xref: /openbmc/linux/drivers/crypto/qce/common.c (revision 06b72824)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha.h>
11 
12 #include "cipher.h"
13 #include "common.h"
14 #include "core.h"
15 #include "regs-v5.h"
16 #include "sha.h"
17 
18 #define QCE_SECTOR_SIZE		512
19 
20 static inline u32 qce_read(struct qce_device *qce, u32 offset)
21 {
22 	return readl(qce->base + offset);
23 }
24 
25 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
26 {
27 	writel(val, qce->base + offset);
28 }
29 
30 static inline void qce_write_array(struct qce_device *qce, u32 offset,
31 				   const u32 *val, unsigned int len)
32 {
33 	int i;
34 
35 	for (i = 0; i < len; i++)
36 		qce_write(qce, offset + i * sizeof(u32), val[i]);
37 }
38 
39 static inline void
40 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
41 {
42 	int i;
43 
44 	for (i = 0; i < len; i++)
45 		qce_write(qce, offset + i * sizeof(u32), 0);
46 }
47 
48 static u32 qce_config_reg(struct qce_device *qce, int little)
49 {
50 	u32 beats = (qce->burst_size >> 3) - 1;
51 	u32 pipe_pair = qce->pipe_pair_id;
52 	u32 config;
53 
54 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
55 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
56 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
57 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
58 	config &= ~HIGH_SPD_EN_N_SHIFT;
59 
60 	if (little)
61 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
62 
63 	return config;
64 }
65 
66 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
67 {
68 	__be32 *d = dst;
69 	const u8 *s = src;
70 	unsigned int n;
71 
72 	n = len / sizeof(u32);
73 	for (; n > 0; n--) {
74 		*d = cpu_to_be32p((const __u32 *) s);
75 		s += sizeof(__u32);
76 		d++;
77 	}
78 }
79 
80 static void qce_setup_config(struct qce_device *qce)
81 {
82 	u32 config;
83 
84 	/* get big endianness */
85 	config = qce_config_reg(qce, 0);
86 
87 	/* clear status */
88 	qce_write(qce, REG_STATUS, 0);
89 	qce_write(qce, REG_CONFIG, config);
90 }
91 
92 static inline void qce_crypto_go(struct qce_device *qce)
93 {
94 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
95 }
96 
97 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
98 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
99 {
100 	u32 cfg = 0;
101 
102 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
103 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
104 	else
105 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
106 
107 	if (IS_CCM(flags) || IS_CMAC(flags)) {
108 		if (key_size == AES_KEYSIZE_128)
109 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
110 		else if (key_size == AES_KEYSIZE_256)
111 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
112 	}
113 
114 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
115 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
116 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
117 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
118 	else if (IS_CMAC(flags))
119 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
120 
121 	if (IS_SHA1(flags) || IS_SHA256(flags))
122 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
123 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
124 		 IS_CBC(flags) || IS_CTR(flags))
125 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
126 	else if (IS_AES(flags) && IS_CCM(flags))
127 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
128 	else if (IS_AES(flags) && IS_CMAC(flags))
129 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
130 
131 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
132 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
133 
134 	if (IS_CCM(flags))
135 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
136 
137 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
138 	    IS_CMAC(flags))
139 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
140 
141 	return cfg;
142 }
143 
144 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
145 				u32 totallen, u32 offset)
146 {
147 	struct ahash_request *req = ahash_request_cast(async_req);
148 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
149 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
150 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
151 	struct qce_device *qce = tmpl->qce;
152 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
153 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
154 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
155 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
156 	u32 auth_cfg = 0, config;
157 	unsigned int iv_words;
158 
159 	/* if not the last, the size has to be on the block boundary */
160 	if (!rctx->last_blk && req->nbytes % blocksize)
161 		return -EINVAL;
162 
163 	qce_setup_config(qce);
164 
165 	if (IS_CMAC(rctx->flags)) {
166 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
167 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
168 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
169 		qce_clear_array(qce, REG_AUTH_IV0, 16);
170 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
171 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
172 
173 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
174 	}
175 
176 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
177 		u32 authkey_words = rctx->authklen / sizeof(u32);
178 
179 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
180 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
181 				authkey_words);
182 	}
183 
184 	if (IS_CMAC(rctx->flags))
185 		goto go_proc;
186 
187 	if (rctx->first_blk)
188 		memcpy(auth, rctx->digest, digestsize);
189 	else
190 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
191 
192 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
193 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
194 
195 	if (rctx->first_blk)
196 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
197 	else
198 		qce_write_array(qce, REG_AUTH_BYTECNT0,
199 				(u32 *)rctx->byte_count, 2);
200 
201 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
202 
203 	if (rctx->last_blk)
204 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
205 	else
206 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
207 
208 	if (rctx->first_blk)
209 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
210 	else
211 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
212 
213 go_proc:
214 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
215 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
216 	qce_write(qce, REG_AUTH_SEG_START, 0);
217 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
218 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
219 
220 	/* get little endianness */
221 	config = qce_config_reg(qce, 1);
222 	qce_write(qce, REG_CONFIG, config);
223 
224 	qce_crypto_go(qce);
225 
226 	return 0;
227 }
228 #endif
229 
230 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
231 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
232 {
233 	u32 cfg = 0;
234 
235 	if (IS_AES(flags)) {
236 		if (aes_key_size == AES_KEYSIZE_128)
237 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
238 		else if (aes_key_size == AES_KEYSIZE_256)
239 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
240 	}
241 
242 	if (IS_AES(flags))
243 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
244 	else if (IS_DES(flags) || IS_3DES(flags))
245 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
246 
247 	if (IS_DES(flags))
248 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
249 
250 	if (IS_3DES(flags))
251 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
252 
253 	switch (flags & QCE_MODE_MASK) {
254 	case QCE_MODE_ECB:
255 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
256 		break;
257 	case QCE_MODE_CBC:
258 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
259 		break;
260 	case QCE_MODE_CTR:
261 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
262 		break;
263 	case QCE_MODE_XTS:
264 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
265 		break;
266 	case QCE_MODE_CCM:
267 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
268 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
269 		break;
270 	default:
271 		return ~0;
272 	}
273 
274 	return cfg;
275 }
276 
277 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
278 {
279 	u8 swap[QCE_AES_IV_LENGTH];
280 	u32 i, j;
281 
282 	if (ivsize > QCE_AES_IV_LENGTH)
283 		return;
284 
285 	memset(swap, 0, QCE_AES_IV_LENGTH);
286 
287 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
288 	     i < QCE_AES_IV_LENGTH; i++, j--)
289 		swap[i] = src[j];
290 
291 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
292 }
293 
294 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
295 		       unsigned int enckeylen, unsigned int cryptlen)
296 {
297 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
298 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
299 	unsigned int xtsdusize;
300 
301 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
302 			       enckeylen / 2);
303 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
304 
305 	/* xts du size 512B */
306 	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
307 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
308 }
309 
310 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
311 				     u32 totallen, u32 offset)
312 {
313 	struct skcipher_request *req = skcipher_request_cast(async_req);
314 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
315 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
316 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
317 	struct qce_device *qce = tmpl->qce;
318 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
319 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
320 	unsigned int enckey_words, enciv_words;
321 	unsigned int keylen;
322 	u32 encr_cfg = 0, auth_cfg = 0, config;
323 	unsigned int ivsize = rctx->ivsize;
324 	unsigned long flags = rctx->flags;
325 
326 	qce_setup_config(qce);
327 
328 	if (IS_XTS(flags))
329 		keylen = ctx->enc_keylen / 2;
330 	else
331 		keylen = ctx->enc_keylen;
332 
333 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
334 	enckey_words = keylen / sizeof(u32);
335 
336 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
337 
338 	encr_cfg = qce_encr_cfg(flags, keylen);
339 
340 	if (IS_DES(flags)) {
341 		enciv_words = 2;
342 		enckey_words = 2;
343 	} else if (IS_3DES(flags)) {
344 		enciv_words = 2;
345 		enckey_words = 6;
346 	} else if (IS_AES(flags)) {
347 		if (IS_XTS(flags))
348 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
349 				   rctx->cryptlen);
350 		enciv_words = 4;
351 	} else {
352 		return -EINVAL;
353 	}
354 
355 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
356 
357 	if (!IS_ECB(flags)) {
358 		if (IS_XTS(flags))
359 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
360 		else
361 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
362 
363 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
364 	}
365 
366 	if (IS_ENCRYPT(flags))
367 		encr_cfg |= BIT(ENCODE_SHIFT);
368 
369 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
370 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
371 	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
372 
373 	if (IS_CTR(flags)) {
374 		qce_write(qce, REG_CNTR_MASK, ~0);
375 		qce_write(qce, REG_CNTR_MASK0, ~0);
376 		qce_write(qce, REG_CNTR_MASK1, ~0);
377 		qce_write(qce, REG_CNTR_MASK2, ~0);
378 	}
379 
380 	qce_write(qce, REG_SEG_SIZE, totallen);
381 
382 	/* get little endianness */
383 	config = qce_config_reg(qce, 1);
384 	qce_write(qce, REG_CONFIG, config);
385 
386 	qce_crypto_go(qce);
387 
388 	return 0;
389 }
390 #endif
391 
392 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
393 	      u32 offset)
394 {
395 	switch (type) {
396 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
397 	case CRYPTO_ALG_TYPE_SKCIPHER:
398 		return qce_setup_regs_skcipher(async_req, totallen, offset);
399 #endif
400 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
401 	case CRYPTO_ALG_TYPE_AHASH:
402 		return qce_setup_regs_ahash(async_req, totallen, offset);
403 #endif
404 	default:
405 		return -EINVAL;
406 	}
407 }
408 
409 #define STATUS_ERRORS	\
410 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
411 
412 int qce_check_status(struct qce_device *qce, u32 *status)
413 {
414 	int ret = 0;
415 
416 	*status = qce_read(qce, REG_STATUS);
417 
418 	/*
419 	 * Don't use result dump status. The operation may not be complete.
420 	 * Instead, use the status we just read from device. In case, we need to
421 	 * use result_status from result dump the result_status needs to be byte
422 	 * swapped, since we set the device to little endian.
423 	 */
424 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
425 		ret = -ENXIO;
426 
427 	return ret;
428 }
429 
430 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
431 {
432 	u32 val;
433 
434 	val = qce_read(qce, REG_VERSION);
435 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
436 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
437 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
438 }
439