xref: /openbmc/linux/drivers/crypto/padlock-aes.c (revision 78c99ba1)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  */
9 
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/percpu.h>
19 #include <linux/smp.h>
20 #include <asm/byteorder.h>
21 #include <asm/i387.h>
22 #include "padlock.h"
23 
24 /* Control word. */
25 struct cword {
26 	unsigned int __attribute__ ((__packed__))
27 		rounds:4,
28 		algo:3,
29 		keygen:1,
30 		interm:1,
31 		encdec:1,
32 		ksize:2;
33 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
34 
35 /* Whenever making any changes to the following
36  * structure *make sure* you keep E, d_data
37  * and cword aligned on 16 Bytes boundaries and
38  * the Hardware can access 16 * 16 bytes of E and d_data
39  * (only the first 15 * 16 bytes matter but the HW reads
40  * more).
41  */
42 struct aes_ctx {
43 	u32 E[AES_MAX_KEYLENGTH_U32]
44 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
45 	u32 d_data[AES_MAX_KEYLENGTH_U32]
46 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
47 	struct {
48 		struct cword encrypt;
49 		struct cword decrypt;
50 	} cword;
51 	u32 *D;
52 };
53 
54 static DEFINE_PER_CPU(struct cword *, last_cword);
55 
56 /* Tells whether the ACE is capable to generate
57    the extended key for a given key_len. */
58 static inline int
59 aes_hw_extkey_available(uint8_t key_len)
60 {
61 	/* TODO: We should check the actual CPU model/stepping
62 	         as it's possible that the capability will be
63 	         added in the next CPU revisions. */
64 	if (key_len == 16)
65 		return 1;
66 	return 0;
67 }
68 
69 static inline struct aes_ctx *aes_ctx_common(void *ctx)
70 {
71 	unsigned long addr = (unsigned long)ctx;
72 	unsigned long align = PADLOCK_ALIGNMENT;
73 
74 	if (align <= crypto_tfm_ctx_alignment())
75 		align = 1;
76 	return (struct aes_ctx *)ALIGN(addr, align);
77 }
78 
79 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
80 {
81 	return aes_ctx_common(crypto_tfm_ctx(tfm));
82 }
83 
84 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
85 {
86 	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
87 }
88 
89 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
90 		       unsigned int key_len)
91 {
92 	struct aes_ctx *ctx = aes_ctx(tfm);
93 	const __le32 *key = (const __le32 *)in_key;
94 	u32 *flags = &tfm->crt_flags;
95 	struct crypto_aes_ctx gen_aes;
96 	int cpu;
97 
98 	if (key_len % 8) {
99 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
100 		return -EINVAL;
101 	}
102 
103 	/*
104 	 * If the hardware is capable of generating the extended key
105 	 * itself we must supply the plain key for both encryption
106 	 * and decryption.
107 	 */
108 	ctx->D = ctx->E;
109 
110 	ctx->E[0] = le32_to_cpu(key[0]);
111 	ctx->E[1] = le32_to_cpu(key[1]);
112 	ctx->E[2] = le32_to_cpu(key[2]);
113 	ctx->E[3] = le32_to_cpu(key[3]);
114 
115 	/* Prepare control words. */
116 	memset(&ctx->cword, 0, sizeof(ctx->cword));
117 
118 	ctx->cword.decrypt.encdec = 1;
119 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
120 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
121 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
122 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
123 
124 	/* Don't generate extended keys if the hardware can do it. */
125 	if (aes_hw_extkey_available(key_len))
126 		goto ok;
127 
128 	ctx->D = ctx->d_data;
129 	ctx->cword.encrypt.keygen = 1;
130 	ctx->cword.decrypt.keygen = 1;
131 
132 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
133 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
134 		return -EINVAL;
135 	}
136 
137 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
138 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
139 
140 ok:
141 	for_each_online_cpu(cpu)
142 		if (&ctx->cword.encrypt == per_cpu(last_cword, cpu) ||
143 		    &ctx->cword.decrypt == per_cpu(last_cword, cpu))
144 			per_cpu(last_cword, cpu) = NULL;
145 
146 	return 0;
147 }
148 
149 /* ====== Encryption/decryption routines ====== */
150 
151 /* These are the real call to PadLock. */
152 static inline void padlock_reset_key(struct cword *cword)
153 {
154 	int cpu = raw_smp_processor_id();
155 
156 	if (cword != per_cpu(last_cword, cpu))
157 		asm volatile ("pushfl; popfl");
158 }
159 
160 static inline void padlock_store_cword(struct cword *cword)
161 {
162 	per_cpu(last_cword, raw_smp_processor_id()) = cword;
163 }
164 
165 /*
166  * While the padlock instructions don't use FP/SSE registers, they
167  * generate a spurious DNA fault when cr0.ts is '1'. These instructions
168  * should be used only inside the irq_ts_save/restore() context
169  */
170 
171 static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
172 				  struct cword *control_word)
173 {
174 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
175 		      : "+S"(input), "+D"(output)
176 		      : "d"(control_word), "b"(key), "c"(1));
177 }
178 
179 static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
180 {
181 	u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
182 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
183 
184 	memcpy(tmp, in, AES_BLOCK_SIZE);
185 	padlock_xcrypt(tmp, out, key, cword);
186 }
187 
188 static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
189 			     struct cword *cword)
190 {
191 	/* padlock_xcrypt requires at least two blocks of data. */
192 	if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
193 		       (PAGE_SIZE - 1)))) {
194 		aes_crypt_copy(in, out, key, cword);
195 		return;
196 	}
197 
198 	padlock_xcrypt(in, out, key, cword);
199 }
200 
201 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
202 				      void *control_word, u32 count)
203 {
204 	if (count == 1) {
205 		aes_crypt(input, output, key, control_word);
206 		return;
207 	}
208 
209 	asm volatile ("test $1, %%cl;"
210 		      "je 1f;"
211 		      "lea -1(%%ecx), %%eax;"
212 		      "mov $1, %%ecx;"
213 		      ".byte 0xf3,0x0f,0xa7,0xc8;"	/* rep xcryptecb */
214 		      "mov %%eax, %%ecx;"
215 		      "1:"
216 		      ".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
217 		      : "+S"(input), "+D"(output)
218 		      : "d"(control_word), "b"(key), "c"(count)
219 		      : "ax");
220 }
221 
222 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
223 				     u8 *iv, void *control_word, u32 count)
224 {
225 	/* rep xcryptcbc */
226 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
227 		      : "+S" (input), "+D" (output), "+a" (iv)
228 		      : "d" (control_word), "b" (key), "c" (count));
229 	return iv;
230 }
231 
232 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
233 {
234 	struct aes_ctx *ctx = aes_ctx(tfm);
235 	int ts_state;
236 
237 	padlock_reset_key(&ctx->cword.encrypt);
238 	ts_state = irq_ts_save();
239 	aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
240 	irq_ts_restore(ts_state);
241 	padlock_store_cword(&ctx->cword.encrypt);
242 }
243 
244 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
245 {
246 	struct aes_ctx *ctx = aes_ctx(tfm);
247 	int ts_state;
248 
249 	padlock_reset_key(&ctx->cword.encrypt);
250 	ts_state = irq_ts_save();
251 	aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
252 	irq_ts_restore(ts_state);
253 	padlock_store_cword(&ctx->cword.encrypt);
254 }
255 
256 static struct crypto_alg aes_alg = {
257 	.cra_name		=	"aes",
258 	.cra_driver_name	=	"aes-padlock",
259 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
260 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
261 	.cra_blocksize		=	AES_BLOCK_SIZE,
262 	.cra_ctxsize		=	sizeof(struct aes_ctx),
263 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
264 	.cra_module		=	THIS_MODULE,
265 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
266 	.cra_u			=	{
267 		.cipher = {
268 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
269 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
270 			.cia_setkey	   	= 	aes_set_key,
271 			.cia_encrypt	 	=	aes_encrypt,
272 			.cia_decrypt	  	=	aes_decrypt,
273 		}
274 	}
275 };
276 
277 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
278 			   struct scatterlist *dst, struct scatterlist *src,
279 			   unsigned int nbytes)
280 {
281 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
282 	struct blkcipher_walk walk;
283 	int err;
284 	int ts_state;
285 
286 	padlock_reset_key(&ctx->cword.encrypt);
287 
288 	blkcipher_walk_init(&walk, dst, src, nbytes);
289 	err = blkcipher_walk_virt(desc, &walk);
290 
291 	ts_state = irq_ts_save();
292 	while ((nbytes = walk.nbytes)) {
293 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
294 				   ctx->E, &ctx->cword.encrypt,
295 				   nbytes / AES_BLOCK_SIZE);
296 		nbytes &= AES_BLOCK_SIZE - 1;
297 		err = blkcipher_walk_done(desc, &walk, nbytes);
298 	}
299 	irq_ts_restore(ts_state);
300 
301 	padlock_store_cword(&ctx->cword.encrypt);
302 
303 	return err;
304 }
305 
306 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
307 			   struct scatterlist *dst, struct scatterlist *src,
308 			   unsigned int nbytes)
309 {
310 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
311 	struct blkcipher_walk walk;
312 	int err;
313 	int ts_state;
314 
315 	padlock_reset_key(&ctx->cword.decrypt);
316 
317 	blkcipher_walk_init(&walk, dst, src, nbytes);
318 	err = blkcipher_walk_virt(desc, &walk);
319 
320 	ts_state = irq_ts_save();
321 	while ((nbytes = walk.nbytes)) {
322 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
323 				   ctx->D, &ctx->cword.decrypt,
324 				   nbytes / AES_BLOCK_SIZE);
325 		nbytes &= AES_BLOCK_SIZE - 1;
326 		err = blkcipher_walk_done(desc, &walk, nbytes);
327 	}
328 	irq_ts_restore(ts_state);
329 
330 	padlock_store_cword(&ctx->cword.encrypt);
331 
332 	return err;
333 }
334 
335 static struct crypto_alg ecb_aes_alg = {
336 	.cra_name		=	"ecb(aes)",
337 	.cra_driver_name	=	"ecb-aes-padlock",
338 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
339 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
340 	.cra_blocksize		=	AES_BLOCK_SIZE,
341 	.cra_ctxsize		=	sizeof(struct aes_ctx),
342 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
343 	.cra_type		=	&crypto_blkcipher_type,
344 	.cra_module		=	THIS_MODULE,
345 	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
346 	.cra_u			=	{
347 		.blkcipher = {
348 			.min_keysize		=	AES_MIN_KEY_SIZE,
349 			.max_keysize		=	AES_MAX_KEY_SIZE,
350 			.setkey	   		= 	aes_set_key,
351 			.encrypt		=	ecb_aes_encrypt,
352 			.decrypt		=	ecb_aes_decrypt,
353 		}
354 	}
355 };
356 
357 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
358 			   struct scatterlist *dst, struct scatterlist *src,
359 			   unsigned int nbytes)
360 {
361 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
362 	struct blkcipher_walk walk;
363 	int err;
364 	int ts_state;
365 
366 	padlock_reset_key(&ctx->cword.encrypt);
367 
368 	blkcipher_walk_init(&walk, dst, src, nbytes);
369 	err = blkcipher_walk_virt(desc, &walk);
370 
371 	ts_state = irq_ts_save();
372 	while ((nbytes = walk.nbytes)) {
373 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
374 					    walk.dst.virt.addr, ctx->E,
375 					    walk.iv, &ctx->cword.encrypt,
376 					    nbytes / AES_BLOCK_SIZE);
377 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
378 		nbytes &= AES_BLOCK_SIZE - 1;
379 		err = blkcipher_walk_done(desc, &walk, nbytes);
380 	}
381 	irq_ts_restore(ts_state);
382 
383 	padlock_store_cword(&ctx->cword.decrypt);
384 
385 	return err;
386 }
387 
388 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
389 			   struct scatterlist *dst, struct scatterlist *src,
390 			   unsigned int nbytes)
391 {
392 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
393 	struct blkcipher_walk walk;
394 	int err;
395 	int ts_state;
396 
397 	padlock_reset_key(&ctx->cword.encrypt);
398 
399 	blkcipher_walk_init(&walk, dst, src, nbytes);
400 	err = blkcipher_walk_virt(desc, &walk);
401 
402 	ts_state = irq_ts_save();
403 	while ((nbytes = walk.nbytes)) {
404 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
405 				   ctx->D, walk.iv, &ctx->cword.decrypt,
406 				   nbytes / AES_BLOCK_SIZE);
407 		nbytes &= AES_BLOCK_SIZE - 1;
408 		err = blkcipher_walk_done(desc, &walk, nbytes);
409 	}
410 
411 	irq_ts_restore(ts_state);
412 
413 	padlock_store_cword(&ctx->cword.encrypt);
414 
415 	return err;
416 }
417 
418 static struct crypto_alg cbc_aes_alg = {
419 	.cra_name		=	"cbc(aes)",
420 	.cra_driver_name	=	"cbc-aes-padlock",
421 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
422 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
423 	.cra_blocksize		=	AES_BLOCK_SIZE,
424 	.cra_ctxsize		=	sizeof(struct aes_ctx),
425 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
426 	.cra_type		=	&crypto_blkcipher_type,
427 	.cra_module		=	THIS_MODULE,
428 	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
429 	.cra_u			=	{
430 		.blkcipher = {
431 			.min_keysize		=	AES_MIN_KEY_SIZE,
432 			.max_keysize		=	AES_MAX_KEY_SIZE,
433 			.ivsize			=	AES_BLOCK_SIZE,
434 			.setkey	   		= 	aes_set_key,
435 			.encrypt		=	cbc_aes_encrypt,
436 			.decrypt		=	cbc_aes_decrypt,
437 		}
438 	}
439 };
440 
441 static int __init padlock_init(void)
442 {
443 	int ret;
444 
445 	if (!cpu_has_xcrypt) {
446 		printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
447 		return -ENODEV;
448 	}
449 
450 	if (!cpu_has_xcrypt_enabled) {
451 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
452 		return -ENODEV;
453 	}
454 
455 	if ((ret = crypto_register_alg(&aes_alg)))
456 		goto aes_err;
457 
458 	if ((ret = crypto_register_alg(&ecb_aes_alg)))
459 		goto ecb_aes_err;
460 
461 	if ((ret = crypto_register_alg(&cbc_aes_alg)))
462 		goto cbc_aes_err;
463 
464 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
465 
466 out:
467 	return ret;
468 
469 cbc_aes_err:
470 	crypto_unregister_alg(&ecb_aes_alg);
471 ecb_aes_err:
472 	crypto_unregister_alg(&aes_alg);
473 aes_err:
474 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
475 	goto out;
476 }
477 
478 static void __exit padlock_fini(void)
479 {
480 	crypto_unregister_alg(&cbc_aes_alg);
481 	crypto_unregister_alg(&ecb_aes_alg);
482 	crypto_unregister_alg(&aes_alg);
483 }
484 
485 module_init(padlock_init);
486 module_exit(padlock_fini);
487 
488 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
489 MODULE_LICENSE("GPL");
490 MODULE_AUTHOR("Michal Ludvig");
491 
492 MODULE_ALIAS("aes");
493