1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Cryptographic API. 4 * 5 * Support for VIA PadLock hardware crypto engine. 6 * 7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz> 8 */ 9 10 #include <crypto/internal/hash.h> 11 #include <crypto/padlock.h> 12 #include <crypto/sha.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/scatterlist.h> 20 #include <asm/cpu_device_id.h> 21 #include <asm/fpu/api.h> 22 23 struct padlock_sha_desc { 24 struct shash_desc fallback; 25 }; 26 27 struct padlock_sha_ctx { 28 struct crypto_shash *fallback; 29 }; 30 31 static int padlock_sha_init(struct shash_desc *desc) 32 { 33 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 34 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); 35 36 dctx->fallback.tfm = ctx->fallback; 37 return crypto_shash_init(&dctx->fallback); 38 } 39 40 static int padlock_sha_update(struct shash_desc *desc, 41 const u8 *data, unsigned int length) 42 { 43 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 44 45 return crypto_shash_update(&dctx->fallback, data, length); 46 } 47 48 static int padlock_sha_export(struct shash_desc *desc, void *out) 49 { 50 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 51 52 return crypto_shash_export(&dctx->fallback, out); 53 } 54 55 static int padlock_sha_import(struct shash_desc *desc, const void *in) 56 { 57 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 58 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); 59 60 dctx->fallback.tfm = ctx->fallback; 61 return crypto_shash_import(&dctx->fallback, in); 62 } 63 64 static inline void padlock_output_block(uint32_t *src, 65 uint32_t *dst, size_t count) 66 { 67 while (count--) 68 *dst++ = swab32(*src++); 69 } 70 71 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in, 72 unsigned int count, u8 *out) 73 { 74 /* We can't store directly to *out as it may be unaligned. */ 75 /* BTW Don't reduce the buffer size below 128 Bytes! 76 * PadLock microcode needs it that big. */ 77 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 78 ((aligned(STACK_ALIGN))); 79 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 80 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 81 struct sha1_state state; 82 unsigned int space; 83 unsigned int leftover; 84 int err; 85 86 err = crypto_shash_export(&dctx->fallback, &state); 87 if (err) 88 goto out; 89 90 if (state.count + count > ULONG_MAX) 91 return crypto_shash_finup(&dctx->fallback, in, count, out); 92 93 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1; 94 space = SHA1_BLOCK_SIZE - leftover; 95 if (space) { 96 if (count > space) { 97 err = crypto_shash_update(&dctx->fallback, in, space) ?: 98 crypto_shash_export(&dctx->fallback, &state); 99 if (err) 100 goto out; 101 count -= space; 102 in += space; 103 } else { 104 memcpy(state.buffer + leftover, in, count); 105 in = state.buffer; 106 count += leftover; 107 state.count &= ~(SHA1_BLOCK_SIZE - 1); 108 } 109 } 110 111 memcpy(result, &state.state, SHA1_DIGEST_SIZE); 112 113 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */ 114 : \ 115 : "c"((unsigned long)state.count + count), \ 116 "a"((unsigned long)state.count), \ 117 "S"(in), "D"(result)); 118 119 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5); 120 121 out: 122 return err; 123 } 124 125 static int padlock_sha1_final(struct shash_desc *desc, u8 *out) 126 { 127 u8 buf[4]; 128 129 return padlock_sha1_finup(desc, buf, 0, out); 130 } 131 132 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in, 133 unsigned int count, u8 *out) 134 { 135 /* We can't store directly to *out as it may be unaligned. */ 136 /* BTW Don't reduce the buffer size below 128 Bytes! 137 * PadLock microcode needs it that big. */ 138 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 139 ((aligned(STACK_ALIGN))); 140 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 141 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 142 struct sha256_state state; 143 unsigned int space; 144 unsigned int leftover; 145 int err; 146 147 err = crypto_shash_export(&dctx->fallback, &state); 148 if (err) 149 goto out; 150 151 if (state.count + count > ULONG_MAX) 152 return crypto_shash_finup(&dctx->fallback, in, count, out); 153 154 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1; 155 space = SHA256_BLOCK_SIZE - leftover; 156 if (space) { 157 if (count > space) { 158 err = crypto_shash_update(&dctx->fallback, in, space) ?: 159 crypto_shash_export(&dctx->fallback, &state); 160 if (err) 161 goto out; 162 count -= space; 163 in += space; 164 } else { 165 memcpy(state.buf + leftover, in, count); 166 in = state.buf; 167 count += leftover; 168 state.count &= ~(SHA1_BLOCK_SIZE - 1); 169 } 170 } 171 172 memcpy(result, &state.state, SHA256_DIGEST_SIZE); 173 174 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */ 175 : \ 176 : "c"((unsigned long)state.count + count), \ 177 "a"((unsigned long)state.count), \ 178 "S"(in), "D"(result)); 179 180 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8); 181 182 out: 183 return err; 184 } 185 186 static int padlock_sha256_final(struct shash_desc *desc, u8 *out) 187 { 188 u8 buf[4]; 189 190 return padlock_sha256_finup(desc, buf, 0, out); 191 } 192 193 static int padlock_init_tfm(struct crypto_shash *hash) 194 { 195 const char *fallback_driver_name = crypto_shash_alg_name(hash); 196 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash); 197 struct crypto_shash *fallback_tfm; 198 199 /* Allocate a fallback and abort if it failed. */ 200 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, 201 CRYPTO_ALG_NEED_FALLBACK); 202 if (IS_ERR(fallback_tfm)) { 203 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n", 204 fallback_driver_name); 205 return PTR_ERR(fallback_tfm); 206 } 207 208 ctx->fallback = fallback_tfm; 209 hash->descsize += crypto_shash_descsize(fallback_tfm); 210 return 0; 211 } 212 213 static void padlock_exit_tfm(struct crypto_shash *hash) 214 { 215 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash); 216 217 crypto_free_shash(ctx->fallback); 218 } 219 220 static struct shash_alg sha1_alg = { 221 .digestsize = SHA1_DIGEST_SIZE, 222 .init = padlock_sha_init, 223 .update = padlock_sha_update, 224 .finup = padlock_sha1_finup, 225 .final = padlock_sha1_final, 226 .export = padlock_sha_export, 227 .import = padlock_sha_import, 228 .init_tfm = padlock_init_tfm, 229 .exit_tfm = padlock_exit_tfm, 230 .descsize = sizeof(struct padlock_sha_desc), 231 .statesize = sizeof(struct sha1_state), 232 .base = { 233 .cra_name = "sha1", 234 .cra_driver_name = "sha1-padlock", 235 .cra_priority = PADLOCK_CRA_PRIORITY, 236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK, 237 .cra_blocksize = SHA1_BLOCK_SIZE, 238 .cra_ctxsize = sizeof(struct padlock_sha_ctx), 239 .cra_module = THIS_MODULE, 240 } 241 }; 242 243 static struct shash_alg sha256_alg = { 244 .digestsize = SHA256_DIGEST_SIZE, 245 .init = padlock_sha_init, 246 .update = padlock_sha_update, 247 .finup = padlock_sha256_finup, 248 .final = padlock_sha256_final, 249 .export = padlock_sha_export, 250 .import = padlock_sha_import, 251 .init_tfm = padlock_init_tfm, 252 .exit_tfm = padlock_exit_tfm, 253 .descsize = sizeof(struct padlock_sha_desc), 254 .statesize = sizeof(struct sha256_state), 255 .base = { 256 .cra_name = "sha256", 257 .cra_driver_name = "sha256-padlock", 258 .cra_priority = PADLOCK_CRA_PRIORITY, 259 .cra_flags = CRYPTO_ALG_NEED_FALLBACK, 260 .cra_blocksize = SHA256_BLOCK_SIZE, 261 .cra_ctxsize = sizeof(struct padlock_sha_ctx), 262 .cra_module = THIS_MODULE, 263 } 264 }; 265 266 /* Add two shash_alg instance for hardware-implemented * 267 * multiple-parts hash supported by VIA Nano Processor.*/ 268 static int padlock_sha1_init_nano(struct shash_desc *desc) 269 { 270 struct sha1_state *sctx = shash_desc_ctx(desc); 271 272 *sctx = (struct sha1_state){ 273 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, 274 }; 275 276 return 0; 277 } 278 279 static int padlock_sha1_update_nano(struct shash_desc *desc, 280 const u8 *data, unsigned int len) 281 { 282 struct sha1_state *sctx = shash_desc_ctx(desc); 283 unsigned int partial, done; 284 const u8 *src; 285 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ 286 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 287 ((aligned(STACK_ALIGN))); 288 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 289 290 partial = sctx->count & 0x3f; 291 sctx->count += len; 292 done = 0; 293 src = data; 294 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE); 295 296 if ((partial + len) >= SHA1_BLOCK_SIZE) { 297 298 /* Append the bytes in state's buffer to a block to handle */ 299 if (partial) { 300 done = -partial; 301 memcpy(sctx->buffer + partial, data, 302 done + SHA1_BLOCK_SIZE); 303 src = sctx->buffer; 304 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" 305 : "+S"(src), "+D"(dst) \ 306 : "a"((long)-1), "c"((unsigned long)1)); 307 done += SHA1_BLOCK_SIZE; 308 src = data + done; 309 } 310 311 /* Process the left bytes from the input data */ 312 if (len - done >= SHA1_BLOCK_SIZE) { 313 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" 314 : "+S"(src), "+D"(dst) 315 : "a"((long)-1), 316 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE))); 317 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE); 318 src = data + done; 319 } 320 partial = 0; 321 } 322 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE); 323 memcpy(sctx->buffer + partial, src, len - done); 324 325 return 0; 326 } 327 328 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out) 329 { 330 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc); 331 unsigned int partial, padlen; 332 __be64 bits; 333 static const u8 padding[64] = { 0x80, }; 334 335 bits = cpu_to_be64(state->count << 3); 336 337 /* Pad out to 56 mod 64 */ 338 partial = state->count & 0x3f; 339 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); 340 padlock_sha1_update_nano(desc, padding, padlen); 341 342 /* Append length field bytes */ 343 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits)); 344 345 /* Swap to output */ 346 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5); 347 348 return 0; 349 } 350 351 static int padlock_sha256_init_nano(struct shash_desc *desc) 352 { 353 struct sha256_state *sctx = shash_desc_ctx(desc); 354 355 *sctx = (struct sha256_state){ 356 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \ 357 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7}, 358 }; 359 360 return 0; 361 } 362 363 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data, 364 unsigned int len) 365 { 366 struct sha256_state *sctx = shash_desc_ctx(desc); 367 unsigned int partial, done; 368 const u8 *src; 369 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ 370 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 371 ((aligned(STACK_ALIGN))); 372 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 373 374 partial = sctx->count & 0x3f; 375 sctx->count += len; 376 done = 0; 377 src = data; 378 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE); 379 380 if ((partial + len) >= SHA256_BLOCK_SIZE) { 381 382 /* Append the bytes in state's buffer to a block to handle */ 383 if (partial) { 384 done = -partial; 385 memcpy(sctx->buf + partial, data, 386 done + SHA256_BLOCK_SIZE); 387 src = sctx->buf; 388 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" 389 : "+S"(src), "+D"(dst) 390 : "a"((long)-1), "c"((unsigned long)1)); 391 done += SHA256_BLOCK_SIZE; 392 src = data + done; 393 } 394 395 /* Process the left bytes from input data*/ 396 if (len - done >= SHA256_BLOCK_SIZE) { 397 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" 398 : "+S"(src), "+D"(dst) 399 : "a"((long)-1), 400 "c"((unsigned long)((len - done) / 64))); 401 done += ((len - done) - (len - done) % 64); 402 src = data + done; 403 } 404 partial = 0; 405 } 406 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE); 407 memcpy(sctx->buf + partial, src, len - done); 408 409 return 0; 410 } 411 412 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out) 413 { 414 struct sha256_state *state = 415 (struct sha256_state *)shash_desc_ctx(desc); 416 unsigned int partial, padlen; 417 __be64 bits; 418 static const u8 padding[64] = { 0x80, }; 419 420 bits = cpu_to_be64(state->count << 3); 421 422 /* Pad out to 56 mod 64 */ 423 partial = state->count & 0x3f; 424 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); 425 padlock_sha256_update_nano(desc, padding, padlen); 426 427 /* Append length field bytes */ 428 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits)); 429 430 /* Swap to output */ 431 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8); 432 433 return 0; 434 } 435 436 static int padlock_sha_export_nano(struct shash_desc *desc, 437 void *out) 438 { 439 int statesize = crypto_shash_statesize(desc->tfm); 440 void *sctx = shash_desc_ctx(desc); 441 442 memcpy(out, sctx, statesize); 443 return 0; 444 } 445 446 static int padlock_sha_import_nano(struct shash_desc *desc, 447 const void *in) 448 { 449 int statesize = crypto_shash_statesize(desc->tfm); 450 void *sctx = shash_desc_ctx(desc); 451 452 memcpy(sctx, in, statesize); 453 return 0; 454 } 455 456 static struct shash_alg sha1_alg_nano = { 457 .digestsize = SHA1_DIGEST_SIZE, 458 .init = padlock_sha1_init_nano, 459 .update = padlock_sha1_update_nano, 460 .final = padlock_sha1_final_nano, 461 .export = padlock_sha_export_nano, 462 .import = padlock_sha_import_nano, 463 .descsize = sizeof(struct sha1_state), 464 .statesize = sizeof(struct sha1_state), 465 .base = { 466 .cra_name = "sha1", 467 .cra_driver_name = "sha1-padlock-nano", 468 .cra_priority = PADLOCK_CRA_PRIORITY, 469 .cra_blocksize = SHA1_BLOCK_SIZE, 470 .cra_module = THIS_MODULE, 471 } 472 }; 473 474 static struct shash_alg sha256_alg_nano = { 475 .digestsize = SHA256_DIGEST_SIZE, 476 .init = padlock_sha256_init_nano, 477 .update = padlock_sha256_update_nano, 478 .final = padlock_sha256_final_nano, 479 .export = padlock_sha_export_nano, 480 .import = padlock_sha_import_nano, 481 .descsize = sizeof(struct sha256_state), 482 .statesize = sizeof(struct sha256_state), 483 .base = { 484 .cra_name = "sha256", 485 .cra_driver_name = "sha256-padlock-nano", 486 .cra_priority = PADLOCK_CRA_PRIORITY, 487 .cra_blocksize = SHA256_BLOCK_SIZE, 488 .cra_module = THIS_MODULE, 489 } 490 }; 491 492 static const struct x86_cpu_id padlock_sha_ids[] = { 493 X86_FEATURE_MATCH(X86_FEATURE_PHE), 494 {} 495 }; 496 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids); 497 498 static int __init padlock_init(void) 499 { 500 int rc = -ENODEV; 501 struct cpuinfo_x86 *c = &cpu_data(0); 502 struct shash_alg *sha1; 503 struct shash_alg *sha256; 504 505 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN)) 506 return -ENODEV; 507 508 /* Register the newly added algorithm module if on * 509 * VIA Nano processor, or else just do as before */ 510 if (c->x86_model < 0x0f) { 511 sha1 = &sha1_alg; 512 sha256 = &sha256_alg; 513 } else { 514 sha1 = &sha1_alg_nano; 515 sha256 = &sha256_alg_nano; 516 } 517 518 rc = crypto_register_shash(sha1); 519 if (rc) 520 goto out; 521 522 rc = crypto_register_shash(sha256); 523 if (rc) 524 goto out_unreg1; 525 526 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n"); 527 528 return 0; 529 530 out_unreg1: 531 crypto_unregister_shash(sha1); 532 533 out: 534 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); 535 return rc; 536 } 537 538 static void __exit padlock_fini(void) 539 { 540 struct cpuinfo_x86 *c = &cpu_data(0); 541 542 if (c->x86_model >= 0x0f) { 543 crypto_unregister_shash(&sha1_alg_nano); 544 crypto_unregister_shash(&sha256_alg_nano); 545 } else { 546 crypto_unregister_shash(&sha1_alg); 547 crypto_unregister_shash(&sha256_alg); 548 } 549 } 550 551 module_init(padlock_init); 552 module_exit(padlock_fini); 553 554 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); 555 MODULE_LICENSE("GPL"); 556 MODULE_AUTHOR("Michal Ludvig"); 557 558 MODULE_ALIAS_CRYPTO("sha1-all"); 559 MODULE_ALIAS_CRYPTO("sha256-all"); 560 MODULE_ALIAS_CRYPTO("sha1-padlock"); 561 MODULE_ALIAS_CRYPTO("sha256-padlock"); 562