 	u8 swap[QCE_AES_IV_LENGTH];
175 	u32 i, j;
176 
177 	if (ivsize > QCE_AES_IV_LENGTH)
178 		return;
179 
180 	memset(swap, 0, QCE_AES_IV_LENGTH);
181 
182 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
183 	     i < QCE_AES_IV_LENGTH; i++, j--)
184 		swap[i] = src[j];
185 
186 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
187 }
188 
189 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
190 		       unsigned int enckeylen, unsigned int cryptlen)
191 {
192 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
193 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
194 	unsigned int xtsdusize;
195 
196 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
197 			       enckeylen / 2);
198 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
199 
200 	/* xts du size 512B */
201 	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
202 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
203 }
204 
205 static void qce_setup_config(struct qce_device *qce)
206 {
207 	u32 config;
208 
209 	/* get big endianness */
210 	config = qce_config_reg(qce, 0);
211 
212 	/* clear status */
213 	qce_write(qce, REG_STATUS, 0);
214 	qce_write(qce, REG_CONFIG, config);
215 }
216 
217 static inline void qce_crypto_go(struct qce_device *qce)
218 {
219 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
220 }
221 
222 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
223 				u32 totallen, u32 offset)
224 {
225 	struct ahash_request *req = ahash_request_cast(async_req);
226 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
227 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
228 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
229 	struct qce_device *qce = tmpl->qce;
230 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
231 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
232 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
233 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
234 	u32 auth_cfg = 0, config;
235 	unsigned int iv_words;
236 
237 	/* if not the last, the size has to be on the block boundary */
238 	if (!rctx->last_blk && req->nbytes % blocksize)
239 		return -EINVAL;
240 
241 	qce_setup_config(qce);
242 
243 	if (IS_CMAC(rctx->flags)) {
244 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
245 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
246 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
247 		qce_clear_array(qce, REG_AUTH_IV0, 16);
248 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
249 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
250 
251 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
252 	}
253 
254 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
255 		u32 authkey_words = rctx->authklen / sizeof(u32);
256 
257 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
258 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
259 				authkey_words);
260 	}
261 
262 	if (IS_CMAC(rctx->flags))
263 		goto go_proc;
264 
265 	if (rctx->first_blk)
266 		memcpy(auth, rctx->digest, digestsize);
267 	else
268 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
269 
270 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
271 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
272 
273 	if (rctx->first_blk)
274 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
275 	else
276 		qce_write_array(qce, REG_AUTH_BYTECNT0,
277 				(u32 *)rctx->byte_count, 2);
278 
279 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
280 
281 	if (rctx->last_blk)
282 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
283 	else
284 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
285 
286 	if (rctx->first_blk)
287 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
288 	else
289 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
290 
291 go_proc:
292 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
293 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
294 	qce_write(qce, REG_AUTH_SEG_START, 0);
295 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
296 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
297 
298 	/* get little endianness */
299 	config = qce_config_reg(qce, 1);
300 	qce_write(qce, REG_CONFIG, config);
301 
302 	qce_crypto_go(qce);
303 
304 	return 0;
305 }
306 
307 static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
308 				     u32 totallen, u32 offset)
309 {
310 	struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
311 	struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
312 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
313 	struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
314 	struct qce_device *qce = tmpl->qce;
315 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
316 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
317 	unsigned int enckey_words, enciv_words;
318 	unsigned int keylen;
319 	u32 encr_cfg = 0, auth_cfg = 0, config;
320 	unsigned int ivsize = rctx->ivsize;
321 	unsigned long flags = rctx->flags;
322 
323 	qce_setup_config(qce);
324 
325 	if (IS_XTS(flags))
326 		keylen = ctx->enc_keylen / 2;
327 	else
328 		keylen = ctx->enc_keylen;
329 
330 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
331 	enckey_words = keylen / sizeof(u32);
332 
333 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
334 
335 	encr_cfg = qce_encr_cfg(flags, keylen);
336 
337 	if (IS_DES(flags)) {
338 		enciv_words = 2;
339 		enckey_words = 2;
340 	} else if (IS_3DES(flags)) {
341 		enciv_words = 2;
342 		enckey_words = 6;
343 	} else if (IS_AES(flags)) {
344 		if (IS_XTS(flags))
345 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
346 				   rctx->cryptlen);
347 		enciv_words = 4;
348 	} else {
349 		return -EINVAL;
350 	}
351 
352 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
353 
354 	if (!IS_ECB(flags)) {
355 		if (IS_XTS(flags))
356 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
357 		else
358 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
359 
360 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
361 	}
362 
363 	if (IS_ENCRYPT(flags))
364 		encr_cfg |= BIT(ENCODE_SHIFT);
365 
366 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
367 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
368 	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
369 
370 	if (IS_CTR(flags)) {
371 		qce_write(qce, REG_CNTR_MASK, ~0);
372 		qce_write(qce, REG_CNTR_MASK0, ~0);
373 		qce_write(qce, REG_CNTR_MASK1, ~0);
374 		qce_write(qce, REG_CNTR_MASK2, ~0);
375 	}
376 
377 	qce_write(qce, REG_SEG_SIZE, totallen);
378 
379 	/* get little endianness */
380 	config = qce_config_reg(qce, 1);
381 	qce_write(qce, REG_CONFIG, config);
382 
383 	qce_crypto_go(qce);
384 
385 	return 0;
386 }
387 
388 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
389 	      u32 offset)
390 {
391 	switch (type) {
392 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
393 		return qce_setup_regs_ablkcipher(async_req, totallen, offset);
394 	case CRYPTO_ALG_TYPE_AHASH:
395 		return qce_setup_regs_ahash(async_req, totallen, offset);
396 	default:
397 		return -EINVAL;
398 	}
399 }
400 
401 #define STATUS_ERRORS	\
402 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
403 
404 int qce_check_status(struct qce_device *qce, u32 *status)
405 {
406 	int ret = 0;
407 
408 	*status = qce_read(qce, REG_STATUS);
409 
410 	/*
411 	 * Don't use result dump status. The operation may not be complete.
412 	 * Instead, use the status we just read from device. In case, we need to
413 	 * use result_status from result dump the result_status needs to be byte
414 	 * swapped, since we set the device to little endian.
415 	 */
416 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
417 		ret = -ENXIO;
418 
419 	return ret;
420 }
421 
422 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
423 {
424 	u32 val;
425 
426 	val = qce_read(qce, REG_VERSION);
427 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
428 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
429 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
430 }
431