xref: /openbmc/linux/drivers/crypto/padlock-aes.c (revision 7dd65feb)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  */
9 
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/percpu.h>
19 #include <linux/smp.h>
20 #include <asm/byteorder.h>
21 #include <asm/processor.h>
22 #include <asm/i387.h>
23 #include "padlock.h"
24 
25 /*
26  * Number of data blocks actually fetched for each xcrypt insn.
27  * Processors with prefetch errata will fetch extra blocks.
28  */
29 static unsigned int ecb_fetch_blocks = 2;
30 #define MAX_ECB_FETCH_BLOCKS (8)
31 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
32 
33 static unsigned int cbc_fetch_blocks = 1;
34 #define MAX_CBC_FETCH_BLOCKS (4)
35 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
36 
37 /* Control word. */
38 struct cword {
39 	unsigned int __attribute__ ((__packed__))
40 		rounds:4,
41 		algo:3,
42 		keygen:1,
43 		interm:1,
44 		encdec:1,
45 		ksize:2;
46 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
47 
48 /* Whenever making any changes to the following
49  * structure *make sure* you keep E, d_data
50  * and cword aligned on 16 Bytes boundaries and
51  * the Hardware can access 16 * 16 bytes of E and d_data
52  * (only the first 15 * 16 bytes matter but the HW reads
53  * more).
54  */
55 struct aes_ctx {
56 	u32 E[AES_MAX_KEYLENGTH_U32]
57 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
58 	u32 d_data[AES_MAX_KEYLENGTH_U32]
59 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 	struct {
61 		struct cword encrypt;
62 		struct cword decrypt;
63 	} cword;
64 	u32 *D;
65 };
66 
67 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
68 
69 /* Tells whether the ACE is capable to generate
70    the extended key for a given key_len. */
71 static inline int
72 aes_hw_extkey_available(uint8_t key_len)
73 {
74 	/* TODO: We should check the actual CPU model/stepping
75 	         as it's possible that the capability will be
76 	         added in the next CPU revisions. */
77 	if (key_len == 16)
78 		return 1;
79 	return 0;
80 }
81 
82 static inline struct aes_ctx *aes_ctx_common(void *ctx)
83 {
84 	unsigned long addr = (unsigned long)ctx;
85 	unsigned long align = PADLOCK_ALIGNMENT;
86 
87 	if (align <= crypto_tfm_ctx_alignment())
88 		align = 1;
89 	return (struct aes_ctx *)ALIGN(addr, align);
90 }
91 
92 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
93 {
94 	return aes_ctx_common(crypto_tfm_ctx(tfm));
95 }
96 
97 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
98 {
99 	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
100 }
101 
102 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
103 		       unsigned int key_len)
104 {
105 	struct aes_ctx *ctx = aes_ctx(tfm);
106 	const __le32 *key = (const __le32 *)in_key;
107 	u32 *flags = &tfm->crt_flags;
108 	struct crypto_aes_ctx gen_aes;
109 	int cpu;
110 
111 	if (key_len % 8) {
112 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
113 		return -EINVAL;
114 	}
115 
116 	/*
117 	 * If the hardware is capable of generating the extended key
118 	 * itself we must supply the plain key for both encryption
119 	 * and decryption.
120 	 */
121 	ctx->D = ctx->E;
122 
123 	ctx->E[0] = le32_to_cpu(key[0]);
124 	ctx->E[1] = le32_to_cpu(key[1]);
125 	ctx->E[2] = le32_to_cpu(key[2]);
126 	ctx->E[3] = le32_to_cpu(key[3]);
127 
128 	/* Prepare control words. */
129 	memset(&ctx->cword, 0, sizeof(ctx->cword));
130 
131 	ctx->cword.decrypt.encdec = 1;
132 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
133 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
134 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
135 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
136 
137 	/* Don't generate extended keys if the hardware can do it. */
138 	if (aes_hw_extkey_available(key_len))
139 		goto ok;
140 
141 	ctx->D = ctx->d_data;
142 	ctx->cword.encrypt.keygen = 1;
143 	ctx->cword.decrypt.keygen = 1;
144 
145 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
146 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
147 		return -EINVAL;
148 	}
149 
150 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152 
153 ok:
154 	for_each_online_cpu(cpu)
155 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157 			per_cpu(paes_last_cword, cpu) = NULL;
158 
159 	return 0;
160 }
161 
162 /* ====== Encryption/decryption routines ====== */
163 
164 /* These are the real call to PadLock. */
165 static inline void padlock_reset_key(struct cword *cword)
166 {
167 	int cpu = raw_smp_processor_id();
168 
169 	if (cword != per_cpu(paes_last_cword, cpu))
170 #ifndef CONFIG_X86_64
171 		asm volatile ("pushfl; popfl");
172 #else
173 		asm volatile ("pushfq; popfq");
174 #endif
175 }
176 
177 static inline void padlock_store_cword(struct cword *cword)
178 {
179 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
180 }
181 
182 /*
183  * While the padlock instructions don't use FP/SSE registers, they
184  * generate a spurious DNA fault when cr0.ts is '1'. These instructions
185  * should be used only inside the irq_ts_save/restore() context
186  */
187 
188 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
189 				  struct cword *control_word, int count)
190 {
191 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
192 		      : "+S"(input), "+D"(output)
193 		      : "d"(control_word), "b"(key), "c"(count));
194 }
195 
196 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
197 				 u8 *iv, struct cword *control_word, int count)
198 {
199 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
200 		      : "+S" (input), "+D" (output), "+a" (iv)
201 		      : "d" (control_word), "b" (key), "c" (count));
202 	return iv;
203 }
204 
205 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
206 			   struct cword *cword, int count)
207 {
208 	/*
209 	 * Padlock prefetches extra data so we must provide mapped input buffers.
210 	 * Assume there are at least 16 bytes of stack already in use.
211 	 */
212 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
213 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
214 
215 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
216 	rep_xcrypt_ecb(tmp, out, key, cword, count);
217 }
218 
219 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
220 			   u8 *iv, struct cword *cword, int count)
221 {
222 	/*
223 	 * Padlock prefetches extra data so we must provide mapped input buffers.
224 	 * Assume there are at least 16 bytes of stack already in use.
225 	 */
226 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
227 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
228 
229 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
230 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
231 }
232 
233 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
234 			     struct cword *cword, int count)
235 {
236 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
237 	 * We could avoid some copying here but it's probably not worth it.
238 	 */
239 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
240 		ecb_crypt_copy(in, out, key, cword, count);
241 		return;
242 	}
243 
244 	rep_xcrypt_ecb(in, out, key, cword, count);
245 }
246 
247 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
248 			    u8 *iv, struct cword *cword, int count)
249 {
250 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
251 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
252 		return cbc_crypt_copy(in, out, key, iv, cword, count);
253 
254 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
255 }
256 
257 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
258 				      void *control_word, u32 count)
259 {
260 	u32 initial = count & (ecb_fetch_blocks - 1);
261 
262 	if (count < ecb_fetch_blocks) {
263 		ecb_crypt(input, output, key, control_word, count);
264 		return;
265 	}
266 
267 	if (initial)
268 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
269 			      : "+S"(input), "+D"(output)
270 			      : "d"(control_word), "b"(key), "c"(initial));
271 
272 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
273 		      : "+S"(input), "+D"(output)
274 		      : "d"(control_word), "b"(key), "c"(count - initial));
275 }
276 
277 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
278 				     u8 *iv, void *control_word, u32 count)
279 {
280 	u32 initial = count & (cbc_fetch_blocks - 1);
281 
282 	if (count < cbc_fetch_blocks)
283 		return cbc_crypt(input, output, key, iv, control_word, count);
284 
285 	if (initial)
286 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
287 			      : "+S" (input), "+D" (output), "+a" (iv)
288 			      : "d" (control_word), "b" (key), "c" (count));
289 
290 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
291 		      : "+S" (input), "+D" (output), "+a" (iv)
292 		      : "d" (control_word), "b" (key), "c" (count-initial));
293 	return iv;
294 }
295 
296 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
297 {
298 	struct aes_ctx *ctx = aes_ctx(tfm);
299 	int ts_state;
300 
301 	padlock_reset_key(&ctx->cword.encrypt);
302 	ts_state = irq_ts_save();
303 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
304 	irq_ts_restore(ts_state);
305 	padlock_store_cword(&ctx->cword.encrypt);
306 }
307 
308 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
309 {
310 	struct aes_ctx *ctx = aes_ctx(tfm);
311 	int ts_state;
312 
313 	padlock_reset_key(&ctx->cword.encrypt);
314 	ts_state = irq_ts_save();
315 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
316 	irq_ts_restore(ts_state);
317 	padlock_store_cword(&ctx->cword.encrypt);
318 }
319 
320 static struct crypto_alg aes_alg = {
321 	.cra_name		=	"aes",
322 	.cra_driver_name	=	"aes-padlock",
323 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
324 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
325 	.cra_blocksize		=	AES_BLOCK_SIZE,
326 	.cra_ctxsize		=	sizeof(struct aes_ctx),
327 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
328 	.cra_module		=	THIS_MODULE,
329 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
330 	.cra_u			=	{
331 		.cipher = {
332 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
333 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
334 			.cia_setkey	   	= 	aes_set_key,
335 			.cia_encrypt	 	=	aes_encrypt,
336 			.cia_decrypt	  	=	aes_decrypt,
337 		}
338 	}
339 };
340 
341 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
342 			   struct scatterlist *dst, struct scatterlist *src,
343 			   unsigned int nbytes)
344 {
345 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
346 	struct blkcipher_walk walk;
347 	int err;
348 	int ts_state;
349 
350 	padlock_reset_key(&ctx->cword.encrypt);
351 
352 	blkcipher_walk_init(&walk, dst, src, nbytes);
353 	err = blkcipher_walk_virt(desc, &walk);
354 
355 	ts_state = irq_ts_save();
356 	while ((nbytes = walk.nbytes)) {
357 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358 				   ctx->E, &ctx->cword.encrypt,
359 				   nbytes / AES_BLOCK_SIZE);
360 		nbytes &= AES_BLOCK_SIZE - 1;
361 		err = blkcipher_walk_done(desc, &walk, nbytes);
362 	}
363 	irq_ts_restore(ts_state);
364 
365 	padlock_store_cword(&ctx->cword.encrypt);
366 
367 	return err;
368 }
369 
370 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
371 			   struct scatterlist *dst, struct scatterlist *src,
372 			   unsigned int nbytes)
373 {
374 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
375 	struct blkcipher_walk walk;
376 	int err;
377 	int ts_state;
378 
379 	padlock_reset_key(&ctx->cword.decrypt);
380 
381 	blkcipher_walk_init(&walk, dst, src, nbytes);
382 	err = blkcipher_walk_virt(desc, &walk);
383 
384 	ts_state = irq_ts_save();
385 	while ((nbytes = walk.nbytes)) {
386 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
387 				   ctx->D, &ctx->cword.decrypt,
388 				   nbytes / AES_BLOCK_SIZE);
389 		nbytes &= AES_BLOCK_SIZE - 1;
390 		err = blkcipher_walk_done(desc, &walk, nbytes);
391 	}
392 	irq_ts_restore(ts_state);
393 
394 	padlock_store_cword(&ctx->cword.encrypt);
395 
396 	return err;
397 }
398 
399 static struct crypto_alg ecb_aes_alg = {
400 	.cra_name		=	"ecb(aes)",
401 	.cra_driver_name	=	"ecb-aes-padlock",
402 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
403 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
404 	.cra_blocksize		=	AES_BLOCK_SIZE,
405 	.cra_ctxsize		=	sizeof(struct aes_ctx),
406 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
407 	.cra_type		=	&crypto_blkcipher_type,
408 	.cra_module		=	THIS_MODULE,
409 	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
410 	.cra_u			=	{
411 		.blkcipher = {
412 			.min_keysize		=	AES_MIN_KEY_SIZE,
413 			.max_keysize		=	AES_MAX_KEY_SIZE,
414 			.setkey	   		= 	aes_set_key,
415 			.encrypt		=	ecb_aes_encrypt,
416 			.decrypt		=	ecb_aes_decrypt,
417 		}
418 	}
419 };
420 
421 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
422 			   struct scatterlist *dst, struct scatterlist *src,
423 			   unsigned int nbytes)
424 {
425 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
426 	struct blkcipher_walk walk;
427 	int err;
428 	int ts_state;
429 
430 	padlock_reset_key(&ctx->cword.encrypt);
431 
432 	blkcipher_walk_init(&walk, dst, src, nbytes);
433 	err = blkcipher_walk_virt(desc, &walk);
434 
435 	ts_state = irq_ts_save();
436 	while ((nbytes = walk.nbytes)) {
437 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
438 					    walk.dst.virt.addr, ctx->E,
439 					    walk.iv, &ctx->cword.encrypt,
440 					    nbytes / AES_BLOCK_SIZE);
441 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
442 		nbytes &= AES_BLOCK_SIZE - 1;
443 		err = blkcipher_walk_done(desc, &walk, nbytes);
444 	}
445 	irq_ts_restore(ts_state);
446 
447 	padlock_store_cword(&ctx->cword.decrypt);
448 
449 	return err;
450 }
451 
452 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
453 			   struct scatterlist *dst, struct scatterlist *src,
454 			   unsigned int nbytes)
455 {
456 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
457 	struct blkcipher_walk walk;
458 	int err;
459 	int ts_state;
460 
461 	padlock_reset_key(&ctx->cword.encrypt);
462 
463 	blkcipher_walk_init(&walk, dst, src, nbytes);
464 	err = blkcipher_walk_virt(desc, &walk);
465 
466 	ts_state = irq_ts_save();
467 	while ((nbytes = walk.nbytes)) {
468 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
469 				   ctx->D, walk.iv, &ctx->cword.decrypt,
470 				   nbytes / AES_BLOCK_SIZE);
471 		nbytes &= AES_BLOCK_SIZE - 1;
472 		err = blkcipher_walk_done(desc, &walk, nbytes);
473 	}
474 
475 	irq_ts_restore(ts_state);
476 
477 	padlock_store_cword(&ctx->cword.encrypt);
478 
479 	return err;
480 }
481 
482 static struct crypto_alg cbc_aes_alg = {
483 	.cra_name		=	"cbc(aes)",
484 	.cra_driver_name	=	"cbc-aes-padlock",
485 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
486 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
487 	.cra_blocksize		=	AES_BLOCK_SIZE,
488 	.cra_ctxsize		=	sizeof(struct aes_ctx),
489 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
490 	.cra_type		=	&crypto_blkcipher_type,
491 	.cra_module		=	THIS_MODULE,
492 	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
493 	.cra_u			=	{
494 		.blkcipher = {
495 			.min_keysize		=	AES_MIN_KEY_SIZE,
496 			.max_keysize		=	AES_MAX_KEY_SIZE,
497 			.ivsize			=	AES_BLOCK_SIZE,
498 			.setkey	   		= 	aes_set_key,
499 			.encrypt		=	cbc_aes_encrypt,
500 			.decrypt		=	cbc_aes_decrypt,
501 		}
502 	}
503 };
504 
505 static int __init padlock_init(void)
506 {
507 	int ret;
508 	struct cpuinfo_x86 *c = &cpu_data(0);
509 
510 	if (!cpu_has_xcrypt) {
511 		printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
512 		return -ENODEV;
513 	}
514 
515 	if (!cpu_has_xcrypt_enabled) {
516 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
517 		return -ENODEV;
518 	}
519 
520 	if ((ret = crypto_register_alg(&aes_alg)))
521 		goto aes_err;
522 
523 	if ((ret = crypto_register_alg(&ecb_aes_alg)))
524 		goto ecb_aes_err;
525 
526 	if ((ret = crypto_register_alg(&cbc_aes_alg)))
527 		goto cbc_aes_err;
528 
529 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
530 
531 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
532 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
533 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
534 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
535 	}
536 
537 out:
538 	return ret;
539 
540 cbc_aes_err:
541 	crypto_unregister_alg(&ecb_aes_alg);
542 ecb_aes_err:
543 	crypto_unregister_alg(&aes_alg);
544 aes_err:
545 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
546 	goto out;
547 }
548 
549 static void __exit padlock_fini(void)
550 {
551 	crypto_unregister_alg(&cbc_aes_alg);
552 	crypto_unregister_alg(&ecb_aes_alg);
553 	crypto_unregister_alg(&aes_alg);
554 }
555 
556 module_init(padlock_init);
557 module_exit(padlock_fini);
558 
559 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
560 MODULE_LICENSE("GPL");
561 MODULE_AUTHOR("Michal Ludvig");
562 
563 MODULE_ALIAS("aes");
564