xref: /openbmc/linux/drivers/crypto/padlock-aes.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for VIA PadLock hardware crypto engine.
6  *
7  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
8  *
9  */
10 
11 #include <crypto/algapi.h>
12 #include <crypto/aes.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/padlock.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/smp.h>
23 #include <linux/slab.h>
24 #include <asm/cpu_device_id.h>
25 #include <asm/byteorder.h>
26 #include <asm/processor.h>
27 #include <asm/fpu/api.h>
28 
29 /*
30  * Number of data blocks actually fetched for each xcrypt insn.
31  * Processors with prefetch errata will fetch extra blocks.
32  */
33 static unsigned int ecb_fetch_blocks = 2;
34 #define MAX_ECB_FETCH_BLOCKS (8)
35 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
36 
37 static unsigned int cbc_fetch_blocks = 1;
38 #define MAX_CBC_FETCH_BLOCKS (4)
39 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
40 
41 /* Control word. */
42 struct cword {
43 	unsigned int __attribute__ ((__packed__))
44 		rounds:4,
45 		algo:3,
46 		keygen:1,
47 		interm:1,
48 		encdec:1,
49 		ksize:2;
50 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
51 
52 /* Whenever making any changes to the following
53  * structure *make sure* you keep E, d_data
54  * and cword aligned on 16 Bytes boundaries and
55  * the Hardware can access 16 * 16 bytes of E and d_data
56  * (only the first 15 * 16 bytes matter but the HW reads
57  * more).
58  */
59 struct aes_ctx {
60 	u32 E[AES_MAX_KEYLENGTH_U32]
61 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 	u32 d_data[AES_MAX_KEYLENGTH_U32]
63 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
64 	struct {
65 		struct cword encrypt;
66 		struct cword decrypt;
67 	} cword;
68 	u32 *D;
69 };
70 
71 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
72 
73 /* Tells whether the ACE is capable to generate
74    the extended key for a given key_len. */
75 static inline int
76 aes_hw_extkey_available(uint8_t key_len)
77 {
78 	/* TODO: We should check the actual CPU model/stepping
79 	         as it's possible that the capability will be
80 	         added in the next CPU revisions. */
81 	if (key_len == 16)
82 		return 1;
83 	return 0;
84 }
85 
86 static inline struct aes_ctx *aes_ctx_common(void *ctx)
87 {
88 	unsigned long addr = (unsigned long)ctx;
89 	unsigned long align = PADLOCK_ALIGNMENT;
90 
91 	if (align <= crypto_tfm_ctx_alignment())
92 		align = 1;
93 	return (struct aes_ctx *)ALIGN(addr, align);
94 }
95 
96 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
97 {
98 	return aes_ctx_common(crypto_tfm_ctx(tfm));
99 }
100 
101 static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
102 {
103 	return aes_ctx_common(crypto_skcipher_ctx(tfm));
104 }
105 
106 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
107 		       unsigned int key_len)
108 {
109 	struct aes_ctx *ctx = aes_ctx(tfm);
110 	const __le32 *key = (const __le32 *)in_key;
111 	u32 *flags = &tfm->crt_flags;
112 	struct crypto_aes_ctx gen_aes;
113 	int cpu;
114 
115 	if (key_len % 8) {
116 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
117 		return -EINVAL;
118 	}
119 
120 	/*
121 	 * If the hardware is capable of generating the extended key
122 	 * itself we must supply the plain key for both encryption
123 	 * and decryption.
124 	 */
125 	ctx->D = ctx->E;
126 
127 	ctx->E[0] = le32_to_cpu(key[0]);
128 	ctx->E[1] = le32_to_cpu(key[1]);
129 	ctx->E[2] = le32_to_cpu(key[2]);
130 	ctx->E[3] = le32_to_cpu(key[3]);
131 
132 	/* Prepare control words. */
133 	memset(&ctx->cword, 0, sizeof(ctx->cword));
134 
135 	ctx->cword.decrypt.encdec = 1;
136 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
137 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
138 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
139 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
140 
141 	/* Don't generate extended keys if the hardware can do it. */
142 	if (aes_hw_extkey_available(key_len))
143 		goto ok;
144 
145 	ctx->D = ctx->d_data;
146 	ctx->cword.encrypt.keygen = 1;
147 	ctx->cword.decrypt.keygen = 1;
148 
149 	if (aes_expandkey(&gen_aes, in_key, key_len)) {
150 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
151 		return -EINVAL;
152 	}
153 
154 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
155 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
156 
157 ok:
158 	for_each_online_cpu(cpu)
159 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
160 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
161 			per_cpu(paes_last_cword, cpu) = NULL;
162 
163 	return 0;
164 }
165 
166 static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
167 				unsigned int key_len)
168 {
169 	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
170 }
171 
172 /* ====== Encryption/decryption routines ====== */
173 
174 /* These are the real call to PadLock. */
175 static inline void padlock_reset_key(struct cword *cword)
176 {
177 	int cpu = raw_smp_processor_id();
178 
179 	if (cword != per_cpu(paes_last_cword, cpu))
180 #ifndef CONFIG_X86_64
181 		asm volatile ("pushfl; popfl");
182 #else
183 		asm volatile ("pushfq; popfq");
184 #endif
185 }
186 
187 static inline void padlock_store_cword(struct cword *cword)
188 {
189 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
190 }
191 
192 /*
193  * While the padlock instructions don't use FP/SSE registers, they
194  * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
195  * the kernel doesn't use CR0.TS.
196  */
197 
198 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
199 				  struct cword *control_word, int count)
200 {
201 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
202 		      : "+S"(input), "+D"(output)
203 		      : "d"(control_word), "b"(key), "c"(count));
204 }
205 
206 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
207 				 u8 *iv, struct cword *control_word, int count)
208 {
209 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
210 		      : "+S" (input), "+D" (output), "+a" (iv)
211 		      : "d" (control_word), "b" (key), "c" (count));
212 	return iv;
213 }
214 
215 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
216 			   struct cword *cword, int count)
217 {
218 	/*
219 	 * Padlock prefetches extra data so we must provide mapped input buffers.
220 	 * Assume there are at least 16 bytes of stack already in use.
221 	 */
222 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
223 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
224 
225 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
226 	rep_xcrypt_ecb(tmp, out, key, cword, count);
227 }
228 
229 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
230 			   u8 *iv, struct cword *cword, int count)
231 {
232 	/*
233 	 * Padlock prefetches extra data so we must provide mapped input buffers.
234 	 * Assume there are at least 16 bytes of stack already in use.
235 	 */
236 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
237 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
238 
239 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
240 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
241 }
242 
243 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
244 			     struct cword *cword, int count)
245 {
246 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
247 	 * We could avoid some copying here but it's probably not worth it.
248 	 */
249 	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
250 		ecb_crypt_copy(in, out, key, cword, count);
251 		return;
252 	}
253 
254 	rep_xcrypt_ecb(in, out, key, cword, count);
255 }
256 
257 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
258 			    u8 *iv, struct cword *cword, int count)
259 {
260 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
261 	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
262 		return cbc_crypt_copy(in, out, key, iv, cword, count);
263 
264 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
265 }
266 
267 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
268 				      void *control_word, u32 count)
269 {
270 	u32 initial = count & (ecb_fetch_blocks - 1);
271 
272 	if (count < ecb_fetch_blocks) {
273 		ecb_crypt(input, output, key, control_word, count);
274 		return;
275 	}
276 
277 	count -= initial;
278 
279 	if (initial)
280 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
281 			      : "+S"(input), "+D"(output)
282 			      : "d"(control_word), "b"(key), "c"(initial));
283 
284 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
285 		      : "+S"(input), "+D"(output)
286 		      : "d"(control_word), "b"(key), "c"(count));
287 }
288 
289 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
290 				     u8 *iv, void *control_word, u32 count)
291 {
292 	u32 initial = count & (cbc_fetch_blocks - 1);
293 
294 	if (count < cbc_fetch_blocks)
295 		return cbc_crypt(input, output, key, iv, control_word, count);
296 
297 	count -= initial;
298 
299 	if (initial)
300 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
301 			      : "+S" (input), "+D" (output), "+a" (iv)
302 			      : "d" (control_word), "b" (key), "c" (initial));
303 
304 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
305 		      : "+S" (input), "+D" (output), "+a" (iv)
306 		      : "d" (control_word), "b" (key), "c" (count));
307 	return iv;
308 }
309 
310 static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
311 {
312 	struct aes_ctx *ctx = aes_ctx(tfm);
313 
314 	padlock_reset_key(&ctx->cword.encrypt);
315 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
316 	padlock_store_cword(&ctx->cword.encrypt);
317 }
318 
319 static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
320 {
321 	struct aes_ctx *ctx = aes_ctx(tfm);
322 
323 	padlock_reset_key(&ctx->cword.encrypt);
324 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
325 	padlock_store_cword(&ctx->cword.encrypt);
326 }
327 
328 static struct crypto_alg aes_alg = {
329 	.cra_name		=	"aes",
330 	.cra_driver_name	=	"aes-padlock",
331 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
332 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
333 	.cra_blocksize		=	AES_BLOCK_SIZE,
334 	.cra_ctxsize		=	sizeof(struct aes_ctx),
335 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
336 	.cra_module		=	THIS_MODULE,
337 	.cra_u			=	{
338 		.cipher = {
339 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
340 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
341 			.cia_setkey	   	= 	aes_set_key,
342 			.cia_encrypt	 	=	padlock_aes_encrypt,
343 			.cia_decrypt	  	=	padlock_aes_decrypt,
344 		}
345 	}
346 };
347 
348 static int ecb_aes_encrypt(struct skcipher_request *req)
349 {
350 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
351 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
352 	struct skcipher_walk walk;
353 	unsigned int nbytes;
354 	int err;
355 
356 	padlock_reset_key(&ctx->cword.encrypt);
357 
358 	err = skcipher_walk_virt(&walk, req, false);
359 
360 	while ((nbytes = walk.nbytes) != 0) {
361 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
362 				   ctx->E, &ctx->cword.encrypt,
363 				   nbytes / AES_BLOCK_SIZE);
364 		nbytes &= AES_BLOCK_SIZE - 1;
365 		err = skcipher_walk_done(&walk, nbytes);
366 	}
367 
368 	padlock_store_cword(&ctx->cword.encrypt);
369 
370 	return err;
371 }
372 
373 static int ecb_aes_decrypt(struct skcipher_request *req)
374 {
375 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
376 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
377 	struct skcipher_walk walk;
378 	unsigned int nbytes;
379 	int err;
380 
381 	padlock_reset_key(&ctx->cword.decrypt);
382 
383 	err = skcipher_walk_virt(&walk, req, false);
384 
385 	while ((nbytes = walk.nbytes) != 0) {
386 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
387 				   ctx->D, &ctx->cword.decrypt,
388 				   nbytes / AES_BLOCK_SIZE);
389 		nbytes &= AES_BLOCK_SIZE - 1;
390 		err = skcipher_walk_done(&walk, nbytes);
391 	}
392 
393 	padlock_store_cword(&ctx->cword.encrypt);
394 
395 	return err;
396 }
397 
398 static struct skcipher_alg ecb_aes_alg = {
399 	.base.cra_name		=	"ecb(aes)",
400 	.base.cra_driver_name	=	"ecb-aes-padlock",
401 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
402 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
403 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
404 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
405 	.base.cra_module	=	THIS_MODULE,
406 	.min_keysize		=	AES_MIN_KEY_SIZE,
407 	.max_keysize		=	AES_MAX_KEY_SIZE,
408 	.setkey			=	aes_set_key_skcipher,
409 	.encrypt		=	ecb_aes_encrypt,
410 	.decrypt		=	ecb_aes_decrypt,
411 };
412 
413 static int cbc_aes_encrypt(struct skcipher_request *req)
414 {
415 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
416 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
417 	struct skcipher_walk walk;
418 	unsigned int nbytes;
419 	int err;
420 
421 	padlock_reset_key(&ctx->cword.encrypt);
422 
423 	err = skcipher_walk_virt(&walk, req, false);
424 
425 	while ((nbytes = walk.nbytes) != 0) {
426 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
427 					    walk.dst.virt.addr, ctx->E,
428 					    walk.iv, &ctx->cword.encrypt,
429 					    nbytes / AES_BLOCK_SIZE);
430 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
431 		nbytes &= AES_BLOCK_SIZE - 1;
432 		err = skcipher_walk_done(&walk, nbytes);
433 	}
434 
435 	padlock_store_cword(&ctx->cword.decrypt);
436 
437 	return err;
438 }
439 
440 static int cbc_aes_decrypt(struct skcipher_request *req)
441 {
442 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
443 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
444 	struct skcipher_walk walk;
445 	unsigned int nbytes;
446 	int err;
447 
448 	padlock_reset_key(&ctx->cword.encrypt);
449 
450 	err = skcipher_walk_virt(&walk, req, false);
451 
452 	while ((nbytes = walk.nbytes) != 0) {
453 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
454 				   ctx->D, walk.iv, &ctx->cword.decrypt,
455 				   nbytes / AES_BLOCK_SIZE);
456 		nbytes &= AES_BLOCK_SIZE - 1;
457 		err = skcipher_walk_done(&walk, nbytes);
458 	}
459 
460 	padlock_store_cword(&ctx->cword.encrypt);
461 
462 	return err;
463 }
464 
465 static struct skcipher_alg cbc_aes_alg = {
466 	.base.cra_name		=	"cbc(aes)",
467 	.base.cra_driver_name	=	"cbc-aes-padlock",
468 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
469 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
470 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
471 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
472 	.base.cra_module	=	THIS_MODULE,
473 	.min_keysize		=	AES_MIN_KEY_SIZE,
474 	.max_keysize		=	AES_MAX_KEY_SIZE,
475 	.ivsize			=	AES_BLOCK_SIZE,
476 	.setkey			=	aes_set_key_skcipher,
477 	.encrypt		=	cbc_aes_encrypt,
478 	.decrypt		=	cbc_aes_decrypt,
479 };
480 
481 static const struct x86_cpu_id padlock_cpu_id[] = {
482 	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
483 	{}
484 };
485 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
486 
487 static int __init padlock_init(void)
488 {
489 	int ret;
490 	struct cpuinfo_x86 *c = &cpu_data(0);
491 
492 	if (!x86_match_cpu(padlock_cpu_id))
493 		return -ENODEV;
494 
495 	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
496 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
497 		return -ENODEV;
498 	}
499 
500 	if ((ret = crypto_register_alg(&aes_alg)) != 0)
501 		goto aes_err;
502 
503 	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
504 		goto ecb_aes_err;
505 
506 	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
507 		goto cbc_aes_err;
508 
509 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
510 
511 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
512 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
513 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
514 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
515 	}
516 
517 out:
518 	return ret;
519 
520 cbc_aes_err:
521 	crypto_unregister_skcipher(&ecb_aes_alg);
522 ecb_aes_err:
523 	crypto_unregister_alg(&aes_alg);
524 aes_err:
525 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
526 	goto out;
527 }
528 
529 static void __exit padlock_fini(void)
530 {
531 	crypto_unregister_skcipher(&cbc_aes_alg);
532 	crypto_unregister_skcipher(&ecb_aes_alg);
533 	crypto_unregister_alg(&aes_alg);
534 }
535 
536 module_init(padlock_init);
537 module_exit(padlock_fini);
538 
539 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
540 MODULE_LICENSE("GPL");
541 MODULE_AUTHOR("Michal Ludvig");
542 
543 MODULE_ALIAS_CRYPTO("aes");
544