1 /* 2 * Cryptographic API. 3 * 4 * Support for VIA PadLock hardware crypto engine. 5 * 6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> 7 * 8 */ 9 10 #include <crypto/algapi.h> 11 #include <crypto/aes.h> 12 #include <crypto/padlock.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/types.h> 16 #include <linux/errno.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/percpu.h> 20 #include <linux/smp.h> 21 #include <linux/slab.h> 22 #include <asm/byteorder.h> 23 #include <asm/processor.h> 24 #include <asm/i387.h> 25 26 /* 27 * Number of data blocks actually fetched for each xcrypt insn. 28 * Processors with prefetch errata will fetch extra blocks. 29 */ 30 static unsigned int ecb_fetch_blocks = 2; 31 #define MAX_ECB_FETCH_BLOCKS (8) 32 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) 33 34 static unsigned int cbc_fetch_blocks = 1; 35 #define MAX_CBC_FETCH_BLOCKS (4) 36 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) 37 38 /* Control word. */ 39 struct cword { 40 unsigned int __attribute__ ((__packed__)) 41 rounds:4, 42 algo:3, 43 keygen:1, 44 interm:1, 45 encdec:1, 46 ksize:2; 47 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 48 49 /* Whenever making any changes to the following 50 * structure *make sure* you keep E, d_data 51 * and cword aligned on 16 Bytes boundaries and 52 * the Hardware can access 16 * 16 bytes of E and d_data 53 * (only the first 15 * 16 bytes matter but the HW reads 54 * more). 55 */ 56 struct aes_ctx { 57 u32 E[AES_MAX_KEYLENGTH_U32] 58 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 59 u32 d_data[AES_MAX_KEYLENGTH_U32] 60 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); 61 struct { 62 struct cword encrypt; 63 struct cword decrypt; 64 } cword; 65 u32 *D; 66 }; 67 68 static DEFINE_PER_CPU(struct cword *, paes_last_cword); 69 70 /* Tells whether the ACE is capable to generate 71 the extended key for a given key_len. */ 72 static inline int 73 aes_hw_extkey_available(uint8_t key_len) 74 { 75 /* TODO: We should check the actual CPU model/stepping 76 as it's possible that the capability will be 77 added in the next CPU revisions. */ 78 if (key_len == 16) 79 return 1; 80 return 0; 81 } 82 83 static inline struct aes_ctx *aes_ctx_common(void *ctx) 84 { 85 unsigned long addr = (unsigned long)ctx; 86 unsigned long align = PADLOCK_ALIGNMENT; 87 88 if (align <= crypto_tfm_ctx_alignment()) 89 align = 1; 90 return (struct aes_ctx *)ALIGN(addr, align); 91 } 92 93 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) 94 { 95 return aes_ctx_common(crypto_tfm_ctx(tfm)); 96 } 97 98 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm) 99 { 100 return aes_ctx_common(crypto_blkcipher_ctx(tfm)); 101 } 102 103 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, 104 unsigned int key_len) 105 { 106 struct aes_ctx *ctx = aes_ctx(tfm); 107 const __le32 *key = (const __le32 *)in_key; 108 u32 *flags = &tfm->crt_flags; 109 struct crypto_aes_ctx gen_aes; 110 int cpu; 111 112 if (key_len % 8) { 113 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 114 return -EINVAL; 115 } 116 117 /* 118 * If the hardware is capable of generating the extended key 119 * itself we must supply the plain key for both encryption 120 * and decryption. 121 */ 122 ctx->D = ctx->E; 123 124 ctx->E[0] = le32_to_cpu(key[0]); 125 ctx->E[1] = le32_to_cpu(key[1]); 126 ctx->E[2] = le32_to_cpu(key[2]); 127 ctx->E[3] = le32_to_cpu(key[3]); 128 129 /* Prepare control words. */ 130 memset(&ctx->cword, 0, sizeof(ctx->cword)); 131 132 ctx->cword.decrypt.encdec = 1; 133 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; 134 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; 135 ctx->cword.encrypt.ksize = (key_len - 16) / 8; 136 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; 137 138 /* Don't generate extended keys if the hardware can do it. */ 139 if (aes_hw_extkey_available(key_len)) 140 goto ok; 141 142 ctx->D = ctx->d_data; 143 ctx->cword.encrypt.keygen = 1; 144 ctx->cword.decrypt.keygen = 1; 145 146 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) { 147 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; 148 return -EINVAL; 149 } 150 151 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); 152 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); 153 154 ok: 155 for_each_online_cpu(cpu) 156 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || 157 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) 158 per_cpu(paes_last_cword, cpu) = NULL; 159 160 return 0; 161 } 162 163 /* ====== Encryption/decryption routines ====== */ 164 165 /* These are the real call to PadLock. */ 166 static inline void padlock_reset_key(struct cword *cword) 167 { 168 int cpu = raw_smp_processor_id(); 169 170 if (cword != per_cpu(paes_last_cword, cpu)) 171 #ifndef CONFIG_X86_64 172 asm volatile ("pushfl; popfl"); 173 #else 174 asm volatile ("pushfq; popfq"); 175 #endif 176 } 177 178 static inline void padlock_store_cword(struct cword *cword) 179 { 180 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; 181 } 182 183 /* 184 * While the padlock instructions don't use FP/SSE registers, they 185 * generate a spurious DNA fault when cr0.ts is '1'. These instructions 186 * should be used only inside the irq_ts_save/restore() context 187 */ 188 189 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, 190 struct cword *control_word, int count) 191 { 192 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 193 : "+S"(input), "+D"(output) 194 : "d"(control_word), "b"(key), "c"(count)); 195 } 196 197 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, 198 u8 *iv, struct cword *control_word, int count) 199 { 200 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 201 : "+S" (input), "+D" (output), "+a" (iv) 202 : "d" (control_word), "b" (key), "c" (count)); 203 return iv; 204 } 205 206 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, 207 struct cword *cword, int count) 208 { 209 /* 210 * Padlock prefetches extra data so we must provide mapped input buffers. 211 * Assume there are at least 16 bytes of stack already in use. 212 */ 213 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; 214 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 215 216 memcpy(tmp, in, count * AES_BLOCK_SIZE); 217 rep_xcrypt_ecb(tmp, out, key, cword, count); 218 } 219 220 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, 221 u8 *iv, struct cword *cword, int count) 222 { 223 /* 224 * Padlock prefetches extra data so we must provide mapped input buffers. 225 * Assume there are at least 16 bytes of stack already in use. 226 */ 227 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; 228 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 229 230 memcpy(tmp, in, count * AES_BLOCK_SIZE); 231 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); 232 } 233 234 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, 235 struct cword *cword, int count) 236 { 237 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. 238 * We could avoid some copying here but it's probably not worth it. 239 */ 240 if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) { 241 ecb_crypt_copy(in, out, key, cword, count); 242 return; 243 } 244 245 rep_xcrypt_ecb(in, out, key, cword, count); 246 } 247 248 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, 249 u8 *iv, struct cword *cword, int count) 250 { 251 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ 252 if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE)) 253 return cbc_crypt_copy(in, out, key, iv, cword, count); 254 255 return rep_xcrypt_cbc(in, out, key, iv, cword, count); 256 } 257 258 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, 259 void *control_word, u32 count) 260 { 261 u32 initial = count & (ecb_fetch_blocks - 1); 262 263 if (count < ecb_fetch_blocks) { 264 ecb_crypt(input, output, key, control_word, count); 265 return; 266 } 267 268 if (initial) 269 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 270 : "+S"(input), "+D"(output) 271 : "d"(control_word), "b"(key), "c"(initial)); 272 273 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ 274 : "+S"(input), "+D"(output) 275 : "d"(control_word), "b"(key), "c"(count - initial)); 276 } 277 278 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, 279 u8 *iv, void *control_word, u32 count) 280 { 281 u32 initial = count & (cbc_fetch_blocks - 1); 282 283 if (count < cbc_fetch_blocks) 284 return cbc_crypt(input, output, key, iv, control_word, count); 285 286 if (initial) 287 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 288 : "+S" (input), "+D" (output), "+a" (iv) 289 : "d" (control_word), "b" (key), "c" (initial)); 290 291 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ 292 : "+S" (input), "+D" (output), "+a" (iv) 293 : "d" (control_word), "b" (key), "c" (count-initial)); 294 return iv; 295 } 296 297 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 298 { 299 struct aes_ctx *ctx = aes_ctx(tfm); 300 int ts_state; 301 302 padlock_reset_key(&ctx->cword.encrypt); 303 ts_state = irq_ts_save(); 304 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); 305 irq_ts_restore(ts_state); 306 padlock_store_cword(&ctx->cword.encrypt); 307 } 308 309 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) 310 { 311 struct aes_ctx *ctx = aes_ctx(tfm); 312 int ts_state; 313 314 padlock_reset_key(&ctx->cword.encrypt); 315 ts_state = irq_ts_save(); 316 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); 317 irq_ts_restore(ts_state); 318 padlock_store_cword(&ctx->cword.encrypt); 319 } 320 321 static struct crypto_alg aes_alg = { 322 .cra_name = "aes", 323 .cra_driver_name = "aes-padlock", 324 .cra_priority = PADLOCK_CRA_PRIORITY, 325 .cra_flags = CRYPTO_ALG_TYPE_CIPHER, 326 .cra_blocksize = AES_BLOCK_SIZE, 327 .cra_ctxsize = sizeof(struct aes_ctx), 328 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 329 .cra_module = THIS_MODULE, 330 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), 331 .cra_u = { 332 .cipher = { 333 .cia_min_keysize = AES_MIN_KEY_SIZE, 334 .cia_max_keysize = AES_MAX_KEY_SIZE, 335 .cia_setkey = aes_set_key, 336 .cia_encrypt = aes_encrypt, 337 .cia_decrypt = aes_decrypt, 338 } 339 } 340 }; 341 342 static int ecb_aes_encrypt(struct blkcipher_desc *desc, 343 struct scatterlist *dst, struct scatterlist *src, 344 unsigned int nbytes) 345 { 346 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 347 struct blkcipher_walk walk; 348 int err; 349 int ts_state; 350 351 padlock_reset_key(&ctx->cword.encrypt); 352 353 blkcipher_walk_init(&walk, dst, src, nbytes); 354 err = blkcipher_walk_virt(desc, &walk); 355 356 ts_state = irq_ts_save(); 357 while ((nbytes = walk.nbytes)) { 358 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, 359 ctx->E, &ctx->cword.encrypt, 360 nbytes / AES_BLOCK_SIZE); 361 nbytes &= AES_BLOCK_SIZE - 1; 362 err = blkcipher_walk_done(desc, &walk, nbytes); 363 } 364 irq_ts_restore(ts_state); 365 366 padlock_store_cword(&ctx->cword.encrypt); 367 368 return err; 369 } 370 371 static int ecb_aes_decrypt(struct blkcipher_desc *desc, 372 struct scatterlist *dst, struct scatterlist *src, 373 unsigned int nbytes) 374 { 375 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 376 struct blkcipher_walk walk; 377 int err; 378 int ts_state; 379 380 padlock_reset_key(&ctx->cword.decrypt); 381 382 blkcipher_walk_init(&walk, dst, src, nbytes); 383 err = blkcipher_walk_virt(desc, &walk); 384 385 ts_state = irq_ts_save(); 386 while ((nbytes = walk.nbytes)) { 387 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, 388 ctx->D, &ctx->cword.decrypt, 389 nbytes / AES_BLOCK_SIZE); 390 nbytes &= AES_BLOCK_SIZE - 1; 391 err = blkcipher_walk_done(desc, &walk, nbytes); 392 } 393 irq_ts_restore(ts_state); 394 395 padlock_store_cword(&ctx->cword.encrypt); 396 397 return err; 398 } 399 400 static struct crypto_alg ecb_aes_alg = { 401 .cra_name = "ecb(aes)", 402 .cra_driver_name = "ecb-aes-padlock", 403 .cra_priority = PADLOCK_COMPOSITE_PRIORITY, 404 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, 405 .cra_blocksize = AES_BLOCK_SIZE, 406 .cra_ctxsize = sizeof(struct aes_ctx), 407 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 408 .cra_type = &crypto_blkcipher_type, 409 .cra_module = THIS_MODULE, 410 .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list), 411 .cra_u = { 412 .blkcipher = { 413 .min_keysize = AES_MIN_KEY_SIZE, 414 .max_keysize = AES_MAX_KEY_SIZE, 415 .setkey = aes_set_key, 416 .encrypt = ecb_aes_encrypt, 417 .decrypt = ecb_aes_decrypt, 418 } 419 } 420 }; 421 422 static int cbc_aes_encrypt(struct blkcipher_desc *desc, 423 struct scatterlist *dst, struct scatterlist *src, 424 unsigned int nbytes) 425 { 426 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 427 struct blkcipher_walk walk; 428 int err; 429 int ts_state; 430 431 padlock_reset_key(&ctx->cword.encrypt); 432 433 blkcipher_walk_init(&walk, dst, src, nbytes); 434 err = blkcipher_walk_virt(desc, &walk); 435 436 ts_state = irq_ts_save(); 437 while ((nbytes = walk.nbytes)) { 438 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, 439 walk.dst.virt.addr, ctx->E, 440 walk.iv, &ctx->cword.encrypt, 441 nbytes / AES_BLOCK_SIZE); 442 memcpy(walk.iv, iv, AES_BLOCK_SIZE); 443 nbytes &= AES_BLOCK_SIZE - 1; 444 err = blkcipher_walk_done(desc, &walk, nbytes); 445 } 446 irq_ts_restore(ts_state); 447 448 padlock_store_cword(&ctx->cword.decrypt); 449 450 return err; 451 } 452 453 static int cbc_aes_decrypt(struct blkcipher_desc *desc, 454 struct scatterlist *dst, struct scatterlist *src, 455 unsigned int nbytes) 456 { 457 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); 458 struct blkcipher_walk walk; 459 int err; 460 int ts_state; 461 462 padlock_reset_key(&ctx->cword.encrypt); 463 464 blkcipher_walk_init(&walk, dst, src, nbytes); 465 err = blkcipher_walk_virt(desc, &walk); 466 467 ts_state = irq_ts_save(); 468 while ((nbytes = walk.nbytes)) { 469 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, 470 ctx->D, walk.iv, &ctx->cword.decrypt, 471 nbytes / AES_BLOCK_SIZE); 472 nbytes &= AES_BLOCK_SIZE - 1; 473 err = blkcipher_walk_done(desc, &walk, nbytes); 474 } 475 476 irq_ts_restore(ts_state); 477 478 padlock_store_cword(&ctx->cword.encrypt); 479 480 return err; 481 } 482 483 static struct crypto_alg cbc_aes_alg = { 484 .cra_name = "cbc(aes)", 485 .cra_driver_name = "cbc-aes-padlock", 486 .cra_priority = PADLOCK_COMPOSITE_PRIORITY, 487 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, 488 .cra_blocksize = AES_BLOCK_SIZE, 489 .cra_ctxsize = sizeof(struct aes_ctx), 490 .cra_alignmask = PADLOCK_ALIGNMENT - 1, 491 .cra_type = &crypto_blkcipher_type, 492 .cra_module = THIS_MODULE, 493 .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list), 494 .cra_u = { 495 .blkcipher = { 496 .min_keysize = AES_MIN_KEY_SIZE, 497 .max_keysize = AES_MAX_KEY_SIZE, 498 .ivsize = AES_BLOCK_SIZE, 499 .setkey = aes_set_key, 500 .encrypt = cbc_aes_encrypt, 501 .decrypt = cbc_aes_decrypt, 502 } 503 } 504 }; 505 506 static int __init padlock_init(void) 507 { 508 int ret; 509 struct cpuinfo_x86 *c = &cpu_data(0); 510 511 if (!cpu_has_xcrypt) 512 return -ENODEV; 513 514 if (!cpu_has_xcrypt_enabled) { 515 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); 516 return -ENODEV; 517 } 518 519 if ((ret = crypto_register_alg(&aes_alg))) 520 goto aes_err; 521 522 if ((ret = crypto_register_alg(&ecb_aes_alg))) 523 goto ecb_aes_err; 524 525 if ((ret = crypto_register_alg(&cbc_aes_alg))) 526 goto cbc_aes_err; 527 528 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); 529 530 if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) { 531 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; 532 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; 533 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); 534 } 535 536 out: 537 return ret; 538 539 cbc_aes_err: 540 crypto_unregister_alg(&ecb_aes_alg); 541 ecb_aes_err: 542 crypto_unregister_alg(&aes_alg); 543 aes_err: 544 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); 545 goto out; 546 } 547 548 static void __exit padlock_fini(void) 549 { 550 crypto_unregister_alg(&cbc_aes_alg); 551 crypto_unregister_alg(&ecb_aes_alg); 552 crypto_unregister_alg(&aes_alg); 553 } 554 555 module_init(padlock_init); 556 module_exit(padlock_fini); 557 558 MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); 559 MODULE_LICENSE("GPL"); 560 MODULE_AUTHOR("Michal Ludvig"); 561 562 MODULE_ALIAS("aes"); 563