1 /* 2 * Cryptographic API. 3 * 4 * Support for VIA PadLock hardware crypto engine. 5 * 6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> 7 * 8 */ 9 10 #include <crypto/algapi.h> 11 #include <crypto/aes.h> 12 #include <crypto/padlock.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/types.h> 16 #include <linux/errno.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/percpu.h> 20 #include <linux/smp.h> 21 #include <linux/slab.h> 22 #include <asm/cpu_device_id.h> 23 #include <asm/byteorder.h> 24 #include <asm/processor.h> 25 #include <asm/fpu/api.h> 26 27 /* 28 * Number of data blocks actually fetched for each xcrypt insn. 29 * Processors with prefetch errata will fetch extra blocks. 30 */ 31 static unsigned int ecb_fetch_blocks = 2; 32 #define MAX_ECB_FETCH_BLOCKS (8) 33 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) 34 35 static unsigned int cbc_fetch_blocks = 1; 36 #define MAX_CBC_FETCH_BLOCKS (4) 37 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) 38 39 /* Control word. */ 40 struct cword { 41 unsigned int __attribute__ ((__packed__)) 42 rounds:4, 43 algo:3, 44 keygen:1, 45 interm:1, 46 encdec:1, 47 ksize:2; 48 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 49 50 /* Whenever making any changes to the following 51 * structure *make sure* you keep E, d_data 52 * and cword aligned on 16 Bytes boundaries and 53 * the Hardware can access 16 * 16 bytes of E and d_data 54 * (only the first 15 * 16 bytes matter but the HW reads 55 * more). 56 */ 57 struct aes_ctx { 58 u32 E[AES_MAX_KEYLENGTH_U32] 59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 60 u32 d_data[AES_MAX_KEYLENGTH_U32] 61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 62 struct { 63 struct cword encrypt; 64 struct cword decrypt; 65 } cword; 66 u32 *D; 67 }; 68 69 static DEFINE_PER_CPU(struct cword *, paes_last_cword); 70 71 /* Tells whether the ACE is capable to generate 72 the extended key for a given key_len. */ 73 static inline int 74 aes_hw_extkey_available(uint8_t key_len) 75 { 76 /* TODO: We should check the actual CPU model/stepping 77 as it's possible that the capability will be 78 added in the next CPU revisions. */ 79 if (key_len == 16) 80 return 1; 81 return 0; 82 } 83 84 static inline struct aes_ctx *aes_ctx_common(void *ctx) 85 { 86 unsigned long addr = (unsigned long)ctx; 87 unsigned long align = PADLOCK_ALIGNMENT; 88 89 if (align <= crypto_tfm_ctx_alignment()) 90 align = 1; 91 return (struct aes_ctx *)ALIGN(addr, align); 92 } 93 94 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) 95 { 96 return aes_ctx_common(crypto_tfm_ctx(tfm)); 97 } 98 99 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm) 100 { 101 return aes_ctx_common(crypto_blkcipher_ctx(tfm)); 102 } 103 104 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, 105 unsigned int key_len) 106 { 107 struct aes_ctx *ctx = aes_ctx(tfm); 108 const __le32 *key = (const __le32 *)in_key; 109 u32 *flags = &tfm->crt_flags; 110 struct crypto_aes_ctx gen_aes; 111 int cpu; 112 113 if (key_len % 8) { 114 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 115 return -EINVAL; 116 } 117 118 /* 119 * If the hardware is capable of generating the extended key 120 * itself we must supply the plain key for both encryption 121 * and decryption. 122 */ 123 ctx->D = ctx->E; 124 125 ctx->E[0] = le32_to_cpu(key[0]); 126 ctx->E[1] = le32_to_cpu(key[1]); 127 ctx->E[2] = le32_to_cpu(key[2]); 128 ctx->E[3] = le32_to_cpu(key[3]); 129 130 /* Prepare control words. */ 131 memset(&ctx->cword, 0, sizeof(ctx->cword)); 132 133 ctx->cword.decrypt.encdec = 1; 134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; 135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; 136 ctx->cword.encrypt.ksize = (key_len - 16) / 8; 137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; 138 139 /* Don't generate extended keys if the hardware can do it. */ 140 if (aes_hw_extkey_available(key_len)) 141 goto ok; 142 143 ctx->D = ctx->d_data; 144 ctx->cword.encrypt.keygen = 1; 145 ctx->cword.decrypt.keygen = 1; 146 147 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) { 148 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 149 return -EINVAL; 150 } 151 152 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); 153 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); 154 155 ok: 156 for_each_online_cpu(cpu) 157 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || 158 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) 159 per_cpu(paes_last_cword, cpu) = NULL; 160 161 return 0; 162 } 163 164 /* ====== Encryption/decryption routines ====== */ 165 166 /* These are the real call to PadLock. */ 167 static inline void padlock_reset_key(struct cword *cword) 168 { 169 int cpu = raw_smp_processor_id(); 170 171 if (cword != per_cpu(paes_last_cword, cpu)) 172 #ifndef CONFIG_X86_64 173 asm volatile ("pushfl; popfl"); 174 #else 175 asm volatile ("pushfq; popfq"); 176 #endif 177 } 178 179 static inline void padlock_store_cword(struct cword *cword) 180 { 181 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; 182 } 183 184 /* 185 * While the padlock instructions don't use FP/SSE registers, they 186 * generate a spurious DNA fault when CR0.TS is '1'. Fortunately, 187 * the kernel doesn't use CR0.TS. 188 */ 189 190 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, 191 struct cword *control_word, int count) 192 { 193 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 194 : "+S"(input), "+D"(output) 195 : "d"(control_word), "b"(key), "c"(count)); 196 } 197 198 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, 199 u8 *iv, struct cword *control_word, int count) 200 { 201 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 202 : "+S" (input), "+D" (output), "+a" (iv) 203 : "d" (control_word), "b" (key), "c" (count)); 204 return iv; 205 } 206 207 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, 208 struct cword *cword, int count) 209 { 210 /* 211 * Padlock prefetches extra data so we must provide mapped input buffers. 212 * Assume there are at least 16 bytes of stack already in use. 213 */ 214 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; 215 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 216 217 memcpy(tmp, in, count * AES_BLOCK_SIZE); 218 rep_xcrypt_ecb(tmp, out, key, cword, count); 219 } 220 221 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, 222 u8 *iv, struct cword *cword, int count) 223 { 224 /* 225 * Padlock prefetches extra data so we must provide mapped input buffers. 226 * Assume there are at least 16 bytes of stack already in use. 227 */ 228 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; 229 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 230 231 memcpy(tmp, in, count * AES_BLOCK_SIZE); 232 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); 233 } 234 235 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, 236 struct cword *cword, int count) 237 { 238 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. 239 * We could avoid some copying here but it's probably not worth it. 240 */ 241 if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) { 242 ecb_crypt_copy(in, out, key, cword, count); 243 return; 244 } 245 246 rep_xcrypt_ecb(in, out, key, cword, count); 247 } 248 249 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, 250 u8 *iv, struct cword *cword, int count) 251 { 252 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ 253 if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE)) 254 return cbc_crypt_copy(in, out, key, iv, cword, count); 255 256 return rep_xcrypt_cbc(in, out, key, iv, cword, count); 257 } 258 259 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, 260 void *control_word, u32 count) 261 { 262 u32 initial = count & (ecb_fetch_blocks - 1); 263 264 if (count < ecb_fetch_blocks) { 265 ecb_crypt(input, output, key, control_word, count); 266 return; 267 } 268 269 count -= initial; 270 271 if (initial) 272 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 273 : "+S"(input), "+D"(output) 274 : "d"(control_word), "b"(key), "c"(initial)); 275 276 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 277 : "+S"(input), "+D"(output) 278 : "d"(control_word), "b"(key), "c"(count)); 279 } 280 281 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, 282 u8 *iv, void *control_word, u32 count) 283 { 284 u32 initial = count & (cbc_fetch_blocks - 1); 285 286 if (count < cbc_fetch_blocks) 287 return cbc_crypt(input, output, key, iv, control_word, count); 288 289 count -= initial; 290 291 if (initial) 292 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 293 : "+S" (input), "+D" (output), "+a" (iv) 294 : "d" (control_word), "b" (key), "c" (initial)); 295 296 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 297 : "+S" (input), "+D" (output), "+a" (iv) 298 : "d" (control_word), "b" (key), "c" (count)); 299 return iv; 300 } 301 302 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 303 { 304 struct aes_ctx *ctx = aes_ctx(tfm); 305 306 padlock_reset_key(&ctx->cword.encrypt); 307 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); 308 padlock_store_cword(&ctx->cword.encrypt); 309 } 310 311 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 312 { 313 struct aes_ctx *ctx = aes_ctx(tfm); 314 315 padlock_reset_key(&ctx->cword.encrypt); 316 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); 317 padlock_store_cword(&ctx->cword.encrypt); 318 } 319 320 static struct crypto_alg aes_alg = { 321 .cra_name = "aes", 322 .cra_driver_name = "aes-padlock", 323 .cra_priority = PADLOCK_CRA_PRIORITY, 324 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 325 .cra_blocksize = AES_BLOCK_SIZE, 326 .cra_ctxsize = sizeof(struct aes_ctx), 327 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 328 .cra_module = THIS_MODULE, 329 .cra_u = { 330 .cipher = { 331 .cia_min_keysize = AES_MIN_KEY_SIZE, 332 .cia_max_keysize = AES_MAX_KEY_SIZE, 333 .cia_setkey = aes_set_key, 334 .cia_encrypt = aes_encrypt, 335 .cia_decrypt = aes_decrypt, 336 } 337 } 338 }; 339 340 static int ecb_aes_encrypt(struct blkcipher_desc *desc, 341 struct scatterlist *dst, struct scatterlist *src, 342 unsigned int nbytes) 343 { 344 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 345 struct blkcipher_walk walk; 346 int err; 347 348 padlock_reset_key(&ctx->cword.encrypt); 349 350 blkcipher_walk_init(&walk, dst, src, nbytes); 351 err = blkcipher_walk_virt(desc, &walk); 352 353 while ((nbytes = walk.nbytes)) { 354 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, 355 ctx->E, &ctx->cword.encrypt, 356 nbytes / AES_BLOCK_SIZE); 357 nbytes &= AES_BLOCK_SIZE - 1; 358 err = blkcipher_walk_done(desc, &walk, nbytes); 359 } 360 361 padlock_store_cword(&ctx->cword.encrypt); 362 363 return err; 364 } 365 366 static int ecb_aes_decrypt(struct blkcipher_desc *desc, 367 struct scatterlist *dst, struct scatterlist *src, 368 unsigned int nbytes) 369 { 370 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 371 struct blkcipher_walk walk; 372 int err; 373 374 padlock_reset_key(&ctx->cword.decrypt); 375 376 blkcipher_walk_init(&walk, dst, src, nbytes); 377 err = blkcipher_walk_virt(desc, &walk); 378 379 while ((nbytes = walk.nbytes)) { 380 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, 381 ctx->D, &ctx->cword.decrypt, 382 nbytes / AES_BLOCK_SIZE); 383 nbytes &= AES_BLOCK_SIZE - 1; 384 err = blkcipher_walk_done(desc, &walk, nbytes); 385 } 386 387 padlock_store_cword(&ctx->cword.encrypt); 388 389 return err; 390 } 391 392 static struct crypto_alg ecb_aes_alg = { 393 .cra_name = "ecb(aes)", 394 .cra_driver_name = "ecb-aes-padlock", 395 .cra_priority = PADLOCK_COMPOSITE_PRIORITY, 396 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, 397 .cra_blocksize = AES_BLOCK_SIZE, 398 .cra_ctxsize = sizeof(struct aes_ctx), 399 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 400 .cra_type = &crypto_blkcipher_type, 401 .cra_module = THIS_MODULE, 402 .cra_u = { 403 .blkcipher = { 404 .min_keysize = AES_MIN_KEY_SIZE, 405 .max_keysize = AES_MAX_KEY_SIZE, 406 .setkey = aes_set_key, 407 .encrypt = ecb_aes_encrypt, 408 .decrypt = ecb_aes_decrypt, 409 } 410 } 411 }; 412 413 static int cbc_aes_encrypt(struct blkcipher_desc *desc, 414 struct scatterlist *dst, struct scatterlist *src, 415 unsigned int nbytes) 416 { 417 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 418 struct blkcipher_walk walk; 419 int err; 420 421 padlock_reset_key(&ctx->cword.encrypt); 422 423 blkcipher_walk_init(&walk, dst, src, nbytes); 424 err = blkcipher_walk_virt(desc, &walk); 425 426 while ((nbytes = walk.nbytes)) { 427 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, 428 walk.dst.virt.addr, ctx->E, 429 walk.iv, &ctx->cword.encrypt, 430 nbytes / AES_BLOCK_SIZE); 431 memcpy(walk.iv, iv, AES_BLOCK_SIZE); 432 nbytes &= AES_BLOCK_SIZE - 1; 433 err = blkcipher_walk_done(desc, &walk, nbytes); 434 } 435 436 padlock_store_cword(&ctx->cword.decrypt); 437 438 return err; 439 } 440 441 static int cbc_aes_decrypt(struct blkcipher_desc *desc, 442 struct scatterlist *dst, struct scatterlist *src, 443 unsigned int nbytes) 444 { 445 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 446 struct blkcipher_walk walk; 447 int err; 448 449 padlock_reset_key(&ctx->cword.encrypt); 450 451 blkcipher_walk_init(&walk, dst, src, nbytes); 452 err = blkcipher_walk_virt(desc, &walk); 453 454 while ((nbytes = walk.nbytes)) { 455 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, 456 ctx->D, walk.iv, &ctx->cword.decrypt, 457 nbytes / AES_BLOCK_SIZE); 458 nbytes &= AES_BLOCK_SIZE - 1; 459 err = blkcipher_walk_done(desc, &walk, nbytes); 460 } 461 462 padlock_store_cword(&ctx->cword.encrypt); 463 464 return err; 465 } 466 467 static struct crypto_alg cbc_aes_alg = { 468 .cra_name = "cbc(aes)", 469 .cra_driver_name = "cbc-aes-padlock", 470 .cra_priority = PADLOCK_COMPOSITE_PRIORITY, 471 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, 472 .cra_blocksize = AES_BLOCK_SIZE, 473 .cra_ctxsize = sizeof(struct aes_ctx), 474 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 475 .cra_type = &crypto_blkcipher_type, 476 .cra_module = THIS_MODULE, 477 .cra_u = { 478 .blkcipher = { 479 .min_keysize = AES_MIN_KEY_SIZE, 480 .max_keysize = AES_MAX_KEY_SIZE, 481 .ivsize = AES_BLOCK_SIZE, 482 .setkey = aes_set_key, 483 .encrypt = cbc_aes_encrypt, 484 .decrypt = cbc_aes_decrypt, 485 } 486 } 487 }; 488 489 static const struct x86_cpu_id padlock_cpu_id[] = { 490 X86_FEATURE_MATCH(X86_FEATURE_XCRYPT), 491 {} 492 }; 493 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id); 494 495 static int __init padlock_init(void) 496 { 497 int ret; 498 struct cpuinfo_x86 *c = &cpu_data(0); 499 500 if (!x86_match_cpu(padlock_cpu_id)) 501 return -ENODEV; 502 503 if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) { 504 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); 505 return -ENODEV; 506 } 507 508 if ((ret = crypto_register_alg(&aes_alg))) 509 goto aes_err; 510 511 if ((ret = crypto_register_alg(&ecb_aes_alg))) 512 goto ecb_aes_err; 513 514 if ((ret = crypto_register_alg(&cbc_aes_alg))) 515 goto cbc_aes_err; 516 517 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); 518 519 if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) { 520 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; 521 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; 522 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); 523 } 524 525 out: 526 return ret; 527 528 cbc_aes_err: 529 crypto_unregister_alg(&ecb_aes_alg); 530 ecb_aes_err: 531 crypto_unregister_alg(&aes_alg); 532 aes_err: 533 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); 534 goto out; 535 } 536 537 static void __exit padlock_fini(void) 538 { 539 crypto_unregister_alg(&cbc_aes_alg); 540 crypto_unregister_alg(&ecb_aes_alg); 541 crypto_unregister_alg(&aes_alg); 542 } 543 544 module_init(padlock_init); 545 module_exit(padlock_fini); 546 547 MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); 548 MODULE_LICENSE("GPL"); 549 MODULE_AUTHOR("Michal Ludvig"); 550 551 MODULE_ALIAS_CRYPTO("aes"); 552