xref: /openbmc/linux/drivers/crypto/omap-sham.c (revision e58e871b)
1 /*
2  * Cryptographic API.
3  *
4  * Support for OMAP SHA1/MD5 HW acceleration.
5  *
6  * Copyright (c) 2010 Nokia Corporation
7  * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
8  * Copyright (c) 2011 Texas Instruments Incorporated
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  *
14  * Some ideas are from old omap-sha1-md5.c driver.
15  */
16 
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18 
19 #include <linux/err.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/irq.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/delay.h>
38 #include <linux/crypto.h>
39 #include <linux/cryptohash.h>
40 #include <crypto/scatterwalk.h>
41 #include <crypto/algapi.h>
42 #include <crypto/sha.h>
43 #include <crypto/hash.h>
44 #include <crypto/internal/hash.h>
45 
46 #define MD5_DIGEST_SIZE			16
47 
48 #define SHA_REG_IDIGEST(dd, x)		((dd)->pdata->idigest_ofs + ((x)*0x04))
49 #define SHA_REG_DIN(dd, x)		((dd)->pdata->din_ofs + ((x) * 0x04))
50 #define SHA_REG_DIGCNT(dd)		((dd)->pdata->digcnt_ofs)
51 
52 #define SHA_REG_ODIGEST(dd, x)		((dd)->pdata->odigest_ofs + (x * 0x04))
53 
54 #define SHA_REG_CTRL			0x18
55 #define SHA_REG_CTRL_LENGTH		(0xFFFFFFFF << 5)
56 #define SHA_REG_CTRL_CLOSE_HASH		(1 << 4)
57 #define SHA_REG_CTRL_ALGO_CONST		(1 << 3)
58 #define SHA_REG_CTRL_ALGO		(1 << 2)
59 #define SHA_REG_CTRL_INPUT_READY	(1 << 1)
60 #define SHA_REG_CTRL_OUTPUT_READY	(1 << 0)
61 
62 #define SHA_REG_REV(dd)			((dd)->pdata->rev_ofs)
63 
64 #define SHA_REG_MASK(dd)		((dd)->pdata->mask_ofs)
65 #define SHA_REG_MASK_DMA_EN		(1 << 3)
66 #define SHA_REG_MASK_IT_EN		(1 << 2)
67 #define SHA_REG_MASK_SOFTRESET		(1 << 1)
68 #define SHA_REG_AUTOIDLE		(1 << 0)
69 
70 #define SHA_REG_SYSSTATUS(dd)		((dd)->pdata->sysstatus_ofs)
71 #define SHA_REG_SYSSTATUS_RESETDONE	(1 << 0)
72 
73 #define SHA_REG_MODE(dd)		((dd)->pdata->mode_ofs)
74 #define SHA_REG_MODE_HMAC_OUTER_HASH	(1 << 7)
75 #define SHA_REG_MODE_HMAC_KEY_PROC	(1 << 5)
76 #define SHA_REG_MODE_CLOSE_HASH		(1 << 4)
77 #define SHA_REG_MODE_ALGO_CONSTANT	(1 << 3)
78 
79 #define SHA_REG_MODE_ALGO_MASK		(7 << 0)
80 #define SHA_REG_MODE_ALGO_MD5_128	(0 << 1)
81 #define SHA_REG_MODE_ALGO_SHA1_160	(1 << 1)
82 #define SHA_REG_MODE_ALGO_SHA2_224	(2 << 1)
83 #define SHA_REG_MODE_ALGO_SHA2_256	(3 << 1)
84 #define SHA_REG_MODE_ALGO_SHA2_384	(1 << 0)
85 #define SHA_REG_MODE_ALGO_SHA2_512	(3 << 0)
86 
87 #define SHA_REG_LENGTH(dd)		((dd)->pdata->length_ofs)
88 
89 #define SHA_REG_IRQSTATUS		0x118
90 #define SHA_REG_IRQSTATUS_CTX_RDY	(1 << 3)
91 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
92 #define SHA_REG_IRQSTATUS_INPUT_RDY	(1 << 1)
93 #define SHA_REG_IRQSTATUS_OUTPUT_RDY	(1 << 0)
94 
95 #define SHA_REG_IRQENA			0x11C
96 #define SHA_REG_IRQENA_CTX_RDY		(1 << 3)
97 #define SHA_REG_IRQENA_PARTHASH_RDY	(1 << 2)
98 #define SHA_REG_IRQENA_INPUT_RDY	(1 << 1)
99 #define SHA_REG_IRQENA_OUTPUT_RDY	(1 << 0)
100 
101 #define DEFAULT_TIMEOUT_INTERVAL	HZ
102 
103 #define DEFAULT_AUTOSUSPEND_DELAY	1000
104 
105 /* mostly device flags */
106 #define FLAGS_BUSY		0
107 #define FLAGS_FINAL		1
108 #define FLAGS_DMA_ACTIVE	2
109 #define FLAGS_OUTPUT_READY	3
110 #define FLAGS_INIT		4
111 #define FLAGS_CPU		5
112 #define FLAGS_DMA_READY		6
113 #define FLAGS_AUTO_XOR		7
114 #define FLAGS_BE32_SHA1		8
115 #define FLAGS_SGS_COPIED	9
116 #define FLAGS_SGS_ALLOCED	10
117 /* context flags */
118 #define FLAGS_FINUP		16
119 
120 #define FLAGS_MODE_SHIFT	18
121 #define FLAGS_MODE_MASK		(SHA_REG_MODE_ALGO_MASK	<< FLAGS_MODE_SHIFT)
122 #define FLAGS_MODE_MD5		(SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_SHA1		(SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA224	(SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA256	(SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA384	(SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
127 #define FLAGS_MODE_SHA512	(SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
128 
129 #define FLAGS_HMAC		21
130 #define FLAGS_ERROR		22
131 
132 #define OP_UPDATE		1
133 #define OP_FINAL		2
134 
135 #define OMAP_ALIGN_MASK		(sizeof(u32)-1)
136 #define OMAP_ALIGNED		__attribute__((aligned(sizeof(u32))))
137 
138 #define BUFLEN			SHA512_BLOCK_SIZE
139 #define OMAP_SHA_DMA_THRESHOLD	256
140 
141 struct omap_sham_dev;
142 
143 struct omap_sham_reqctx {
144 	struct omap_sham_dev	*dd;
145 	unsigned long		flags;
146 	unsigned long		op;
147 
148 	u8			digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
149 	size_t			digcnt;
150 	size_t			bufcnt;
151 	size_t			buflen;
152 
153 	/* walk state */
154 	struct scatterlist	*sg;
155 	struct scatterlist	sgl[2];
156 	int			offset;	/* offset in current sg */
157 	int			sg_len;
158 	unsigned int		total;	/* total request */
159 
160 	u8			buffer[0] OMAP_ALIGNED;
161 };
162 
163 struct omap_sham_hmac_ctx {
164 	struct crypto_shash	*shash;
165 	u8			ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
166 	u8			opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 };
168 
169 struct omap_sham_ctx {
170 	struct omap_sham_dev	*dd;
171 
172 	unsigned long		flags;
173 
174 	/* fallback stuff */
175 	struct crypto_shash	*fallback;
176 
177 	struct omap_sham_hmac_ctx base[0];
178 };
179 
180 #define OMAP_SHAM_QUEUE_LENGTH	10
181 
182 struct omap_sham_algs_info {
183 	struct ahash_alg	*algs_list;
184 	unsigned int		size;
185 	unsigned int		registered;
186 };
187 
188 struct omap_sham_pdata {
189 	struct omap_sham_algs_info	*algs_info;
190 	unsigned int	algs_info_size;
191 	unsigned long	flags;
192 	int		digest_size;
193 
194 	void		(*copy_hash)(struct ahash_request *req, int out);
195 	void		(*write_ctrl)(struct omap_sham_dev *dd, size_t length,
196 				      int final, int dma);
197 	void		(*trigger)(struct omap_sham_dev *dd, size_t length);
198 	int		(*poll_irq)(struct omap_sham_dev *dd);
199 	irqreturn_t	(*intr_hdlr)(int irq, void *dev_id);
200 
201 	u32		odigest_ofs;
202 	u32		idigest_ofs;
203 	u32		din_ofs;
204 	u32		digcnt_ofs;
205 	u32		rev_ofs;
206 	u32		mask_ofs;
207 	u32		sysstatus_ofs;
208 	u32		mode_ofs;
209 	u32		length_ofs;
210 
211 	u32		major_mask;
212 	u32		major_shift;
213 	u32		minor_mask;
214 	u32		minor_shift;
215 };
216 
217 struct omap_sham_dev {
218 	struct list_head	list;
219 	unsigned long		phys_base;
220 	struct device		*dev;
221 	void __iomem		*io_base;
222 	int			irq;
223 	spinlock_t		lock;
224 	int			err;
225 	struct dma_chan		*dma_lch;
226 	struct tasklet_struct	done_task;
227 	u8			polling_mode;
228 	u8			xmit_buf[BUFLEN];
229 
230 	unsigned long		flags;
231 	struct crypto_queue	queue;
232 	struct ahash_request	*req;
233 
234 	const struct omap_sham_pdata	*pdata;
235 };
236 
237 struct omap_sham_drv {
238 	struct list_head	dev_list;
239 	spinlock_t		lock;
240 	unsigned long		flags;
241 };
242 
243 static struct omap_sham_drv sham = {
244 	.dev_list = LIST_HEAD_INIT(sham.dev_list),
245 	.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
246 };
247 
248 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
249 {
250 	return __raw_readl(dd->io_base + offset);
251 }
252 
253 static inline void omap_sham_write(struct omap_sham_dev *dd,
254 					u32 offset, u32 value)
255 {
256 	__raw_writel(value, dd->io_base + offset);
257 }
258 
259 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
260 					u32 value, u32 mask)
261 {
262 	u32 val;
263 
264 	val = omap_sham_read(dd, address);
265 	val &= ~mask;
266 	val |= value;
267 	omap_sham_write(dd, address, val);
268 }
269 
270 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
271 {
272 	unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
273 
274 	while (!(omap_sham_read(dd, offset) & bit)) {
275 		if (time_is_before_jiffies(timeout))
276 			return -ETIMEDOUT;
277 	}
278 
279 	return 0;
280 }
281 
282 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
283 {
284 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
285 	struct omap_sham_dev *dd = ctx->dd;
286 	u32 *hash = (u32 *)ctx->digest;
287 	int i;
288 
289 	for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
290 		if (out)
291 			hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
292 		else
293 			omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
294 	}
295 }
296 
297 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
298 {
299 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
300 	struct omap_sham_dev *dd = ctx->dd;
301 	int i;
302 
303 	if (ctx->flags & BIT(FLAGS_HMAC)) {
304 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
305 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
306 		struct omap_sham_hmac_ctx *bctx = tctx->base;
307 		u32 *opad = (u32 *)bctx->opad;
308 
309 		for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
310 			if (out)
311 				opad[i] = omap_sham_read(dd,
312 						SHA_REG_ODIGEST(dd, i));
313 			else
314 				omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
315 						opad[i]);
316 		}
317 	}
318 
319 	omap_sham_copy_hash_omap2(req, out);
320 }
321 
322 static void omap_sham_copy_ready_hash(struct ahash_request *req)
323 {
324 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
325 	u32 *in = (u32 *)ctx->digest;
326 	u32 *hash = (u32 *)req->result;
327 	int i, d, big_endian = 0;
328 
329 	if (!hash)
330 		return;
331 
332 	switch (ctx->flags & FLAGS_MODE_MASK) {
333 	case FLAGS_MODE_MD5:
334 		d = MD5_DIGEST_SIZE / sizeof(u32);
335 		break;
336 	case FLAGS_MODE_SHA1:
337 		/* OMAP2 SHA1 is big endian */
338 		if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
339 			big_endian = 1;
340 		d = SHA1_DIGEST_SIZE / sizeof(u32);
341 		break;
342 	case FLAGS_MODE_SHA224:
343 		d = SHA224_DIGEST_SIZE / sizeof(u32);
344 		break;
345 	case FLAGS_MODE_SHA256:
346 		d = SHA256_DIGEST_SIZE / sizeof(u32);
347 		break;
348 	case FLAGS_MODE_SHA384:
349 		d = SHA384_DIGEST_SIZE / sizeof(u32);
350 		break;
351 	case FLAGS_MODE_SHA512:
352 		d = SHA512_DIGEST_SIZE / sizeof(u32);
353 		break;
354 	default:
355 		d = 0;
356 	}
357 
358 	if (big_endian)
359 		for (i = 0; i < d; i++)
360 			hash[i] = be32_to_cpu(in[i]);
361 	else
362 		for (i = 0; i < d; i++)
363 			hash[i] = le32_to_cpu(in[i]);
364 }
365 
366 static int omap_sham_hw_init(struct omap_sham_dev *dd)
367 {
368 	int err;
369 
370 	err = pm_runtime_get_sync(dd->dev);
371 	if (err < 0) {
372 		dev_err(dd->dev, "failed to get sync: %d\n", err);
373 		return err;
374 	}
375 
376 	if (!test_bit(FLAGS_INIT, &dd->flags)) {
377 		set_bit(FLAGS_INIT, &dd->flags);
378 		dd->err = 0;
379 	}
380 
381 	return 0;
382 }
383 
384 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
385 				 int final, int dma)
386 {
387 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
388 	u32 val = length << 5, mask;
389 
390 	if (likely(ctx->digcnt))
391 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
392 
393 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
394 		SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
395 		SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
396 	/*
397 	 * Setting ALGO_CONST only for the first iteration
398 	 * and CLOSE_HASH only for the last one.
399 	 */
400 	if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
401 		val |= SHA_REG_CTRL_ALGO;
402 	if (!ctx->digcnt)
403 		val |= SHA_REG_CTRL_ALGO_CONST;
404 	if (final)
405 		val |= SHA_REG_CTRL_CLOSE_HASH;
406 
407 	mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
408 			SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
409 
410 	omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
411 }
412 
413 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
414 {
415 }
416 
417 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
418 {
419 	return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
420 }
421 
422 static int get_block_size(struct omap_sham_reqctx *ctx)
423 {
424 	int d;
425 
426 	switch (ctx->flags & FLAGS_MODE_MASK) {
427 	case FLAGS_MODE_MD5:
428 	case FLAGS_MODE_SHA1:
429 		d = SHA1_BLOCK_SIZE;
430 		break;
431 	case FLAGS_MODE_SHA224:
432 	case FLAGS_MODE_SHA256:
433 		d = SHA256_BLOCK_SIZE;
434 		break;
435 	case FLAGS_MODE_SHA384:
436 	case FLAGS_MODE_SHA512:
437 		d = SHA512_BLOCK_SIZE;
438 		break;
439 	default:
440 		d = 0;
441 	}
442 
443 	return d;
444 }
445 
446 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
447 				    u32 *value, int count)
448 {
449 	for (; count--; value++, offset += 4)
450 		omap_sham_write(dd, offset, *value);
451 }
452 
453 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
454 				 int final, int dma)
455 {
456 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
457 	u32 val, mask;
458 
459 	/*
460 	 * Setting ALGO_CONST only for the first iteration and
461 	 * CLOSE_HASH only for the last one. Note that flags mode bits
462 	 * correspond to algorithm encoding in mode register.
463 	 */
464 	val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
465 	if (!ctx->digcnt) {
466 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
467 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
468 		struct omap_sham_hmac_ctx *bctx = tctx->base;
469 		int bs, nr_dr;
470 
471 		val |= SHA_REG_MODE_ALGO_CONSTANT;
472 
473 		if (ctx->flags & BIT(FLAGS_HMAC)) {
474 			bs = get_block_size(ctx);
475 			nr_dr = bs / (2 * sizeof(u32));
476 			val |= SHA_REG_MODE_HMAC_KEY_PROC;
477 			omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
478 					  (u32 *)bctx->ipad, nr_dr);
479 			omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
480 					  (u32 *)bctx->ipad + nr_dr, nr_dr);
481 			ctx->digcnt += bs;
482 		}
483 	}
484 
485 	if (final) {
486 		val |= SHA_REG_MODE_CLOSE_HASH;
487 
488 		if (ctx->flags & BIT(FLAGS_HMAC))
489 			val |= SHA_REG_MODE_HMAC_OUTER_HASH;
490 	}
491 
492 	mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
493 	       SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
494 	       SHA_REG_MODE_HMAC_KEY_PROC;
495 
496 	dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
497 	omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
498 	omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
499 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
500 			     SHA_REG_MASK_IT_EN |
501 				     (dma ? SHA_REG_MASK_DMA_EN : 0),
502 			     SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
503 }
504 
505 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
506 {
507 	omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
508 }
509 
510 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
511 {
512 	return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
513 			      SHA_REG_IRQSTATUS_INPUT_RDY);
514 }
515 
516 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
517 			      int final)
518 {
519 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
520 	int count, len32, bs32, offset = 0;
521 	const u32 *buffer;
522 	int mlen;
523 	struct sg_mapping_iter mi;
524 
525 	dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
526 						ctx->digcnt, length, final);
527 
528 	dd->pdata->write_ctrl(dd, length, final, 0);
529 	dd->pdata->trigger(dd, length);
530 
531 	/* should be non-zero before next lines to disable clocks later */
532 	ctx->digcnt += length;
533 	ctx->total -= length;
534 
535 	if (final)
536 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
537 
538 	set_bit(FLAGS_CPU, &dd->flags);
539 
540 	len32 = DIV_ROUND_UP(length, sizeof(u32));
541 	bs32 = get_block_size(ctx) / sizeof(u32);
542 
543 	sg_miter_start(&mi, ctx->sg, ctx->sg_len,
544 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
545 
546 	mlen = 0;
547 
548 	while (len32) {
549 		if (dd->pdata->poll_irq(dd))
550 			return -ETIMEDOUT;
551 
552 		for (count = 0; count < min(len32, bs32); count++, offset++) {
553 			if (!mlen) {
554 				sg_miter_next(&mi);
555 				mlen = mi.length;
556 				if (!mlen) {
557 					pr_err("sg miter failure.\n");
558 					return -EINVAL;
559 				}
560 				offset = 0;
561 				buffer = mi.addr;
562 			}
563 			omap_sham_write(dd, SHA_REG_DIN(dd, count),
564 					buffer[offset]);
565 			mlen -= 4;
566 		}
567 		len32 -= min(len32, bs32);
568 	}
569 
570 	sg_miter_stop(&mi);
571 
572 	return -EINPROGRESS;
573 }
574 
575 static void omap_sham_dma_callback(void *param)
576 {
577 	struct omap_sham_dev *dd = param;
578 
579 	set_bit(FLAGS_DMA_READY, &dd->flags);
580 	tasklet_schedule(&dd->done_task);
581 }
582 
583 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
584 			      int final)
585 {
586 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
587 	struct dma_async_tx_descriptor *tx;
588 	struct dma_slave_config cfg;
589 	int ret;
590 
591 	dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
592 						ctx->digcnt, length, final);
593 
594 	if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
595 		dev_err(dd->dev, "dma_map_sg error\n");
596 		return -EINVAL;
597 	}
598 
599 	memset(&cfg, 0, sizeof(cfg));
600 
601 	cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
602 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
603 	cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
604 
605 	ret = dmaengine_slave_config(dd->dma_lch, &cfg);
606 	if (ret) {
607 		pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
608 		return ret;
609 	}
610 
611 	tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
612 				     DMA_MEM_TO_DEV,
613 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
614 
615 	if (!tx) {
616 		dev_err(dd->dev, "prep_slave_sg failed\n");
617 		return -EINVAL;
618 	}
619 
620 	tx->callback = omap_sham_dma_callback;
621 	tx->callback_param = dd;
622 
623 	dd->pdata->write_ctrl(dd, length, final, 1);
624 
625 	ctx->digcnt += length;
626 	ctx->total -= length;
627 
628 	if (final)
629 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
630 
631 	set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
632 
633 	dmaengine_submit(tx);
634 	dma_async_issue_pending(dd->dma_lch);
635 
636 	dd->pdata->trigger(dd, length);
637 
638 	return -EINPROGRESS;
639 }
640 
641 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
642 				   struct scatterlist *sg, int bs, int new_len)
643 {
644 	int n = sg_nents(sg);
645 	struct scatterlist *tmp;
646 	int offset = ctx->offset;
647 
648 	if (ctx->bufcnt)
649 		n++;
650 
651 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
652 	if (!ctx->sg)
653 		return -ENOMEM;
654 
655 	sg_init_table(ctx->sg, n);
656 
657 	tmp = ctx->sg;
658 
659 	ctx->sg_len = 0;
660 
661 	if (ctx->bufcnt) {
662 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
663 		tmp = sg_next(tmp);
664 		ctx->sg_len++;
665 	}
666 
667 	while (sg && new_len) {
668 		int len = sg->length - offset;
669 
670 		if (offset) {
671 			offset -= sg->length;
672 			if (offset < 0)
673 				offset = 0;
674 		}
675 
676 		if (new_len < len)
677 			len = new_len;
678 
679 		if (len > 0) {
680 			new_len -= len;
681 			sg_set_page(tmp, sg_page(sg), len, sg->offset);
682 			if (new_len <= 0)
683 				sg_mark_end(tmp);
684 			tmp = sg_next(tmp);
685 			ctx->sg_len++;
686 		}
687 
688 		sg = sg_next(sg);
689 	}
690 
691 	set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
692 
693 	ctx->bufcnt = 0;
694 
695 	return 0;
696 }
697 
698 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
699 			      struct scatterlist *sg, int bs, int new_len)
700 {
701 	int pages;
702 	void *buf;
703 	int len;
704 
705 	len = new_len + ctx->bufcnt;
706 
707 	pages = get_order(ctx->total);
708 
709 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
710 	if (!buf) {
711 		pr_err("Couldn't allocate pages for unaligned cases.\n");
712 		return -ENOMEM;
713 	}
714 
715 	if (ctx->bufcnt)
716 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
717 
718 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
719 				 ctx->total - ctx->bufcnt, 0);
720 	sg_init_table(ctx->sgl, 1);
721 	sg_set_buf(ctx->sgl, buf, len);
722 	ctx->sg = ctx->sgl;
723 	set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
724 	ctx->sg_len = 1;
725 	ctx->bufcnt = 0;
726 	ctx->offset = 0;
727 
728 	return 0;
729 }
730 
731 static int omap_sham_align_sgs(struct scatterlist *sg,
732 			       int nbytes, int bs, bool final,
733 			       struct omap_sham_reqctx *rctx)
734 {
735 	int n = 0;
736 	bool aligned = true;
737 	bool list_ok = true;
738 	struct scatterlist *sg_tmp = sg;
739 	int new_len;
740 	int offset = rctx->offset;
741 
742 	if (!sg || !sg->length || !nbytes)
743 		return 0;
744 
745 	new_len = nbytes;
746 
747 	if (offset)
748 		list_ok = false;
749 
750 	if (final)
751 		new_len = DIV_ROUND_UP(new_len, bs) * bs;
752 	else
753 		new_len = new_len / bs * bs;
754 
755 	while (nbytes > 0 && sg_tmp) {
756 		n++;
757 
758 		if (offset < sg_tmp->length) {
759 			if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
760 				aligned = false;
761 				break;
762 			}
763 
764 			if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
765 				aligned = false;
766 				break;
767 			}
768 		}
769 
770 		if (offset) {
771 			offset -= sg_tmp->length;
772 			if (offset < 0) {
773 				nbytes += offset;
774 				offset = 0;
775 			}
776 		} else {
777 			nbytes -= sg_tmp->length;
778 		}
779 
780 		sg_tmp = sg_next(sg_tmp);
781 
782 		if (nbytes < 0) {
783 			list_ok = false;
784 			break;
785 		}
786 	}
787 
788 	if (!aligned)
789 		return omap_sham_copy_sgs(rctx, sg, bs, new_len);
790 	else if (!list_ok)
791 		return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
792 
793 	rctx->sg_len = n;
794 	rctx->sg = sg;
795 
796 	return 0;
797 }
798 
799 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
800 {
801 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
802 	int bs;
803 	int ret;
804 	int nbytes;
805 	bool final = rctx->flags & BIT(FLAGS_FINUP);
806 	int xmit_len, hash_later;
807 
808 	if (!req)
809 		return 0;
810 
811 	bs = get_block_size(rctx);
812 
813 	if (update)
814 		nbytes = req->nbytes;
815 	else
816 		nbytes = 0;
817 
818 	rctx->total = nbytes + rctx->bufcnt;
819 
820 	if (!rctx->total)
821 		return 0;
822 
823 	if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
824 		int len = bs - rctx->bufcnt % bs;
825 
826 		if (len > nbytes)
827 			len = nbytes;
828 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
829 					 0, len, 0);
830 		rctx->bufcnt += len;
831 		nbytes -= len;
832 		rctx->offset = len;
833 	}
834 
835 	if (rctx->bufcnt)
836 		memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
837 
838 	ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
839 	if (ret)
840 		return ret;
841 
842 	xmit_len = rctx->total;
843 
844 	if (!IS_ALIGNED(xmit_len, bs)) {
845 		if (final)
846 			xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
847 		else
848 			xmit_len = xmit_len / bs * bs;
849 	}
850 
851 	hash_later = rctx->total - xmit_len;
852 	if (hash_later < 0)
853 		hash_later = 0;
854 
855 	if (rctx->bufcnt && nbytes) {
856 		/* have data from previous operation and current */
857 		sg_init_table(rctx->sgl, 2);
858 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
859 
860 		sg_chain(rctx->sgl, 2, req->src);
861 
862 		rctx->sg = rctx->sgl;
863 
864 		rctx->sg_len++;
865 	} else if (rctx->bufcnt) {
866 		/* have buffered data only */
867 		sg_init_table(rctx->sgl, 1);
868 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
869 
870 		rctx->sg = rctx->sgl;
871 
872 		rctx->sg_len = 1;
873 	}
874 
875 	if (hash_later) {
876 		if (req->nbytes) {
877 			scatterwalk_map_and_copy(rctx->buffer, req->src,
878 						 req->nbytes - hash_later,
879 						 hash_later, 0);
880 		} else {
881 			memcpy(rctx->buffer, rctx->buffer + xmit_len,
882 			       hash_later);
883 		}
884 		rctx->bufcnt = hash_later;
885 	} else {
886 		rctx->bufcnt = 0;
887 	}
888 
889 	if (!final)
890 		rctx->total = xmit_len;
891 
892 	return 0;
893 }
894 
895 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
896 {
897 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
898 
899 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
900 
901 	clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
902 
903 	return 0;
904 }
905 
906 static int omap_sham_init(struct ahash_request *req)
907 {
908 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
909 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
910 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
911 	struct omap_sham_dev *dd = NULL, *tmp;
912 	int bs = 0;
913 
914 	spin_lock_bh(&sham.lock);
915 	if (!tctx->dd) {
916 		list_for_each_entry(tmp, &sham.dev_list, list) {
917 			dd = tmp;
918 			break;
919 		}
920 		tctx->dd = dd;
921 	} else {
922 		dd = tctx->dd;
923 	}
924 	spin_unlock_bh(&sham.lock);
925 
926 	ctx->dd = dd;
927 
928 	ctx->flags = 0;
929 
930 	dev_dbg(dd->dev, "init: digest size: %d\n",
931 		crypto_ahash_digestsize(tfm));
932 
933 	switch (crypto_ahash_digestsize(tfm)) {
934 	case MD5_DIGEST_SIZE:
935 		ctx->flags |= FLAGS_MODE_MD5;
936 		bs = SHA1_BLOCK_SIZE;
937 		break;
938 	case SHA1_DIGEST_SIZE:
939 		ctx->flags |= FLAGS_MODE_SHA1;
940 		bs = SHA1_BLOCK_SIZE;
941 		break;
942 	case SHA224_DIGEST_SIZE:
943 		ctx->flags |= FLAGS_MODE_SHA224;
944 		bs = SHA224_BLOCK_SIZE;
945 		break;
946 	case SHA256_DIGEST_SIZE:
947 		ctx->flags |= FLAGS_MODE_SHA256;
948 		bs = SHA256_BLOCK_SIZE;
949 		break;
950 	case SHA384_DIGEST_SIZE:
951 		ctx->flags |= FLAGS_MODE_SHA384;
952 		bs = SHA384_BLOCK_SIZE;
953 		break;
954 	case SHA512_DIGEST_SIZE:
955 		ctx->flags |= FLAGS_MODE_SHA512;
956 		bs = SHA512_BLOCK_SIZE;
957 		break;
958 	}
959 
960 	ctx->bufcnt = 0;
961 	ctx->digcnt = 0;
962 	ctx->total = 0;
963 	ctx->offset = 0;
964 	ctx->buflen = BUFLEN;
965 
966 	if (tctx->flags & BIT(FLAGS_HMAC)) {
967 		if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
968 			struct omap_sham_hmac_ctx *bctx = tctx->base;
969 
970 			memcpy(ctx->buffer, bctx->ipad, bs);
971 			ctx->bufcnt = bs;
972 		}
973 
974 		ctx->flags |= BIT(FLAGS_HMAC);
975 	}
976 
977 	return 0;
978 
979 }
980 
981 static int omap_sham_update_req(struct omap_sham_dev *dd)
982 {
983 	struct ahash_request *req = dd->req;
984 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
985 	int err;
986 	bool final = ctx->flags & BIT(FLAGS_FINUP);
987 
988 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
989 		 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
990 
991 	if (ctx->total < get_block_size(ctx) ||
992 	    ctx->total < OMAP_SHA_DMA_THRESHOLD)
993 		ctx->flags |= BIT(FLAGS_CPU);
994 
995 	if (ctx->flags & BIT(FLAGS_CPU))
996 		err = omap_sham_xmit_cpu(dd, ctx->total, final);
997 	else
998 		err = omap_sham_xmit_dma(dd, ctx->total, final);
999 
1000 	/* wait for dma completion before can take more data */
1001 	dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1002 
1003 	return err;
1004 }
1005 
1006 static int omap_sham_final_req(struct omap_sham_dev *dd)
1007 {
1008 	struct ahash_request *req = dd->req;
1009 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1010 	int err = 0, use_dma = 1;
1011 
1012 	if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1013 		/*
1014 		 * faster to handle last block with cpu or
1015 		 * use cpu when dma is not present.
1016 		 */
1017 		use_dma = 0;
1018 
1019 	if (use_dma)
1020 		err = omap_sham_xmit_dma(dd, ctx->total, 1);
1021 	else
1022 		err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1023 
1024 	ctx->bufcnt = 0;
1025 
1026 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
1027 
1028 	return err;
1029 }
1030 
1031 static int omap_sham_finish_hmac(struct ahash_request *req)
1032 {
1033 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1034 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1035 	int bs = crypto_shash_blocksize(bctx->shash);
1036 	int ds = crypto_shash_digestsize(bctx->shash);
1037 	SHASH_DESC_ON_STACK(shash, bctx->shash);
1038 
1039 	shash->tfm = bctx->shash;
1040 	shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
1041 
1042 	return crypto_shash_init(shash) ?:
1043 	       crypto_shash_update(shash, bctx->opad, bs) ?:
1044 	       crypto_shash_finup(shash, req->result, ds, req->result);
1045 }
1046 
1047 static int omap_sham_finish(struct ahash_request *req)
1048 {
1049 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1050 	struct omap_sham_dev *dd = ctx->dd;
1051 	int err = 0;
1052 
1053 	if (ctx->digcnt) {
1054 		omap_sham_copy_ready_hash(req);
1055 		if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1056 				!test_bit(FLAGS_AUTO_XOR, &dd->flags))
1057 			err = omap_sham_finish_hmac(req);
1058 	}
1059 
1060 	dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1061 
1062 	return err;
1063 }
1064 
1065 static void omap_sham_finish_req(struct ahash_request *req, int err)
1066 {
1067 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1068 	struct omap_sham_dev *dd = ctx->dd;
1069 
1070 	if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1071 		free_pages((unsigned long)sg_virt(ctx->sg),
1072 			   get_order(ctx->sg->length));
1073 
1074 	if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1075 		kfree(ctx->sg);
1076 
1077 	ctx->sg = NULL;
1078 
1079 	dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1080 
1081 	if (!err) {
1082 		dd->pdata->copy_hash(req, 1);
1083 		if (test_bit(FLAGS_FINAL, &dd->flags))
1084 			err = omap_sham_finish(req);
1085 	} else {
1086 		ctx->flags |= BIT(FLAGS_ERROR);
1087 	}
1088 
1089 	/* atomic operation is not needed here */
1090 	dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1091 			BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1092 
1093 	pm_runtime_mark_last_busy(dd->dev);
1094 	pm_runtime_put_autosuspend(dd->dev);
1095 
1096 	if (req->base.complete)
1097 		req->base.complete(&req->base, err);
1098 }
1099 
1100 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1101 				  struct ahash_request *req)
1102 {
1103 	struct crypto_async_request *async_req, *backlog;
1104 	struct omap_sham_reqctx *ctx;
1105 	unsigned long flags;
1106 	int err = 0, ret = 0;
1107 
1108 retry:
1109 	spin_lock_irqsave(&dd->lock, flags);
1110 	if (req)
1111 		ret = ahash_enqueue_request(&dd->queue, req);
1112 	if (test_bit(FLAGS_BUSY, &dd->flags)) {
1113 		spin_unlock_irqrestore(&dd->lock, flags);
1114 		return ret;
1115 	}
1116 	backlog = crypto_get_backlog(&dd->queue);
1117 	async_req = crypto_dequeue_request(&dd->queue);
1118 	if (async_req)
1119 		set_bit(FLAGS_BUSY, &dd->flags);
1120 	spin_unlock_irqrestore(&dd->lock, flags);
1121 
1122 	if (!async_req)
1123 		return ret;
1124 
1125 	if (backlog)
1126 		backlog->complete(backlog, -EINPROGRESS);
1127 
1128 	req = ahash_request_cast(async_req);
1129 	dd->req = req;
1130 	ctx = ahash_request_ctx(req);
1131 
1132 	err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1133 	if (err)
1134 		goto err1;
1135 
1136 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1137 						ctx->op, req->nbytes);
1138 
1139 	err = omap_sham_hw_init(dd);
1140 	if (err)
1141 		goto err1;
1142 
1143 	if (ctx->digcnt)
1144 		/* request has changed - restore hash */
1145 		dd->pdata->copy_hash(req, 0);
1146 
1147 	if (ctx->op == OP_UPDATE) {
1148 		err = omap_sham_update_req(dd);
1149 		if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1150 			/* no final() after finup() */
1151 			err = omap_sham_final_req(dd);
1152 	} else if (ctx->op == OP_FINAL) {
1153 		err = omap_sham_final_req(dd);
1154 	}
1155 err1:
1156 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1157 
1158 	if (err != -EINPROGRESS) {
1159 		/* done_task will not finish it, so do it here */
1160 		omap_sham_finish_req(req, err);
1161 		req = NULL;
1162 
1163 		/*
1164 		 * Execute next request immediately if there is anything
1165 		 * in queue.
1166 		 */
1167 		goto retry;
1168 	}
1169 
1170 	return ret;
1171 }
1172 
1173 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1174 {
1175 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1176 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1177 	struct omap_sham_dev *dd = tctx->dd;
1178 
1179 	ctx->op = op;
1180 
1181 	return omap_sham_handle_queue(dd, req);
1182 }
1183 
1184 static int omap_sham_update(struct ahash_request *req)
1185 {
1186 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1187 	struct omap_sham_dev *dd = ctx->dd;
1188 
1189 	if (!req->nbytes)
1190 		return 0;
1191 
1192 	if (ctx->total + req->nbytes < ctx->buflen) {
1193 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1194 					 0, req->nbytes, 0);
1195 		ctx->bufcnt += req->nbytes;
1196 		ctx->total += req->nbytes;
1197 		return 0;
1198 	}
1199 
1200 	if (dd->polling_mode)
1201 		ctx->flags |= BIT(FLAGS_CPU);
1202 
1203 	return omap_sham_enqueue(req, OP_UPDATE);
1204 }
1205 
1206 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1207 				  const u8 *data, unsigned int len, u8 *out)
1208 {
1209 	SHASH_DESC_ON_STACK(shash, tfm);
1210 
1211 	shash->tfm = tfm;
1212 	shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1213 
1214 	return crypto_shash_digest(shash, data, len, out);
1215 }
1216 
1217 static int omap_sham_final_shash(struct ahash_request *req)
1218 {
1219 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1220 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1221 	int offset = 0;
1222 
1223 	/*
1224 	 * If we are running HMAC on limited hardware support, skip
1225 	 * the ipad in the beginning of the buffer if we are going for
1226 	 * software fallback algorithm.
1227 	 */
1228 	if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1229 	    !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1230 		offset = get_block_size(ctx);
1231 
1232 	return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1233 				      ctx->buffer + offset,
1234 				      ctx->bufcnt - offset, req->result);
1235 }
1236 
1237 static int omap_sham_final(struct ahash_request *req)
1238 {
1239 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1240 
1241 	ctx->flags |= BIT(FLAGS_FINUP);
1242 
1243 	if (ctx->flags & BIT(FLAGS_ERROR))
1244 		return 0; /* uncompleted hash is not needed */
1245 
1246 	/*
1247 	 * OMAP HW accel works only with buffers >= 9.
1248 	 * HMAC is always >= 9 because ipad == block size.
1249 	 * If buffersize is less than DMA_THRESHOLD, we use fallback
1250 	 * SW encoding, as using DMA + HW in this case doesn't provide
1251 	 * any benefit.
1252 	 */
1253 	if (!ctx->digcnt && ctx->bufcnt < OMAP_SHA_DMA_THRESHOLD)
1254 		return omap_sham_final_shash(req);
1255 	else if (ctx->bufcnt)
1256 		return omap_sham_enqueue(req, OP_FINAL);
1257 
1258 	/* copy ready hash (+ finalize hmac) */
1259 	return omap_sham_finish(req);
1260 }
1261 
1262 static int omap_sham_finup(struct ahash_request *req)
1263 {
1264 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1265 	int err1, err2;
1266 
1267 	ctx->flags |= BIT(FLAGS_FINUP);
1268 
1269 	err1 = omap_sham_update(req);
1270 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1271 		return err1;
1272 	/*
1273 	 * final() has to be always called to cleanup resources
1274 	 * even if udpate() failed, except EINPROGRESS
1275 	 */
1276 	err2 = omap_sham_final(req);
1277 
1278 	return err1 ?: err2;
1279 }
1280 
1281 static int omap_sham_digest(struct ahash_request *req)
1282 {
1283 	return omap_sham_init(req) ?: omap_sham_finup(req);
1284 }
1285 
1286 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1287 		      unsigned int keylen)
1288 {
1289 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1290 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1291 	int bs = crypto_shash_blocksize(bctx->shash);
1292 	int ds = crypto_shash_digestsize(bctx->shash);
1293 	struct omap_sham_dev *dd = NULL, *tmp;
1294 	int err, i;
1295 
1296 	spin_lock_bh(&sham.lock);
1297 	if (!tctx->dd) {
1298 		list_for_each_entry(tmp, &sham.dev_list, list) {
1299 			dd = tmp;
1300 			break;
1301 		}
1302 		tctx->dd = dd;
1303 	} else {
1304 		dd = tctx->dd;
1305 	}
1306 	spin_unlock_bh(&sham.lock);
1307 
1308 	err = crypto_shash_setkey(tctx->fallback, key, keylen);
1309 	if (err)
1310 		return err;
1311 
1312 	if (keylen > bs) {
1313 		err = omap_sham_shash_digest(bctx->shash,
1314 				crypto_shash_get_flags(bctx->shash),
1315 				key, keylen, bctx->ipad);
1316 		if (err)
1317 			return err;
1318 		keylen = ds;
1319 	} else {
1320 		memcpy(bctx->ipad, key, keylen);
1321 	}
1322 
1323 	memset(bctx->ipad + keylen, 0, bs - keylen);
1324 
1325 	if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1326 		memcpy(bctx->opad, bctx->ipad, bs);
1327 
1328 		for (i = 0; i < bs; i++) {
1329 			bctx->ipad[i] ^= 0x36;
1330 			bctx->opad[i] ^= 0x5c;
1331 		}
1332 	}
1333 
1334 	return err;
1335 }
1336 
1337 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1338 {
1339 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1340 	const char *alg_name = crypto_tfm_alg_name(tfm);
1341 
1342 	/* Allocate a fallback and abort if it failed. */
1343 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1344 					    CRYPTO_ALG_NEED_FALLBACK);
1345 	if (IS_ERR(tctx->fallback)) {
1346 		pr_err("omap-sham: fallback driver '%s' "
1347 				"could not be loaded.\n", alg_name);
1348 		return PTR_ERR(tctx->fallback);
1349 	}
1350 
1351 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1352 				 sizeof(struct omap_sham_reqctx) + BUFLEN);
1353 
1354 	if (alg_base) {
1355 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1356 		tctx->flags |= BIT(FLAGS_HMAC);
1357 		bctx->shash = crypto_alloc_shash(alg_base, 0,
1358 						CRYPTO_ALG_NEED_FALLBACK);
1359 		if (IS_ERR(bctx->shash)) {
1360 			pr_err("omap-sham: base driver '%s' "
1361 					"could not be loaded.\n", alg_base);
1362 			crypto_free_shash(tctx->fallback);
1363 			return PTR_ERR(bctx->shash);
1364 		}
1365 
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1372 {
1373 	return omap_sham_cra_init_alg(tfm, NULL);
1374 }
1375 
1376 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1377 {
1378 	return omap_sham_cra_init_alg(tfm, "sha1");
1379 }
1380 
1381 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1382 {
1383 	return omap_sham_cra_init_alg(tfm, "sha224");
1384 }
1385 
1386 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1387 {
1388 	return omap_sham_cra_init_alg(tfm, "sha256");
1389 }
1390 
1391 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1392 {
1393 	return omap_sham_cra_init_alg(tfm, "md5");
1394 }
1395 
1396 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1397 {
1398 	return omap_sham_cra_init_alg(tfm, "sha384");
1399 }
1400 
1401 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1402 {
1403 	return omap_sham_cra_init_alg(tfm, "sha512");
1404 }
1405 
1406 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1407 {
1408 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1409 
1410 	crypto_free_shash(tctx->fallback);
1411 	tctx->fallback = NULL;
1412 
1413 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1414 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1415 		crypto_free_shash(bctx->shash);
1416 	}
1417 }
1418 
1419 static int omap_sham_export(struct ahash_request *req, void *out)
1420 {
1421 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1422 
1423 	memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1424 
1425 	return 0;
1426 }
1427 
1428 static int omap_sham_import(struct ahash_request *req, const void *in)
1429 {
1430 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1431 	const struct omap_sham_reqctx *ctx_in = in;
1432 
1433 	memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1434 
1435 	return 0;
1436 }
1437 
1438 static struct ahash_alg algs_sha1_md5[] = {
1439 {
1440 	.init		= omap_sham_init,
1441 	.update		= omap_sham_update,
1442 	.final		= omap_sham_final,
1443 	.finup		= omap_sham_finup,
1444 	.digest		= omap_sham_digest,
1445 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1446 	.halg.base	= {
1447 		.cra_name		= "sha1",
1448 		.cra_driver_name	= "omap-sha1",
1449 		.cra_priority		= 400,
1450 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1451 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1452 						CRYPTO_ALG_ASYNC |
1453 						CRYPTO_ALG_NEED_FALLBACK,
1454 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1455 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1456 		.cra_alignmask		= OMAP_ALIGN_MASK,
1457 		.cra_module		= THIS_MODULE,
1458 		.cra_init		= omap_sham_cra_init,
1459 		.cra_exit		= omap_sham_cra_exit,
1460 	}
1461 },
1462 {
1463 	.init		= omap_sham_init,
1464 	.update		= omap_sham_update,
1465 	.final		= omap_sham_final,
1466 	.finup		= omap_sham_finup,
1467 	.digest		= omap_sham_digest,
1468 	.halg.digestsize	= MD5_DIGEST_SIZE,
1469 	.halg.base	= {
1470 		.cra_name		= "md5",
1471 		.cra_driver_name	= "omap-md5",
1472 		.cra_priority		= 400,
1473 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1474 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1475 						CRYPTO_ALG_ASYNC |
1476 						CRYPTO_ALG_NEED_FALLBACK,
1477 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1478 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1479 		.cra_alignmask		= OMAP_ALIGN_MASK,
1480 		.cra_module		= THIS_MODULE,
1481 		.cra_init		= omap_sham_cra_init,
1482 		.cra_exit		= omap_sham_cra_exit,
1483 	}
1484 },
1485 {
1486 	.init		= omap_sham_init,
1487 	.update		= omap_sham_update,
1488 	.final		= omap_sham_final,
1489 	.finup		= omap_sham_finup,
1490 	.digest		= omap_sham_digest,
1491 	.setkey		= omap_sham_setkey,
1492 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1493 	.halg.base	= {
1494 		.cra_name		= "hmac(sha1)",
1495 		.cra_driver_name	= "omap-hmac-sha1",
1496 		.cra_priority		= 400,
1497 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1498 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1499 						CRYPTO_ALG_ASYNC |
1500 						CRYPTO_ALG_NEED_FALLBACK,
1501 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1502 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1503 					sizeof(struct omap_sham_hmac_ctx),
1504 		.cra_alignmask		= OMAP_ALIGN_MASK,
1505 		.cra_module		= THIS_MODULE,
1506 		.cra_init		= omap_sham_cra_sha1_init,
1507 		.cra_exit		= omap_sham_cra_exit,
1508 	}
1509 },
1510 {
1511 	.init		= omap_sham_init,
1512 	.update		= omap_sham_update,
1513 	.final		= omap_sham_final,
1514 	.finup		= omap_sham_finup,
1515 	.digest		= omap_sham_digest,
1516 	.setkey		= omap_sham_setkey,
1517 	.halg.digestsize	= MD5_DIGEST_SIZE,
1518 	.halg.base	= {
1519 		.cra_name		= "hmac(md5)",
1520 		.cra_driver_name	= "omap-hmac-md5",
1521 		.cra_priority		= 400,
1522 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1523 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1524 						CRYPTO_ALG_ASYNC |
1525 						CRYPTO_ALG_NEED_FALLBACK,
1526 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1527 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1528 					sizeof(struct omap_sham_hmac_ctx),
1529 		.cra_alignmask		= OMAP_ALIGN_MASK,
1530 		.cra_module		= THIS_MODULE,
1531 		.cra_init		= omap_sham_cra_md5_init,
1532 		.cra_exit		= omap_sham_cra_exit,
1533 	}
1534 }
1535 };
1536 
1537 /* OMAP4 has some algs in addition to what OMAP2 has */
1538 static struct ahash_alg algs_sha224_sha256[] = {
1539 {
1540 	.init		= omap_sham_init,
1541 	.update		= omap_sham_update,
1542 	.final		= omap_sham_final,
1543 	.finup		= omap_sham_finup,
1544 	.digest		= omap_sham_digest,
1545 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1546 	.halg.base	= {
1547 		.cra_name		= "sha224",
1548 		.cra_driver_name	= "omap-sha224",
1549 		.cra_priority		= 400,
1550 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1551 						CRYPTO_ALG_ASYNC |
1552 						CRYPTO_ALG_NEED_FALLBACK,
1553 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1554 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1555 		.cra_alignmask		= OMAP_ALIGN_MASK,
1556 		.cra_module		= THIS_MODULE,
1557 		.cra_init		= omap_sham_cra_init,
1558 		.cra_exit		= omap_sham_cra_exit,
1559 	}
1560 },
1561 {
1562 	.init		= omap_sham_init,
1563 	.update		= omap_sham_update,
1564 	.final		= omap_sham_final,
1565 	.finup		= omap_sham_finup,
1566 	.digest		= omap_sham_digest,
1567 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1568 	.halg.base	= {
1569 		.cra_name		= "sha256",
1570 		.cra_driver_name	= "omap-sha256",
1571 		.cra_priority		= 400,
1572 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1573 						CRYPTO_ALG_ASYNC |
1574 						CRYPTO_ALG_NEED_FALLBACK,
1575 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1576 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1577 		.cra_alignmask		= OMAP_ALIGN_MASK,
1578 		.cra_module		= THIS_MODULE,
1579 		.cra_init		= omap_sham_cra_init,
1580 		.cra_exit		= omap_sham_cra_exit,
1581 	}
1582 },
1583 {
1584 	.init		= omap_sham_init,
1585 	.update		= omap_sham_update,
1586 	.final		= omap_sham_final,
1587 	.finup		= omap_sham_finup,
1588 	.digest		= omap_sham_digest,
1589 	.setkey		= omap_sham_setkey,
1590 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1591 	.halg.base	= {
1592 		.cra_name		= "hmac(sha224)",
1593 		.cra_driver_name	= "omap-hmac-sha224",
1594 		.cra_priority		= 400,
1595 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1596 						CRYPTO_ALG_ASYNC |
1597 						CRYPTO_ALG_NEED_FALLBACK,
1598 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1599 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1600 					sizeof(struct omap_sham_hmac_ctx),
1601 		.cra_alignmask		= OMAP_ALIGN_MASK,
1602 		.cra_module		= THIS_MODULE,
1603 		.cra_init		= omap_sham_cra_sha224_init,
1604 		.cra_exit		= omap_sham_cra_exit,
1605 	}
1606 },
1607 {
1608 	.init		= omap_sham_init,
1609 	.update		= omap_sham_update,
1610 	.final		= omap_sham_final,
1611 	.finup		= omap_sham_finup,
1612 	.digest		= omap_sham_digest,
1613 	.setkey		= omap_sham_setkey,
1614 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1615 	.halg.base	= {
1616 		.cra_name		= "hmac(sha256)",
1617 		.cra_driver_name	= "omap-hmac-sha256",
1618 		.cra_priority		= 400,
1619 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1620 						CRYPTO_ALG_ASYNC |
1621 						CRYPTO_ALG_NEED_FALLBACK,
1622 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1623 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1624 					sizeof(struct omap_sham_hmac_ctx),
1625 		.cra_alignmask		= OMAP_ALIGN_MASK,
1626 		.cra_module		= THIS_MODULE,
1627 		.cra_init		= omap_sham_cra_sha256_init,
1628 		.cra_exit		= omap_sham_cra_exit,
1629 	}
1630 },
1631 };
1632 
1633 static struct ahash_alg algs_sha384_sha512[] = {
1634 {
1635 	.init		= omap_sham_init,
1636 	.update		= omap_sham_update,
1637 	.final		= omap_sham_final,
1638 	.finup		= omap_sham_finup,
1639 	.digest		= omap_sham_digest,
1640 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1641 	.halg.base	= {
1642 		.cra_name		= "sha384",
1643 		.cra_driver_name	= "omap-sha384",
1644 		.cra_priority		= 400,
1645 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1646 						CRYPTO_ALG_ASYNC |
1647 						CRYPTO_ALG_NEED_FALLBACK,
1648 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1649 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1650 		.cra_alignmask		= OMAP_ALIGN_MASK,
1651 		.cra_module		= THIS_MODULE,
1652 		.cra_init		= omap_sham_cra_init,
1653 		.cra_exit		= omap_sham_cra_exit,
1654 	}
1655 },
1656 {
1657 	.init		= omap_sham_init,
1658 	.update		= omap_sham_update,
1659 	.final		= omap_sham_final,
1660 	.finup		= omap_sham_finup,
1661 	.digest		= omap_sham_digest,
1662 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1663 	.halg.base	= {
1664 		.cra_name		= "sha512",
1665 		.cra_driver_name	= "omap-sha512",
1666 		.cra_priority		= 400,
1667 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1668 						CRYPTO_ALG_ASYNC |
1669 						CRYPTO_ALG_NEED_FALLBACK,
1670 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1671 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1672 		.cra_alignmask		= OMAP_ALIGN_MASK,
1673 		.cra_module		= THIS_MODULE,
1674 		.cra_init		= omap_sham_cra_init,
1675 		.cra_exit		= omap_sham_cra_exit,
1676 	}
1677 },
1678 {
1679 	.init		= omap_sham_init,
1680 	.update		= omap_sham_update,
1681 	.final		= omap_sham_final,
1682 	.finup		= omap_sham_finup,
1683 	.digest		= omap_sham_digest,
1684 	.setkey		= omap_sham_setkey,
1685 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1686 	.halg.base	= {
1687 		.cra_name		= "hmac(sha384)",
1688 		.cra_driver_name	= "omap-hmac-sha384",
1689 		.cra_priority		= 400,
1690 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1691 						CRYPTO_ALG_ASYNC |
1692 						CRYPTO_ALG_NEED_FALLBACK,
1693 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1694 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1695 					sizeof(struct omap_sham_hmac_ctx),
1696 		.cra_alignmask		= OMAP_ALIGN_MASK,
1697 		.cra_module		= THIS_MODULE,
1698 		.cra_init		= omap_sham_cra_sha384_init,
1699 		.cra_exit		= omap_sham_cra_exit,
1700 	}
1701 },
1702 {
1703 	.init		= omap_sham_init,
1704 	.update		= omap_sham_update,
1705 	.final		= omap_sham_final,
1706 	.finup		= omap_sham_finup,
1707 	.digest		= omap_sham_digest,
1708 	.setkey		= omap_sham_setkey,
1709 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1710 	.halg.base	= {
1711 		.cra_name		= "hmac(sha512)",
1712 		.cra_driver_name	= "omap-hmac-sha512",
1713 		.cra_priority		= 400,
1714 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1715 						CRYPTO_ALG_ASYNC |
1716 						CRYPTO_ALG_NEED_FALLBACK,
1717 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1718 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1719 					sizeof(struct omap_sham_hmac_ctx),
1720 		.cra_alignmask		= OMAP_ALIGN_MASK,
1721 		.cra_module		= THIS_MODULE,
1722 		.cra_init		= omap_sham_cra_sha512_init,
1723 		.cra_exit		= omap_sham_cra_exit,
1724 	}
1725 },
1726 };
1727 
1728 static void omap_sham_done_task(unsigned long data)
1729 {
1730 	struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1731 	int err = 0;
1732 
1733 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1734 		omap_sham_handle_queue(dd, NULL);
1735 		return;
1736 	}
1737 
1738 	if (test_bit(FLAGS_CPU, &dd->flags)) {
1739 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1740 			goto finish;
1741 	} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1742 		if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1743 			omap_sham_update_dma_stop(dd);
1744 			if (dd->err) {
1745 				err = dd->err;
1746 				goto finish;
1747 			}
1748 		}
1749 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1750 			/* hash or semi-hash ready */
1751 			clear_bit(FLAGS_DMA_READY, &dd->flags);
1752 				goto finish;
1753 		}
1754 	}
1755 
1756 	return;
1757 
1758 finish:
1759 	dev_dbg(dd->dev, "update done: err: %d\n", err);
1760 	/* finish curent request */
1761 	omap_sham_finish_req(dd->req, err);
1762 
1763 	/* If we are not busy, process next req */
1764 	if (!test_bit(FLAGS_BUSY, &dd->flags))
1765 		omap_sham_handle_queue(dd, NULL);
1766 }
1767 
1768 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1769 {
1770 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1771 		dev_warn(dd->dev, "Interrupt when no active requests.\n");
1772 	} else {
1773 		set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1774 		tasklet_schedule(&dd->done_task);
1775 	}
1776 
1777 	return IRQ_HANDLED;
1778 }
1779 
1780 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1781 {
1782 	struct omap_sham_dev *dd = dev_id;
1783 
1784 	if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1785 		/* final -> allow device to go to power-saving mode */
1786 		omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1787 
1788 	omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1789 				 SHA_REG_CTRL_OUTPUT_READY);
1790 	omap_sham_read(dd, SHA_REG_CTRL);
1791 
1792 	return omap_sham_irq_common(dd);
1793 }
1794 
1795 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1796 {
1797 	struct omap_sham_dev *dd = dev_id;
1798 
1799 	omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1800 
1801 	return omap_sham_irq_common(dd);
1802 }
1803 
1804 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1805 	{
1806 		.algs_list	= algs_sha1_md5,
1807 		.size		= ARRAY_SIZE(algs_sha1_md5),
1808 	},
1809 };
1810 
1811 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1812 	.algs_info	= omap_sham_algs_info_omap2,
1813 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap2),
1814 	.flags		= BIT(FLAGS_BE32_SHA1),
1815 	.digest_size	= SHA1_DIGEST_SIZE,
1816 	.copy_hash	= omap_sham_copy_hash_omap2,
1817 	.write_ctrl	= omap_sham_write_ctrl_omap2,
1818 	.trigger	= omap_sham_trigger_omap2,
1819 	.poll_irq	= omap_sham_poll_irq_omap2,
1820 	.intr_hdlr	= omap_sham_irq_omap2,
1821 	.idigest_ofs	= 0x00,
1822 	.din_ofs	= 0x1c,
1823 	.digcnt_ofs	= 0x14,
1824 	.rev_ofs	= 0x5c,
1825 	.mask_ofs	= 0x60,
1826 	.sysstatus_ofs	= 0x64,
1827 	.major_mask	= 0xf0,
1828 	.major_shift	= 4,
1829 	.minor_mask	= 0x0f,
1830 	.minor_shift	= 0,
1831 };
1832 
1833 #ifdef CONFIG_OF
1834 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1835 	{
1836 		.algs_list	= algs_sha1_md5,
1837 		.size		= ARRAY_SIZE(algs_sha1_md5),
1838 	},
1839 	{
1840 		.algs_list	= algs_sha224_sha256,
1841 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1842 	},
1843 };
1844 
1845 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1846 	.algs_info	= omap_sham_algs_info_omap4,
1847 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap4),
1848 	.flags		= BIT(FLAGS_AUTO_XOR),
1849 	.digest_size	= SHA256_DIGEST_SIZE,
1850 	.copy_hash	= omap_sham_copy_hash_omap4,
1851 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1852 	.trigger	= omap_sham_trigger_omap4,
1853 	.poll_irq	= omap_sham_poll_irq_omap4,
1854 	.intr_hdlr	= omap_sham_irq_omap4,
1855 	.idigest_ofs	= 0x020,
1856 	.odigest_ofs	= 0x0,
1857 	.din_ofs	= 0x080,
1858 	.digcnt_ofs	= 0x040,
1859 	.rev_ofs	= 0x100,
1860 	.mask_ofs	= 0x110,
1861 	.sysstatus_ofs	= 0x114,
1862 	.mode_ofs	= 0x44,
1863 	.length_ofs	= 0x48,
1864 	.major_mask	= 0x0700,
1865 	.major_shift	= 8,
1866 	.minor_mask	= 0x003f,
1867 	.minor_shift	= 0,
1868 };
1869 
1870 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1871 	{
1872 		.algs_list	= algs_sha1_md5,
1873 		.size		= ARRAY_SIZE(algs_sha1_md5),
1874 	},
1875 	{
1876 		.algs_list	= algs_sha224_sha256,
1877 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1878 	},
1879 	{
1880 		.algs_list	= algs_sha384_sha512,
1881 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1882 	},
1883 };
1884 
1885 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1886 	.algs_info	= omap_sham_algs_info_omap5,
1887 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap5),
1888 	.flags		= BIT(FLAGS_AUTO_XOR),
1889 	.digest_size	= SHA512_DIGEST_SIZE,
1890 	.copy_hash	= omap_sham_copy_hash_omap4,
1891 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1892 	.trigger	= omap_sham_trigger_omap4,
1893 	.poll_irq	= omap_sham_poll_irq_omap4,
1894 	.intr_hdlr	= omap_sham_irq_omap4,
1895 	.idigest_ofs	= 0x240,
1896 	.odigest_ofs	= 0x200,
1897 	.din_ofs	= 0x080,
1898 	.digcnt_ofs	= 0x280,
1899 	.rev_ofs	= 0x100,
1900 	.mask_ofs	= 0x110,
1901 	.sysstatus_ofs	= 0x114,
1902 	.mode_ofs	= 0x284,
1903 	.length_ofs	= 0x288,
1904 	.major_mask	= 0x0700,
1905 	.major_shift	= 8,
1906 	.minor_mask	= 0x003f,
1907 	.minor_shift	= 0,
1908 };
1909 
1910 static const struct of_device_id omap_sham_of_match[] = {
1911 	{
1912 		.compatible	= "ti,omap2-sham",
1913 		.data		= &omap_sham_pdata_omap2,
1914 	},
1915 	{
1916 		.compatible	= "ti,omap3-sham",
1917 		.data		= &omap_sham_pdata_omap2,
1918 	},
1919 	{
1920 		.compatible	= "ti,omap4-sham",
1921 		.data		= &omap_sham_pdata_omap4,
1922 	},
1923 	{
1924 		.compatible	= "ti,omap5-sham",
1925 		.data		= &omap_sham_pdata_omap5,
1926 	},
1927 	{},
1928 };
1929 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1930 
1931 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1932 		struct device *dev, struct resource *res)
1933 {
1934 	struct device_node *node = dev->of_node;
1935 	const struct of_device_id *match;
1936 	int err = 0;
1937 
1938 	match = of_match_device(of_match_ptr(omap_sham_of_match), dev);
1939 	if (!match) {
1940 		dev_err(dev, "no compatible OF match\n");
1941 		err = -EINVAL;
1942 		goto err;
1943 	}
1944 
1945 	err = of_address_to_resource(node, 0, res);
1946 	if (err < 0) {
1947 		dev_err(dev, "can't translate OF node address\n");
1948 		err = -EINVAL;
1949 		goto err;
1950 	}
1951 
1952 	dd->irq = irq_of_parse_and_map(node, 0);
1953 	if (!dd->irq) {
1954 		dev_err(dev, "can't translate OF irq value\n");
1955 		err = -EINVAL;
1956 		goto err;
1957 	}
1958 
1959 	dd->pdata = match->data;
1960 
1961 err:
1962 	return err;
1963 }
1964 #else
1965 static const struct of_device_id omap_sham_of_match[] = {
1966 	{},
1967 };
1968 
1969 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1970 		struct device *dev, struct resource *res)
1971 {
1972 	return -EINVAL;
1973 }
1974 #endif
1975 
1976 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1977 		struct platform_device *pdev, struct resource *res)
1978 {
1979 	struct device *dev = &pdev->dev;
1980 	struct resource *r;
1981 	int err = 0;
1982 
1983 	/* Get the base address */
1984 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1985 	if (!r) {
1986 		dev_err(dev, "no MEM resource info\n");
1987 		err = -ENODEV;
1988 		goto err;
1989 	}
1990 	memcpy(res, r, sizeof(*res));
1991 
1992 	/* Get the IRQ */
1993 	dd->irq = platform_get_irq(pdev, 0);
1994 	if (dd->irq < 0) {
1995 		dev_err(dev, "no IRQ resource info\n");
1996 		err = dd->irq;
1997 		goto err;
1998 	}
1999 
2000 	/* Only OMAP2/3 can be non-DT */
2001 	dd->pdata = &omap_sham_pdata_omap2;
2002 
2003 err:
2004 	return err;
2005 }
2006 
2007 static int omap_sham_probe(struct platform_device *pdev)
2008 {
2009 	struct omap_sham_dev *dd;
2010 	struct device *dev = &pdev->dev;
2011 	struct resource res;
2012 	dma_cap_mask_t mask;
2013 	int err, i, j;
2014 	u32 rev;
2015 
2016 	dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2017 	if (dd == NULL) {
2018 		dev_err(dev, "unable to alloc data struct.\n");
2019 		err = -ENOMEM;
2020 		goto data_err;
2021 	}
2022 	dd->dev = dev;
2023 	platform_set_drvdata(pdev, dd);
2024 
2025 	INIT_LIST_HEAD(&dd->list);
2026 	spin_lock_init(&dd->lock);
2027 	tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2028 	crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2029 
2030 	err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2031 			       omap_sham_get_res_pdev(dd, pdev, &res);
2032 	if (err)
2033 		goto data_err;
2034 
2035 	dd->io_base = devm_ioremap_resource(dev, &res);
2036 	if (IS_ERR(dd->io_base)) {
2037 		err = PTR_ERR(dd->io_base);
2038 		goto data_err;
2039 	}
2040 	dd->phys_base = res.start;
2041 
2042 	err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2043 			       IRQF_TRIGGER_NONE, dev_name(dev), dd);
2044 	if (err) {
2045 		dev_err(dev, "unable to request irq %d, err = %d\n",
2046 			dd->irq, err);
2047 		goto data_err;
2048 	}
2049 
2050 	dma_cap_zero(mask);
2051 	dma_cap_set(DMA_SLAVE, mask);
2052 
2053 	dd->dma_lch = dma_request_chan(dev, "rx");
2054 	if (IS_ERR(dd->dma_lch)) {
2055 		err = PTR_ERR(dd->dma_lch);
2056 		if (err == -EPROBE_DEFER)
2057 			goto data_err;
2058 
2059 		dd->polling_mode = 1;
2060 		dev_dbg(dev, "using polling mode instead of dma\n");
2061 	}
2062 
2063 	dd->flags |= dd->pdata->flags;
2064 
2065 	pm_runtime_use_autosuspend(dev);
2066 	pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2067 
2068 	pm_runtime_enable(dev);
2069 	pm_runtime_irq_safe(dev);
2070 
2071 	err = pm_runtime_get_sync(dev);
2072 	if (err < 0) {
2073 		dev_err(dev, "failed to get sync: %d\n", err);
2074 		goto err_pm;
2075 	}
2076 
2077 	rev = omap_sham_read(dd, SHA_REG_REV(dd));
2078 	pm_runtime_put_sync(&pdev->dev);
2079 
2080 	dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2081 		(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2082 		(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2083 
2084 	spin_lock(&sham.lock);
2085 	list_add_tail(&dd->list, &sham.dev_list);
2086 	spin_unlock(&sham.lock);
2087 
2088 	for (i = 0; i < dd->pdata->algs_info_size; i++) {
2089 		for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2090 			struct ahash_alg *alg;
2091 
2092 			alg = &dd->pdata->algs_info[i].algs_list[j];
2093 			alg->export = omap_sham_export;
2094 			alg->import = omap_sham_import;
2095 			alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2096 					      BUFLEN;
2097 			err = crypto_register_ahash(alg);
2098 			if (err)
2099 				goto err_algs;
2100 
2101 			dd->pdata->algs_info[i].registered++;
2102 		}
2103 	}
2104 
2105 	return 0;
2106 
2107 err_algs:
2108 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2109 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2110 			crypto_unregister_ahash(
2111 					&dd->pdata->algs_info[i].algs_list[j]);
2112 err_pm:
2113 	pm_runtime_disable(dev);
2114 	if (!dd->polling_mode)
2115 		dma_release_channel(dd->dma_lch);
2116 data_err:
2117 	dev_err(dev, "initialization failed.\n");
2118 
2119 	return err;
2120 }
2121 
2122 static int omap_sham_remove(struct platform_device *pdev)
2123 {
2124 	static struct omap_sham_dev *dd;
2125 	int i, j;
2126 
2127 	dd = platform_get_drvdata(pdev);
2128 	if (!dd)
2129 		return -ENODEV;
2130 	spin_lock(&sham.lock);
2131 	list_del(&dd->list);
2132 	spin_unlock(&sham.lock);
2133 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2134 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2135 			crypto_unregister_ahash(
2136 					&dd->pdata->algs_info[i].algs_list[j]);
2137 	tasklet_kill(&dd->done_task);
2138 	pm_runtime_disable(&pdev->dev);
2139 
2140 	if (!dd->polling_mode)
2141 		dma_release_channel(dd->dma_lch);
2142 
2143 	return 0;
2144 }
2145 
2146 #ifdef CONFIG_PM_SLEEP
2147 static int omap_sham_suspend(struct device *dev)
2148 {
2149 	pm_runtime_put_sync(dev);
2150 	return 0;
2151 }
2152 
2153 static int omap_sham_resume(struct device *dev)
2154 {
2155 	int err = pm_runtime_get_sync(dev);
2156 	if (err < 0) {
2157 		dev_err(dev, "failed to get sync: %d\n", err);
2158 		return err;
2159 	}
2160 	return 0;
2161 }
2162 #endif
2163 
2164 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2165 
2166 static struct platform_driver omap_sham_driver = {
2167 	.probe	= omap_sham_probe,
2168 	.remove	= omap_sham_remove,
2169 	.driver	= {
2170 		.name	= "omap-sham",
2171 		.pm	= &omap_sham_pm_ops,
2172 		.of_match_table	= omap_sham_of_match,
2173 	},
2174 };
2175 
2176 module_platform_driver(omap_sham_driver);
2177 
2178 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2179 MODULE_LICENSE("GPL v2");
2180 MODULE_AUTHOR("Dmitry Kasatkin");
2181 MODULE_ALIAS("platform:omap-sham");
2182