xref: /openbmc/linux/drivers/crypto/omap-sham.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for OMAP SHA1/MD5 HW acceleration.
6  *
7  * Copyright (c) 2010 Nokia Corporation
8  * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
9  * Copyright (c) 2011 Texas Instruments Incorporated
10  *
11  * Some ideas are from old omap-sha1-md5.c driver.
12  */
13 
14 #define pr_fmt(fmt) "%s: " fmt, __func__
15 
16 #include <linux/err.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/platform_device.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/sha.h>
39 #include <crypto/hash.h>
40 #include <crypto/hmac.h>
41 #include <crypto/internal/hash.h>
42 
43 #define MD5_DIGEST_SIZE			16
44 
45 #define SHA_REG_IDIGEST(dd, x)		((dd)->pdata->idigest_ofs + ((x)*0x04))
46 #define SHA_REG_DIN(dd, x)		((dd)->pdata->din_ofs + ((x) * 0x04))
47 #define SHA_REG_DIGCNT(dd)		((dd)->pdata->digcnt_ofs)
48 
49 #define SHA_REG_ODIGEST(dd, x)		((dd)->pdata->odigest_ofs + (x * 0x04))
50 
51 #define SHA_REG_CTRL			0x18
52 #define SHA_REG_CTRL_LENGTH		(0xFFFFFFFF << 5)
53 #define SHA_REG_CTRL_CLOSE_HASH		(1 << 4)
54 #define SHA_REG_CTRL_ALGO_CONST		(1 << 3)
55 #define SHA_REG_CTRL_ALGO		(1 << 2)
56 #define SHA_REG_CTRL_INPUT_READY	(1 << 1)
57 #define SHA_REG_CTRL_OUTPUT_READY	(1 << 0)
58 
59 #define SHA_REG_REV(dd)			((dd)->pdata->rev_ofs)
60 
61 #define SHA_REG_MASK(dd)		((dd)->pdata->mask_ofs)
62 #define SHA_REG_MASK_DMA_EN		(1 << 3)
63 #define SHA_REG_MASK_IT_EN		(1 << 2)
64 #define SHA_REG_MASK_SOFTRESET		(1 << 1)
65 #define SHA_REG_AUTOIDLE		(1 << 0)
66 
67 #define SHA_REG_SYSSTATUS(dd)		((dd)->pdata->sysstatus_ofs)
68 #define SHA_REG_SYSSTATUS_RESETDONE	(1 << 0)
69 
70 #define SHA_REG_MODE(dd)		((dd)->pdata->mode_ofs)
71 #define SHA_REG_MODE_HMAC_OUTER_HASH	(1 << 7)
72 #define SHA_REG_MODE_HMAC_KEY_PROC	(1 << 5)
73 #define SHA_REG_MODE_CLOSE_HASH		(1 << 4)
74 #define SHA_REG_MODE_ALGO_CONSTANT	(1 << 3)
75 
76 #define SHA_REG_MODE_ALGO_MASK		(7 << 0)
77 #define SHA_REG_MODE_ALGO_MD5_128	(0 << 1)
78 #define SHA_REG_MODE_ALGO_SHA1_160	(1 << 1)
79 #define SHA_REG_MODE_ALGO_SHA2_224	(2 << 1)
80 #define SHA_REG_MODE_ALGO_SHA2_256	(3 << 1)
81 #define SHA_REG_MODE_ALGO_SHA2_384	(1 << 0)
82 #define SHA_REG_MODE_ALGO_SHA2_512	(3 << 0)
83 
84 #define SHA_REG_LENGTH(dd)		((dd)->pdata->length_ofs)
85 
86 #define SHA_REG_IRQSTATUS		0x118
87 #define SHA_REG_IRQSTATUS_CTX_RDY	(1 << 3)
88 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
89 #define SHA_REG_IRQSTATUS_INPUT_RDY	(1 << 1)
90 #define SHA_REG_IRQSTATUS_OUTPUT_RDY	(1 << 0)
91 
92 #define SHA_REG_IRQENA			0x11C
93 #define SHA_REG_IRQENA_CTX_RDY		(1 << 3)
94 #define SHA_REG_IRQENA_PARTHASH_RDY	(1 << 2)
95 #define SHA_REG_IRQENA_INPUT_RDY	(1 << 1)
96 #define SHA_REG_IRQENA_OUTPUT_RDY	(1 << 0)
97 
98 #define DEFAULT_TIMEOUT_INTERVAL	HZ
99 
100 #define DEFAULT_AUTOSUSPEND_DELAY	1000
101 
102 /* mostly device flags */
103 #define FLAGS_BUSY		0
104 #define FLAGS_FINAL		1
105 #define FLAGS_DMA_ACTIVE	2
106 #define FLAGS_OUTPUT_READY	3
107 #define FLAGS_INIT		4
108 #define FLAGS_CPU		5
109 #define FLAGS_DMA_READY		6
110 #define FLAGS_AUTO_XOR		7
111 #define FLAGS_BE32_SHA1		8
112 #define FLAGS_SGS_COPIED	9
113 #define FLAGS_SGS_ALLOCED	10
114 #define FLAGS_HUGE		11
115 
116 /* context flags */
117 #define FLAGS_FINUP		16
118 
119 #define FLAGS_MODE_SHIFT	18
120 #define FLAGS_MODE_MASK		(SHA_REG_MODE_ALGO_MASK	<< FLAGS_MODE_SHIFT)
121 #define FLAGS_MODE_MD5		(SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
122 #define FLAGS_MODE_SHA1		(SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_SHA224	(SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA256	(SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA384	(SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA512	(SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
127 
128 #define FLAGS_HMAC		21
129 #define FLAGS_ERROR		22
130 
131 #define OP_UPDATE		1
132 #define OP_FINAL		2
133 
134 #define OMAP_ALIGN_MASK		(sizeof(u32)-1)
135 #define OMAP_ALIGNED		__attribute__((aligned(sizeof(u32))))
136 
137 #define BUFLEN			SHA512_BLOCK_SIZE
138 #define OMAP_SHA_DMA_THRESHOLD	256
139 
140 #define OMAP_SHA_MAX_DMA_LEN	(1024 * 2048)
141 
142 struct omap_sham_dev;
143 
144 struct omap_sham_reqctx {
145 	struct omap_sham_dev	*dd;
146 	unsigned long		flags;
147 	unsigned long		op;
148 
149 	u8			digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 	size_t			digcnt;
151 	size_t			bufcnt;
152 	size_t			buflen;
153 
154 	/* walk state */
155 	struct scatterlist	*sg;
156 	struct scatterlist	sgl[2];
157 	int			offset;	/* offset in current sg */
158 	int			sg_len;
159 	unsigned int		total;	/* total request */
160 
161 	u8			buffer[] OMAP_ALIGNED;
162 };
163 
164 struct omap_sham_hmac_ctx {
165 	struct crypto_shash	*shash;
166 	u8			ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 	u8			opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169 
170 struct omap_sham_ctx {
171 	struct omap_sham_dev	*dd;
172 
173 	unsigned long		flags;
174 
175 	/* fallback stuff */
176 	struct crypto_shash	*fallback;
177 
178 	struct omap_sham_hmac_ctx base[];
179 };
180 
181 #define OMAP_SHAM_QUEUE_LENGTH	10
182 
183 struct omap_sham_algs_info {
184 	struct ahash_alg	*algs_list;
185 	unsigned int		size;
186 	unsigned int		registered;
187 };
188 
189 struct omap_sham_pdata {
190 	struct omap_sham_algs_info	*algs_info;
191 	unsigned int	algs_info_size;
192 	unsigned long	flags;
193 	int		digest_size;
194 
195 	void		(*copy_hash)(struct ahash_request *req, int out);
196 	void		(*write_ctrl)(struct omap_sham_dev *dd, size_t length,
197 				      int final, int dma);
198 	void		(*trigger)(struct omap_sham_dev *dd, size_t length);
199 	int		(*poll_irq)(struct omap_sham_dev *dd);
200 	irqreturn_t	(*intr_hdlr)(int irq, void *dev_id);
201 
202 	u32		odigest_ofs;
203 	u32		idigest_ofs;
204 	u32		din_ofs;
205 	u32		digcnt_ofs;
206 	u32		rev_ofs;
207 	u32		mask_ofs;
208 	u32		sysstatus_ofs;
209 	u32		mode_ofs;
210 	u32		length_ofs;
211 
212 	u32		major_mask;
213 	u32		major_shift;
214 	u32		minor_mask;
215 	u32		minor_shift;
216 };
217 
218 struct omap_sham_dev {
219 	struct list_head	list;
220 	unsigned long		phys_base;
221 	struct device		*dev;
222 	void __iomem		*io_base;
223 	int			irq;
224 	spinlock_t		lock;
225 	int			err;
226 	struct dma_chan		*dma_lch;
227 	struct tasklet_struct	done_task;
228 	u8			polling_mode;
229 	u8			xmit_buf[BUFLEN] OMAP_ALIGNED;
230 
231 	unsigned long		flags;
232 	int			fallback_sz;
233 	struct crypto_queue	queue;
234 	struct ahash_request	*req;
235 
236 	const struct omap_sham_pdata	*pdata;
237 };
238 
239 struct omap_sham_drv {
240 	struct list_head	dev_list;
241 	spinlock_t		lock;
242 	unsigned long		flags;
243 };
244 
245 static struct omap_sham_drv sham = {
246 	.dev_list = LIST_HEAD_INIT(sham.dev_list),
247 	.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
248 };
249 
250 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
251 {
252 	return __raw_readl(dd->io_base + offset);
253 }
254 
255 static inline void omap_sham_write(struct omap_sham_dev *dd,
256 					u32 offset, u32 value)
257 {
258 	__raw_writel(value, dd->io_base + offset);
259 }
260 
261 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
262 					u32 value, u32 mask)
263 {
264 	u32 val;
265 
266 	val = omap_sham_read(dd, address);
267 	val &= ~mask;
268 	val |= value;
269 	omap_sham_write(dd, address, val);
270 }
271 
272 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
273 {
274 	unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
275 
276 	while (!(omap_sham_read(dd, offset) & bit)) {
277 		if (time_is_before_jiffies(timeout))
278 			return -ETIMEDOUT;
279 	}
280 
281 	return 0;
282 }
283 
284 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
285 {
286 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
287 	struct omap_sham_dev *dd = ctx->dd;
288 	u32 *hash = (u32 *)ctx->digest;
289 	int i;
290 
291 	for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
292 		if (out)
293 			hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
294 		else
295 			omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
296 	}
297 }
298 
299 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
300 {
301 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
302 	struct omap_sham_dev *dd = ctx->dd;
303 	int i;
304 
305 	if (ctx->flags & BIT(FLAGS_HMAC)) {
306 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
307 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
308 		struct omap_sham_hmac_ctx *bctx = tctx->base;
309 		u32 *opad = (u32 *)bctx->opad;
310 
311 		for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
312 			if (out)
313 				opad[i] = omap_sham_read(dd,
314 						SHA_REG_ODIGEST(dd, i));
315 			else
316 				omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
317 						opad[i]);
318 		}
319 	}
320 
321 	omap_sham_copy_hash_omap2(req, out);
322 }
323 
324 static void omap_sham_copy_ready_hash(struct ahash_request *req)
325 {
326 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
327 	u32 *in = (u32 *)ctx->digest;
328 	u32 *hash = (u32 *)req->result;
329 	int i, d, big_endian = 0;
330 
331 	if (!hash)
332 		return;
333 
334 	switch (ctx->flags & FLAGS_MODE_MASK) {
335 	case FLAGS_MODE_MD5:
336 		d = MD5_DIGEST_SIZE / sizeof(u32);
337 		break;
338 	case FLAGS_MODE_SHA1:
339 		/* OMAP2 SHA1 is big endian */
340 		if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
341 			big_endian = 1;
342 		d = SHA1_DIGEST_SIZE / sizeof(u32);
343 		break;
344 	case FLAGS_MODE_SHA224:
345 		d = SHA224_DIGEST_SIZE / sizeof(u32);
346 		break;
347 	case FLAGS_MODE_SHA256:
348 		d = SHA256_DIGEST_SIZE / sizeof(u32);
349 		break;
350 	case FLAGS_MODE_SHA384:
351 		d = SHA384_DIGEST_SIZE / sizeof(u32);
352 		break;
353 	case FLAGS_MODE_SHA512:
354 		d = SHA512_DIGEST_SIZE / sizeof(u32);
355 		break;
356 	default:
357 		d = 0;
358 	}
359 
360 	if (big_endian)
361 		for (i = 0; i < d; i++)
362 			hash[i] = be32_to_cpu(in[i]);
363 	else
364 		for (i = 0; i < d; i++)
365 			hash[i] = le32_to_cpu(in[i]);
366 }
367 
368 static int omap_sham_hw_init(struct omap_sham_dev *dd)
369 {
370 	int err;
371 
372 	err = pm_runtime_get_sync(dd->dev);
373 	if (err < 0) {
374 		dev_err(dd->dev, "failed to get sync: %d\n", err);
375 		return err;
376 	}
377 
378 	if (!test_bit(FLAGS_INIT, &dd->flags)) {
379 		set_bit(FLAGS_INIT, &dd->flags);
380 		dd->err = 0;
381 	}
382 
383 	return 0;
384 }
385 
386 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
387 				 int final, int dma)
388 {
389 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
390 	u32 val = length << 5, mask;
391 
392 	if (likely(ctx->digcnt))
393 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
394 
395 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
396 		SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
397 		SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
398 	/*
399 	 * Setting ALGO_CONST only for the first iteration
400 	 * and CLOSE_HASH only for the last one.
401 	 */
402 	if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
403 		val |= SHA_REG_CTRL_ALGO;
404 	if (!ctx->digcnt)
405 		val |= SHA_REG_CTRL_ALGO_CONST;
406 	if (final)
407 		val |= SHA_REG_CTRL_CLOSE_HASH;
408 
409 	mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
410 			SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
411 
412 	omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
413 }
414 
415 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
416 {
417 }
418 
419 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
420 {
421 	return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
422 }
423 
424 static int get_block_size(struct omap_sham_reqctx *ctx)
425 {
426 	int d;
427 
428 	switch (ctx->flags & FLAGS_MODE_MASK) {
429 	case FLAGS_MODE_MD5:
430 	case FLAGS_MODE_SHA1:
431 		d = SHA1_BLOCK_SIZE;
432 		break;
433 	case FLAGS_MODE_SHA224:
434 	case FLAGS_MODE_SHA256:
435 		d = SHA256_BLOCK_SIZE;
436 		break;
437 	case FLAGS_MODE_SHA384:
438 	case FLAGS_MODE_SHA512:
439 		d = SHA512_BLOCK_SIZE;
440 		break;
441 	default:
442 		d = 0;
443 	}
444 
445 	return d;
446 }
447 
448 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
449 				    u32 *value, int count)
450 {
451 	for (; count--; value++, offset += 4)
452 		omap_sham_write(dd, offset, *value);
453 }
454 
455 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
456 				 int final, int dma)
457 {
458 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
459 	u32 val, mask;
460 
461 	/*
462 	 * Setting ALGO_CONST only for the first iteration and
463 	 * CLOSE_HASH only for the last one. Note that flags mode bits
464 	 * correspond to algorithm encoding in mode register.
465 	 */
466 	val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
467 	if (!ctx->digcnt) {
468 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
469 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
470 		struct omap_sham_hmac_ctx *bctx = tctx->base;
471 		int bs, nr_dr;
472 
473 		val |= SHA_REG_MODE_ALGO_CONSTANT;
474 
475 		if (ctx->flags & BIT(FLAGS_HMAC)) {
476 			bs = get_block_size(ctx);
477 			nr_dr = bs / (2 * sizeof(u32));
478 			val |= SHA_REG_MODE_HMAC_KEY_PROC;
479 			omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
480 					  (u32 *)bctx->ipad, nr_dr);
481 			omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
482 					  (u32 *)bctx->ipad + nr_dr, nr_dr);
483 			ctx->digcnt += bs;
484 		}
485 	}
486 
487 	if (final) {
488 		val |= SHA_REG_MODE_CLOSE_HASH;
489 
490 		if (ctx->flags & BIT(FLAGS_HMAC))
491 			val |= SHA_REG_MODE_HMAC_OUTER_HASH;
492 	}
493 
494 	mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
495 	       SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
496 	       SHA_REG_MODE_HMAC_KEY_PROC;
497 
498 	dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
499 	omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
500 	omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
501 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
502 			     SHA_REG_MASK_IT_EN |
503 				     (dma ? SHA_REG_MASK_DMA_EN : 0),
504 			     SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
505 }
506 
507 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
508 {
509 	omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
510 }
511 
512 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
513 {
514 	return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
515 			      SHA_REG_IRQSTATUS_INPUT_RDY);
516 }
517 
518 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
519 			      int final)
520 {
521 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
522 	int count, len32, bs32, offset = 0;
523 	const u32 *buffer;
524 	int mlen;
525 	struct sg_mapping_iter mi;
526 
527 	dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
528 						ctx->digcnt, length, final);
529 
530 	dd->pdata->write_ctrl(dd, length, final, 0);
531 	dd->pdata->trigger(dd, length);
532 
533 	/* should be non-zero before next lines to disable clocks later */
534 	ctx->digcnt += length;
535 	ctx->total -= length;
536 
537 	if (final)
538 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
539 
540 	set_bit(FLAGS_CPU, &dd->flags);
541 
542 	len32 = DIV_ROUND_UP(length, sizeof(u32));
543 	bs32 = get_block_size(ctx) / sizeof(u32);
544 
545 	sg_miter_start(&mi, ctx->sg, ctx->sg_len,
546 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
547 
548 	mlen = 0;
549 
550 	while (len32) {
551 		if (dd->pdata->poll_irq(dd))
552 			return -ETIMEDOUT;
553 
554 		for (count = 0; count < min(len32, bs32); count++, offset++) {
555 			if (!mlen) {
556 				sg_miter_next(&mi);
557 				mlen = mi.length;
558 				if (!mlen) {
559 					pr_err("sg miter failure.\n");
560 					return -EINVAL;
561 				}
562 				offset = 0;
563 				buffer = mi.addr;
564 			}
565 			omap_sham_write(dd, SHA_REG_DIN(dd, count),
566 					buffer[offset]);
567 			mlen -= 4;
568 		}
569 		len32 -= min(len32, bs32);
570 	}
571 
572 	sg_miter_stop(&mi);
573 
574 	return -EINPROGRESS;
575 }
576 
577 static void omap_sham_dma_callback(void *param)
578 {
579 	struct omap_sham_dev *dd = param;
580 
581 	set_bit(FLAGS_DMA_READY, &dd->flags);
582 	tasklet_schedule(&dd->done_task);
583 }
584 
585 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
586 			      int final)
587 {
588 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
589 	struct dma_async_tx_descriptor *tx;
590 	struct dma_slave_config cfg;
591 	int ret;
592 
593 	dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
594 						ctx->digcnt, length, final);
595 
596 	if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
597 		dev_err(dd->dev, "dma_map_sg error\n");
598 		return -EINVAL;
599 	}
600 
601 	memset(&cfg, 0, sizeof(cfg));
602 
603 	cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
604 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 	cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
606 
607 	ret = dmaengine_slave_config(dd->dma_lch, &cfg);
608 	if (ret) {
609 		pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
610 		return ret;
611 	}
612 
613 	tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
614 				     DMA_MEM_TO_DEV,
615 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
616 
617 	if (!tx) {
618 		dev_err(dd->dev, "prep_slave_sg failed\n");
619 		return -EINVAL;
620 	}
621 
622 	tx->callback = omap_sham_dma_callback;
623 	tx->callback_param = dd;
624 
625 	dd->pdata->write_ctrl(dd, length, final, 1);
626 
627 	ctx->digcnt += length;
628 	ctx->total -= length;
629 
630 	if (final)
631 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
632 
633 	set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
634 
635 	dmaengine_submit(tx);
636 	dma_async_issue_pending(dd->dma_lch);
637 
638 	dd->pdata->trigger(dd, length);
639 
640 	return -EINPROGRESS;
641 }
642 
643 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
644 				   struct scatterlist *sg, int bs, int new_len)
645 {
646 	int n = sg_nents(sg);
647 	struct scatterlist *tmp;
648 	int offset = ctx->offset;
649 
650 	ctx->total = new_len;
651 
652 	if (ctx->bufcnt)
653 		n++;
654 
655 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
656 	if (!ctx->sg)
657 		return -ENOMEM;
658 
659 	sg_init_table(ctx->sg, n);
660 
661 	tmp = ctx->sg;
662 
663 	ctx->sg_len = 0;
664 
665 	if (ctx->bufcnt) {
666 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
667 		tmp = sg_next(tmp);
668 		ctx->sg_len++;
669 		new_len -= ctx->bufcnt;
670 	}
671 
672 	while (sg && new_len) {
673 		int len = sg->length - offset;
674 
675 		if (len <= 0) {
676 			offset -= sg->length;
677 			sg = sg_next(sg);
678 			continue;
679 		}
680 
681 		if (new_len < len)
682 			len = new_len;
683 
684 		if (len > 0) {
685 			new_len -= len;
686 			sg_set_page(tmp, sg_page(sg), len, sg->offset + offset);
687 			offset = 0;
688 			ctx->offset = 0;
689 			ctx->sg_len++;
690 			if (new_len <= 0)
691 				break;
692 			tmp = sg_next(tmp);
693 		}
694 
695 		sg = sg_next(sg);
696 	}
697 
698 	if (tmp)
699 		sg_mark_end(tmp);
700 
701 	set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
702 
703 	ctx->offset += new_len - ctx->bufcnt;
704 	ctx->bufcnt = 0;
705 
706 	return 0;
707 }
708 
709 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
710 			      struct scatterlist *sg, int bs,
711 			      unsigned int new_len)
712 {
713 	int pages;
714 	void *buf;
715 
716 	pages = get_order(new_len);
717 
718 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
719 	if (!buf) {
720 		pr_err("Couldn't allocate pages for unaligned cases.\n");
721 		return -ENOMEM;
722 	}
723 
724 	if (ctx->bufcnt)
725 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
726 
727 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
728 				 min(new_len, ctx->total) - ctx->bufcnt, 0);
729 	sg_init_table(ctx->sgl, 1);
730 	sg_set_buf(ctx->sgl, buf, new_len);
731 	ctx->sg = ctx->sgl;
732 	set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
733 	ctx->sg_len = 1;
734 	ctx->offset += new_len - ctx->bufcnt;
735 	ctx->bufcnt = 0;
736 	ctx->total = new_len;
737 
738 	return 0;
739 }
740 
741 static int omap_sham_align_sgs(struct scatterlist *sg,
742 			       int nbytes, int bs, bool final,
743 			       struct omap_sham_reqctx *rctx)
744 {
745 	int n = 0;
746 	bool aligned = true;
747 	bool list_ok = true;
748 	struct scatterlist *sg_tmp = sg;
749 	int new_len;
750 	int offset = rctx->offset;
751 	int bufcnt = rctx->bufcnt;
752 
753 	if (!sg || !sg->length || !nbytes)
754 		return 0;
755 
756 	new_len = nbytes;
757 
758 	if (offset)
759 		list_ok = false;
760 
761 	if (final)
762 		new_len = DIV_ROUND_UP(new_len, bs) * bs;
763 	else
764 		new_len = (new_len - 1) / bs * bs;
765 
766 	if (!new_len)
767 		return 0;
768 
769 	if (nbytes != new_len)
770 		list_ok = false;
771 
772 	while (nbytes > 0 && sg_tmp) {
773 		n++;
774 
775 		if (bufcnt) {
776 			if (!IS_ALIGNED(bufcnt, bs)) {
777 				aligned = false;
778 				break;
779 			}
780 			nbytes -= bufcnt;
781 			bufcnt = 0;
782 			if (!nbytes)
783 				list_ok = false;
784 
785 			continue;
786 		}
787 
788 #ifdef CONFIG_ZONE_DMA
789 		if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
790 			aligned = false;
791 			break;
792 		}
793 #endif
794 
795 		if (offset < sg_tmp->length) {
796 			if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
797 				aligned = false;
798 				break;
799 			}
800 
801 			if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
802 				aligned = false;
803 				break;
804 			}
805 		}
806 
807 		if (offset) {
808 			offset -= sg_tmp->length;
809 			if (offset < 0) {
810 				nbytes += offset;
811 				offset = 0;
812 			}
813 		} else {
814 			nbytes -= sg_tmp->length;
815 		}
816 
817 		sg_tmp = sg_next(sg_tmp);
818 
819 		if (nbytes < 0) {
820 			list_ok = false;
821 			break;
822 		}
823 	}
824 
825 	if (new_len > OMAP_SHA_MAX_DMA_LEN) {
826 		new_len = OMAP_SHA_MAX_DMA_LEN;
827 		aligned = false;
828 	}
829 
830 	if (!aligned)
831 		return omap_sham_copy_sgs(rctx, sg, bs, new_len);
832 	else if (!list_ok)
833 		return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
834 
835 	rctx->total = new_len;
836 	rctx->offset += new_len;
837 	rctx->sg_len = n;
838 	if (rctx->bufcnt) {
839 		sg_init_table(rctx->sgl, 2);
840 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
841 		sg_chain(rctx->sgl, 2, sg);
842 		rctx->sg = rctx->sgl;
843 	} else {
844 		rctx->sg = sg;
845 	}
846 
847 	return 0;
848 }
849 
850 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
851 {
852 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
853 	int bs;
854 	int ret;
855 	unsigned int nbytes;
856 	bool final = rctx->flags & BIT(FLAGS_FINUP);
857 	int hash_later;
858 
859 	bs = get_block_size(rctx);
860 
861 	nbytes = rctx->bufcnt;
862 
863 	if (update)
864 		nbytes += req->nbytes - rctx->offset;
865 
866 	dev_dbg(rctx->dd->dev,
867 		"%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
868 		__func__, nbytes, bs, rctx->total, rctx->offset,
869 		rctx->bufcnt);
870 
871 	if (!nbytes)
872 		return 0;
873 
874 	rctx->total = nbytes;
875 
876 	if (update && req->nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
877 		int len = bs - rctx->bufcnt % bs;
878 
879 		if (len > req->nbytes)
880 			len = req->nbytes;
881 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
882 					 0, len, 0);
883 		rctx->bufcnt += len;
884 		rctx->offset = len;
885 	}
886 
887 	if (rctx->bufcnt)
888 		memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
889 
890 	ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
891 	if (ret)
892 		return ret;
893 
894 	hash_later = nbytes - rctx->total;
895 	if (hash_later < 0)
896 		hash_later = 0;
897 
898 	if (hash_later) {
899 		scatterwalk_map_and_copy(rctx->buffer,
900 					 req->src,
901 					 req->nbytes - hash_later,
902 					 hash_later, 0);
903 
904 		rctx->bufcnt = hash_later;
905 	} else {
906 		rctx->bufcnt = 0;
907 	}
908 
909 	if (hash_later > rctx->buflen)
910 		set_bit(FLAGS_HUGE, &rctx->dd->flags);
911 
912 	rctx->total = min(nbytes, rctx->total);
913 
914 	return 0;
915 }
916 
917 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
918 {
919 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
920 
921 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
922 
923 	clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
924 
925 	return 0;
926 }
927 
928 static int omap_sham_init(struct ahash_request *req)
929 {
930 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
931 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
932 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
933 	struct omap_sham_dev *dd = NULL, *tmp;
934 	int bs = 0;
935 
936 	spin_lock_bh(&sham.lock);
937 	if (!tctx->dd) {
938 		list_for_each_entry(tmp, &sham.dev_list, list) {
939 			dd = tmp;
940 			break;
941 		}
942 		tctx->dd = dd;
943 	} else {
944 		dd = tctx->dd;
945 	}
946 	spin_unlock_bh(&sham.lock);
947 
948 	ctx->dd = dd;
949 
950 	ctx->flags = 0;
951 
952 	dev_dbg(dd->dev, "init: digest size: %d\n",
953 		crypto_ahash_digestsize(tfm));
954 
955 	switch (crypto_ahash_digestsize(tfm)) {
956 	case MD5_DIGEST_SIZE:
957 		ctx->flags |= FLAGS_MODE_MD5;
958 		bs = SHA1_BLOCK_SIZE;
959 		break;
960 	case SHA1_DIGEST_SIZE:
961 		ctx->flags |= FLAGS_MODE_SHA1;
962 		bs = SHA1_BLOCK_SIZE;
963 		break;
964 	case SHA224_DIGEST_SIZE:
965 		ctx->flags |= FLAGS_MODE_SHA224;
966 		bs = SHA224_BLOCK_SIZE;
967 		break;
968 	case SHA256_DIGEST_SIZE:
969 		ctx->flags |= FLAGS_MODE_SHA256;
970 		bs = SHA256_BLOCK_SIZE;
971 		break;
972 	case SHA384_DIGEST_SIZE:
973 		ctx->flags |= FLAGS_MODE_SHA384;
974 		bs = SHA384_BLOCK_SIZE;
975 		break;
976 	case SHA512_DIGEST_SIZE:
977 		ctx->flags |= FLAGS_MODE_SHA512;
978 		bs = SHA512_BLOCK_SIZE;
979 		break;
980 	}
981 
982 	ctx->bufcnt = 0;
983 	ctx->digcnt = 0;
984 	ctx->total = 0;
985 	ctx->offset = 0;
986 	ctx->buflen = BUFLEN;
987 
988 	if (tctx->flags & BIT(FLAGS_HMAC)) {
989 		if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
990 			struct omap_sham_hmac_ctx *bctx = tctx->base;
991 
992 			memcpy(ctx->buffer, bctx->ipad, bs);
993 			ctx->bufcnt = bs;
994 		}
995 
996 		ctx->flags |= BIT(FLAGS_HMAC);
997 	}
998 
999 	return 0;
1000 
1001 }
1002 
1003 static int omap_sham_update_req(struct omap_sham_dev *dd)
1004 {
1005 	struct ahash_request *req = dd->req;
1006 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1007 	int err;
1008 	bool final = (ctx->flags & BIT(FLAGS_FINUP)) &&
1009 			!(dd->flags & BIT(FLAGS_HUGE));
1010 
1011 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, final: %d",
1012 		ctx->total, ctx->digcnt, final);
1013 
1014 	if (ctx->total < get_block_size(ctx) ||
1015 	    ctx->total < dd->fallback_sz)
1016 		ctx->flags |= BIT(FLAGS_CPU);
1017 
1018 	if (ctx->flags & BIT(FLAGS_CPU))
1019 		err = omap_sham_xmit_cpu(dd, ctx->total, final);
1020 	else
1021 		err = omap_sham_xmit_dma(dd, ctx->total, final);
1022 
1023 	/* wait for dma completion before can take more data */
1024 	dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1025 
1026 	return err;
1027 }
1028 
1029 static int omap_sham_final_req(struct omap_sham_dev *dd)
1030 {
1031 	struct ahash_request *req = dd->req;
1032 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1033 	int err = 0, use_dma = 1;
1034 
1035 	if (dd->flags & BIT(FLAGS_HUGE))
1036 		return 0;
1037 
1038 	if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1039 		/*
1040 		 * faster to handle last block with cpu or
1041 		 * use cpu when dma is not present.
1042 		 */
1043 		use_dma = 0;
1044 
1045 	if (use_dma)
1046 		err = omap_sham_xmit_dma(dd, ctx->total, 1);
1047 	else
1048 		err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1049 
1050 	ctx->bufcnt = 0;
1051 
1052 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
1053 
1054 	return err;
1055 }
1056 
1057 static int omap_sham_finish_hmac(struct ahash_request *req)
1058 {
1059 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1060 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1061 	int bs = crypto_shash_blocksize(bctx->shash);
1062 	int ds = crypto_shash_digestsize(bctx->shash);
1063 	SHASH_DESC_ON_STACK(shash, bctx->shash);
1064 
1065 	shash->tfm = bctx->shash;
1066 
1067 	return crypto_shash_init(shash) ?:
1068 	       crypto_shash_update(shash, bctx->opad, bs) ?:
1069 	       crypto_shash_finup(shash, req->result, ds, req->result);
1070 }
1071 
1072 static int omap_sham_finish(struct ahash_request *req)
1073 {
1074 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1075 	struct omap_sham_dev *dd = ctx->dd;
1076 	int err = 0;
1077 
1078 	if (ctx->digcnt) {
1079 		omap_sham_copy_ready_hash(req);
1080 		if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1081 				!test_bit(FLAGS_AUTO_XOR, &dd->flags))
1082 			err = omap_sham_finish_hmac(req);
1083 	}
1084 
1085 	dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1086 
1087 	return err;
1088 }
1089 
1090 static void omap_sham_finish_req(struct ahash_request *req, int err)
1091 {
1092 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1093 	struct omap_sham_dev *dd = ctx->dd;
1094 
1095 	if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1096 		free_pages((unsigned long)sg_virt(ctx->sg),
1097 			   get_order(ctx->sg->length));
1098 
1099 	if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1100 		kfree(ctx->sg);
1101 
1102 	ctx->sg = NULL;
1103 
1104 	dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1105 
1106 	if (dd->flags & BIT(FLAGS_HUGE)) {
1107 		dd->flags &= ~(BIT(FLAGS_CPU) | BIT(FLAGS_DMA_READY) |
1108 				BIT(FLAGS_OUTPUT_READY) | BIT(FLAGS_HUGE));
1109 		omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1110 		if (ctx->op == OP_UPDATE || (dd->flags & BIT(FLAGS_HUGE))) {
1111 			err = omap_sham_update_req(dd);
1112 			if (err != -EINPROGRESS &&
1113 			    (ctx->flags & BIT(FLAGS_FINUP)))
1114 				err = omap_sham_final_req(dd);
1115 		} else if (ctx->op == OP_FINAL) {
1116 			omap_sham_final_req(dd);
1117 		}
1118 		return;
1119 	}
1120 
1121 	if (!err) {
1122 		dd->pdata->copy_hash(req, 1);
1123 		if (test_bit(FLAGS_FINAL, &dd->flags))
1124 			err = omap_sham_finish(req);
1125 	} else {
1126 		ctx->flags |= BIT(FLAGS_ERROR);
1127 	}
1128 
1129 	/* atomic operation is not needed here */
1130 	dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1131 			BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1132 
1133 	pm_runtime_mark_last_busy(dd->dev);
1134 	pm_runtime_put_autosuspend(dd->dev);
1135 
1136 	ctx->offset = 0;
1137 
1138 	if (req->base.complete)
1139 		req->base.complete(&req->base, err);
1140 }
1141 
1142 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1143 				  struct ahash_request *req)
1144 {
1145 	struct crypto_async_request *async_req, *backlog;
1146 	struct omap_sham_reqctx *ctx;
1147 	unsigned long flags;
1148 	int err = 0, ret = 0;
1149 
1150 retry:
1151 	spin_lock_irqsave(&dd->lock, flags);
1152 	if (req)
1153 		ret = ahash_enqueue_request(&dd->queue, req);
1154 	if (test_bit(FLAGS_BUSY, &dd->flags)) {
1155 		spin_unlock_irqrestore(&dd->lock, flags);
1156 		return ret;
1157 	}
1158 	backlog = crypto_get_backlog(&dd->queue);
1159 	async_req = crypto_dequeue_request(&dd->queue);
1160 	if (async_req)
1161 		set_bit(FLAGS_BUSY, &dd->flags);
1162 	spin_unlock_irqrestore(&dd->lock, flags);
1163 
1164 	if (!async_req)
1165 		return ret;
1166 
1167 	if (backlog)
1168 		backlog->complete(backlog, -EINPROGRESS);
1169 
1170 	req = ahash_request_cast(async_req);
1171 	dd->req = req;
1172 	ctx = ahash_request_ctx(req);
1173 
1174 	err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1175 	if (err || !ctx->total)
1176 		goto err1;
1177 
1178 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1179 						ctx->op, req->nbytes);
1180 
1181 	err = omap_sham_hw_init(dd);
1182 	if (err)
1183 		goto err1;
1184 
1185 	if (ctx->digcnt)
1186 		/* request has changed - restore hash */
1187 		dd->pdata->copy_hash(req, 0);
1188 
1189 	if (ctx->op == OP_UPDATE || (dd->flags & BIT(FLAGS_HUGE))) {
1190 		err = omap_sham_update_req(dd);
1191 		if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1192 			/* no final() after finup() */
1193 			err = omap_sham_final_req(dd);
1194 	} else if (ctx->op == OP_FINAL) {
1195 		err = omap_sham_final_req(dd);
1196 	}
1197 err1:
1198 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1199 
1200 	if (err != -EINPROGRESS) {
1201 		/* done_task will not finish it, so do it here */
1202 		omap_sham_finish_req(req, err);
1203 		req = NULL;
1204 
1205 		/*
1206 		 * Execute next request immediately if there is anything
1207 		 * in queue.
1208 		 */
1209 		goto retry;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1216 {
1217 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1218 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1219 	struct omap_sham_dev *dd = tctx->dd;
1220 
1221 	ctx->op = op;
1222 
1223 	return omap_sham_handle_queue(dd, req);
1224 }
1225 
1226 static int omap_sham_update(struct ahash_request *req)
1227 {
1228 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1229 	struct omap_sham_dev *dd = ctx->dd;
1230 
1231 	if (!req->nbytes)
1232 		return 0;
1233 
1234 	if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1235 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1236 					 0, req->nbytes, 0);
1237 		ctx->bufcnt += req->nbytes;
1238 		return 0;
1239 	}
1240 
1241 	if (dd->polling_mode)
1242 		ctx->flags |= BIT(FLAGS_CPU);
1243 
1244 	return omap_sham_enqueue(req, OP_UPDATE);
1245 }
1246 
1247 static int omap_sham_final_shash(struct ahash_request *req)
1248 {
1249 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1250 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1251 	int offset = 0;
1252 
1253 	/*
1254 	 * If we are running HMAC on limited hardware support, skip
1255 	 * the ipad in the beginning of the buffer if we are going for
1256 	 * software fallback algorithm.
1257 	 */
1258 	if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1259 	    !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1260 		offset = get_block_size(ctx);
1261 
1262 	return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer + offset,
1263 				       ctx->bufcnt - offset, req->result);
1264 }
1265 
1266 static int omap_sham_final(struct ahash_request *req)
1267 {
1268 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1269 
1270 	ctx->flags |= BIT(FLAGS_FINUP);
1271 
1272 	if (ctx->flags & BIT(FLAGS_ERROR))
1273 		return 0; /* uncompleted hash is not needed */
1274 
1275 	/*
1276 	 * OMAP HW accel works only with buffers >= 9.
1277 	 * HMAC is always >= 9 because ipad == block size.
1278 	 * If buffersize is less than fallback_sz, we use fallback
1279 	 * SW encoding, as using DMA + HW in this case doesn't provide
1280 	 * any benefit.
1281 	 */
1282 	if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
1283 		return omap_sham_final_shash(req);
1284 	else if (ctx->bufcnt)
1285 		return omap_sham_enqueue(req, OP_FINAL);
1286 
1287 	/* copy ready hash (+ finalize hmac) */
1288 	return omap_sham_finish(req);
1289 }
1290 
1291 static int omap_sham_finup(struct ahash_request *req)
1292 {
1293 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1294 	int err1, err2;
1295 
1296 	ctx->flags |= BIT(FLAGS_FINUP);
1297 
1298 	err1 = omap_sham_update(req);
1299 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1300 		return err1;
1301 	/*
1302 	 * final() has to be always called to cleanup resources
1303 	 * even if udpate() failed, except EINPROGRESS
1304 	 */
1305 	err2 = omap_sham_final(req);
1306 
1307 	return err1 ?: err2;
1308 }
1309 
1310 static int omap_sham_digest(struct ahash_request *req)
1311 {
1312 	return omap_sham_init(req) ?: omap_sham_finup(req);
1313 }
1314 
1315 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1316 		      unsigned int keylen)
1317 {
1318 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1319 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1320 	int bs = crypto_shash_blocksize(bctx->shash);
1321 	int ds = crypto_shash_digestsize(bctx->shash);
1322 	struct omap_sham_dev *dd = NULL, *tmp;
1323 	int err, i;
1324 
1325 	spin_lock_bh(&sham.lock);
1326 	if (!tctx->dd) {
1327 		list_for_each_entry(tmp, &sham.dev_list, list) {
1328 			dd = tmp;
1329 			break;
1330 		}
1331 		tctx->dd = dd;
1332 	} else {
1333 		dd = tctx->dd;
1334 	}
1335 	spin_unlock_bh(&sham.lock);
1336 
1337 	err = crypto_shash_setkey(tctx->fallback, key, keylen);
1338 	if (err)
1339 		return err;
1340 
1341 	if (keylen > bs) {
1342 		err = crypto_shash_tfm_digest(bctx->shash, key, keylen,
1343 					      bctx->ipad);
1344 		if (err)
1345 			return err;
1346 		keylen = ds;
1347 	} else {
1348 		memcpy(bctx->ipad, key, keylen);
1349 	}
1350 
1351 	memset(bctx->ipad + keylen, 0, bs - keylen);
1352 
1353 	if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1354 		memcpy(bctx->opad, bctx->ipad, bs);
1355 
1356 		for (i = 0; i < bs; i++) {
1357 			bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1358 			bctx->opad[i] ^= HMAC_OPAD_VALUE;
1359 		}
1360 	}
1361 
1362 	return err;
1363 }
1364 
1365 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1366 {
1367 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1368 	const char *alg_name = crypto_tfm_alg_name(tfm);
1369 
1370 	/* Allocate a fallback and abort if it failed. */
1371 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1372 					    CRYPTO_ALG_NEED_FALLBACK);
1373 	if (IS_ERR(tctx->fallback)) {
1374 		pr_err("omap-sham: fallback driver '%s' "
1375 				"could not be loaded.\n", alg_name);
1376 		return PTR_ERR(tctx->fallback);
1377 	}
1378 
1379 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1380 				 sizeof(struct omap_sham_reqctx) + BUFLEN);
1381 
1382 	if (alg_base) {
1383 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1384 		tctx->flags |= BIT(FLAGS_HMAC);
1385 		bctx->shash = crypto_alloc_shash(alg_base, 0,
1386 						CRYPTO_ALG_NEED_FALLBACK);
1387 		if (IS_ERR(bctx->shash)) {
1388 			pr_err("omap-sham: base driver '%s' "
1389 					"could not be loaded.\n", alg_base);
1390 			crypto_free_shash(tctx->fallback);
1391 			return PTR_ERR(bctx->shash);
1392 		}
1393 
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1400 {
1401 	return omap_sham_cra_init_alg(tfm, NULL);
1402 }
1403 
1404 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1405 {
1406 	return omap_sham_cra_init_alg(tfm, "sha1");
1407 }
1408 
1409 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1410 {
1411 	return omap_sham_cra_init_alg(tfm, "sha224");
1412 }
1413 
1414 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1415 {
1416 	return omap_sham_cra_init_alg(tfm, "sha256");
1417 }
1418 
1419 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1420 {
1421 	return omap_sham_cra_init_alg(tfm, "md5");
1422 }
1423 
1424 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1425 {
1426 	return omap_sham_cra_init_alg(tfm, "sha384");
1427 }
1428 
1429 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1430 {
1431 	return omap_sham_cra_init_alg(tfm, "sha512");
1432 }
1433 
1434 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1435 {
1436 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1437 
1438 	crypto_free_shash(tctx->fallback);
1439 	tctx->fallback = NULL;
1440 
1441 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1442 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1443 		crypto_free_shash(bctx->shash);
1444 	}
1445 }
1446 
1447 static int omap_sham_export(struct ahash_request *req, void *out)
1448 {
1449 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1450 
1451 	memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1452 
1453 	return 0;
1454 }
1455 
1456 static int omap_sham_import(struct ahash_request *req, const void *in)
1457 {
1458 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1459 	const struct omap_sham_reqctx *ctx_in = in;
1460 
1461 	memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1462 
1463 	return 0;
1464 }
1465 
1466 static struct ahash_alg algs_sha1_md5[] = {
1467 {
1468 	.init		= omap_sham_init,
1469 	.update		= omap_sham_update,
1470 	.final		= omap_sham_final,
1471 	.finup		= omap_sham_finup,
1472 	.digest		= omap_sham_digest,
1473 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1474 	.halg.base	= {
1475 		.cra_name		= "sha1",
1476 		.cra_driver_name	= "omap-sha1",
1477 		.cra_priority		= 400,
1478 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1479 						CRYPTO_ALG_ASYNC |
1480 						CRYPTO_ALG_NEED_FALLBACK,
1481 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1482 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1483 		.cra_alignmask		= OMAP_ALIGN_MASK,
1484 		.cra_module		= THIS_MODULE,
1485 		.cra_init		= omap_sham_cra_init,
1486 		.cra_exit		= omap_sham_cra_exit,
1487 	}
1488 },
1489 {
1490 	.init		= omap_sham_init,
1491 	.update		= omap_sham_update,
1492 	.final		= omap_sham_final,
1493 	.finup		= omap_sham_finup,
1494 	.digest		= omap_sham_digest,
1495 	.halg.digestsize	= MD5_DIGEST_SIZE,
1496 	.halg.base	= {
1497 		.cra_name		= "md5",
1498 		.cra_driver_name	= "omap-md5",
1499 		.cra_priority		= 400,
1500 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1501 						CRYPTO_ALG_ASYNC |
1502 						CRYPTO_ALG_NEED_FALLBACK,
1503 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1504 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1505 		.cra_alignmask		= OMAP_ALIGN_MASK,
1506 		.cra_module		= THIS_MODULE,
1507 		.cra_init		= omap_sham_cra_init,
1508 		.cra_exit		= omap_sham_cra_exit,
1509 	}
1510 },
1511 {
1512 	.init		= omap_sham_init,
1513 	.update		= omap_sham_update,
1514 	.final		= omap_sham_final,
1515 	.finup		= omap_sham_finup,
1516 	.digest		= omap_sham_digest,
1517 	.setkey		= omap_sham_setkey,
1518 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1519 	.halg.base	= {
1520 		.cra_name		= "hmac(sha1)",
1521 		.cra_driver_name	= "omap-hmac-sha1",
1522 		.cra_priority		= 400,
1523 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1524 						CRYPTO_ALG_ASYNC |
1525 						CRYPTO_ALG_NEED_FALLBACK,
1526 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1527 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1528 					sizeof(struct omap_sham_hmac_ctx),
1529 		.cra_alignmask		= OMAP_ALIGN_MASK,
1530 		.cra_module		= THIS_MODULE,
1531 		.cra_init		= omap_sham_cra_sha1_init,
1532 		.cra_exit		= omap_sham_cra_exit,
1533 	}
1534 },
1535 {
1536 	.init		= omap_sham_init,
1537 	.update		= omap_sham_update,
1538 	.final		= omap_sham_final,
1539 	.finup		= omap_sham_finup,
1540 	.digest		= omap_sham_digest,
1541 	.setkey		= omap_sham_setkey,
1542 	.halg.digestsize	= MD5_DIGEST_SIZE,
1543 	.halg.base	= {
1544 		.cra_name		= "hmac(md5)",
1545 		.cra_driver_name	= "omap-hmac-md5",
1546 		.cra_priority		= 400,
1547 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1548 						CRYPTO_ALG_ASYNC |
1549 						CRYPTO_ALG_NEED_FALLBACK,
1550 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1551 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1552 					sizeof(struct omap_sham_hmac_ctx),
1553 		.cra_alignmask		= OMAP_ALIGN_MASK,
1554 		.cra_module		= THIS_MODULE,
1555 		.cra_init		= omap_sham_cra_md5_init,
1556 		.cra_exit		= omap_sham_cra_exit,
1557 	}
1558 }
1559 };
1560 
1561 /* OMAP4 has some algs in addition to what OMAP2 has */
1562 static struct ahash_alg algs_sha224_sha256[] = {
1563 {
1564 	.init		= omap_sham_init,
1565 	.update		= omap_sham_update,
1566 	.final		= omap_sham_final,
1567 	.finup		= omap_sham_finup,
1568 	.digest		= omap_sham_digest,
1569 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1570 	.halg.base	= {
1571 		.cra_name		= "sha224",
1572 		.cra_driver_name	= "omap-sha224",
1573 		.cra_priority		= 400,
1574 		.cra_flags		= CRYPTO_ALG_ASYNC |
1575 						CRYPTO_ALG_NEED_FALLBACK,
1576 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1577 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1578 		.cra_alignmask		= OMAP_ALIGN_MASK,
1579 		.cra_module		= THIS_MODULE,
1580 		.cra_init		= omap_sham_cra_init,
1581 		.cra_exit		= omap_sham_cra_exit,
1582 	}
1583 },
1584 {
1585 	.init		= omap_sham_init,
1586 	.update		= omap_sham_update,
1587 	.final		= omap_sham_final,
1588 	.finup		= omap_sham_finup,
1589 	.digest		= omap_sham_digest,
1590 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1591 	.halg.base	= {
1592 		.cra_name		= "sha256",
1593 		.cra_driver_name	= "omap-sha256",
1594 		.cra_priority		= 400,
1595 		.cra_flags		= CRYPTO_ALG_ASYNC |
1596 						CRYPTO_ALG_NEED_FALLBACK,
1597 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1598 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1599 		.cra_alignmask		= OMAP_ALIGN_MASK,
1600 		.cra_module		= THIS_MODULE,
1601 		.cra_init		= omap_sham_cra_init,
1602 		.cra_exit		= omap_sham_cra_exit,
1603 	}
1604 },
1605 {
1606 	.init		= omap_sham_init,
1607 	.update		= omap_sham_update,
1608 	.final		= omap_sham_final,
1609 	.finup		= omap_sham_finup,
1610 	.digest		= omap_sham_digest,
1611 	.setkey		= omap_sham_setkey,
1612 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1613 	.halg.base	= {
1614 		.cra_name		= "hmac(sha224)",
1615 		.cra_driver_name	= "omap-hmac-sha224",
1616 		.cra_priority		= 400,
1617 		.cra_flags		= CRYPTO_ALG_ASYNC |
1618 						CRYPTO_ALG_NEED_FALLBACK,
1619 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1620 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1621 					sizeof(struct omap_sham_hmac_ctx),
1622 		.cra_alignmask		= OMAP_ALIGN_MASK,
1623 		.cra_module		= THIS_MODULE,
1624 		.cra_init		= omap_sham_cra_sha224_init,
1625 		.cra_exit		= omap_sham_cra_exit,
1626 	}
1627 },
1628 {
1629 	.init		= omap_sham_init,
1630 	.update		= omap_sham_update,
1631 	.final		= omap_sham_final,
1632 	.finup		= omap_sham_finup,
1633 	.digest		= omap_sham_digest,
1634 	.setkey		= omap_sham_setkey,
1635 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1636 	.halg.base	= {
1637 		.cra_name		= "hmac(sha256)",
1638 		.cra_driver_name	= "omap-hmac-sha256",
1639 		.cra_priority		= 400,
1640 		.cra_flags		= CRYPTO_ALG_ASYNC |
1641 						CRYPTO_ALG_NEED_FALLBACK,
1642 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1643 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1644 					sizeof(struct omap_sham_hmac_ctx),
1645 		.cra_alignmask		= OMAP_ALIGN_MASK,
1646 		.cra_module		= THIS_MODULE,
1647 		.cra_init		= omap_sham_cra_sha256_init,
1648 		.cra_exit		= omap_sham_cra_exit,
1649 	}
1650 },
1651 };
1652 
1653 static struct ahash_alg algs_sha384_sha512[] = {
1654 {
1655 	.init		= omap_sham_init,
1656 	.update		= omap_sham_update,
1657 	.final		= omap_sham_final,
1658 	.finup		= omap_sham_finup,
1659 	.digest		= omap_sham_digest,
1660 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1661 	.halg.base	= {
1662 		.cra_name		= "sha384",
1663 		.cra_driver_name	= "omap-sha384",
1664 		.cra_priority		= 400,
1665 		.cra_flags		= CRYPTO_ALG_ASYNC |
1666 						CRYPTO_ALG_NEED_FALLBACK,
1667 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1668 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1669 		.cra_alignmask		= OMAP_ALIGN_MASK,
1670 		.cra_module		= THIS_MODULE,
1671 		.cra_init		= omap_sham_cra_init,
1672 		.cra_exit		= omap_sham_cra_exit,
1673 	}
1674 },
1675 {
1676 	.init		= omap_sham_init,
1677 	.update		= omap_sham_update,
1678 	.final		= omap_sham_final,
1679 	.finup		= omap_sham_finup,
1680 	.digest		= omap_sham_digest,
1681 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1682 	.halg.base	= {
1683 		.cra_name		= "sha512",
1684 		.cra_driver_name	= "omap-sha512",
1685 		.cra_priority		= 400,
1686 		.cra_flags		= CRYPTO_ALG_ASYNC |
1687 						CRYPTO_ALG_NEED_FALLBACK,
1688 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1689 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1690 		.cra_alignmask		= OMAP_ALIGN_MASK,
1691 		.cra_module		= THIS_MODULE,
1692 		.cra_init		= omap_sham_cra_init,
1693 		.cra_exit		= omap_sham_cra_exit,
1694 	}
1695 },
1696 {
1697 	.init		= omap_sham_init,
1698 	.update		= omap_sham_update,
1699 	.final		= omap_sham_final,
1700 	.finup		= omap_sham_finup,
1701 	.digest		= omap_sham_digest,
1702 	.setkey		= omap_sham_setkey,
1703 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1704 	.halg.base	= {
1705 		.cra_name		= "hmac(sha384)",
1706 		.cra_driver_name	= "omap-hmac-sha384",
1707 		.cra_priority		= 400,
1708 		.cra_flags		= CRYPTO_ALG_ASYNC |
1709 						CRYPTO_ALG_NEED_FALLBACK,
1710 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1711 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1712 					sizeof(struct omap_sham_hmac_ctx),
1713 		.cra_alignmask		= OMAP_ALIGN_MASK,
1714 		.cra_module		= THIS_MODULE,
1715 		.cra_init		= omap_sham_cra_sha384_init,
1716 		.cra_exit		= omap_sham_cra_exit,
1717 	}
1718 },
1719 {
1720 	.init		= omap_sham_init,
1721 	.update		= omap_sham_update,
1722 	.final		= omap_sham_final,
1723 	.finup		= omap_sham_finup,
1724 	.digest		= omap_sham_digest,
1725 	.setkey		= omap_sham_setkey,
1726 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1727 	.halg.base	= {
1728 		.cra_name		= "hmac(sha512)",
1729 		.cra_driver_name	= "omap-hmac-sha512",
1730 		.cra_priority		= 400,
1731 		.cra_flags		= CRYPTO_ALG_ASYNC |
1732 						CRYPTO_ALG_NEED_FALLBACK,
1733 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1734 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1735 					sizeof(struct omap_sham_hmac_ctx),
1736 		.cra_alignmask		= OMAP_ALIGN_MASK,
1737 		.cra_module		= THIS_MODULE,
1738 		.cra_init		= omap_sham_cra_sha512_init,
1739 		.cra_exit		= omap_sham_cra_exit,
1740 	}
1741 },
1742 };
1743 
1744 static void omap_sham_done_task(unsigned long data)
1745 {
1746 	struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1747 	int err = 0;
1748 
1749 	dev_dbg(dd->dev, "%s: flags=%lx\n", __func__, dd->flags);
1750 
1751 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1752 		omap_sham_handle_queue(dd, NULL);
1753 		return;
1754 	}
1755 
1756 	if (test_bit(FLAGS_CPU, &dd->flags)) {
1757 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1758 			goto finish;
1759 	} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1760 		if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1761 			omap_sham_update_dma_stop(dd);
1762 			if (dd->err) {
1763 				err = dd->err;
1764 				goto finish;
1765 			}
1766 		}
1767 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1768 			/* hash or semi-hash ready */
1769 			clear_bit(FLAGS_DMA_READY, &dd->flags);
1770 			goto finish;
1771 		}
1772 	}
1773 
1774 	return;
1775 
1776 finish:
1777 	dev_dbg(dd->dev, "update done: err: %d\n", err);
1778 	/* finish curent request */
1779 	omap_sham_finish_req(dd->req, err);
1780 
1781 	/* If we are not busy, process next req */
1782 	if (!test_bit(FLAGS_BUSY, &dd->flags))
1783 		omap_sham_handle_queue(dd, NULL);
1784 }
1785 
1786 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1787 {
1788 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1789 		dev_warn(dd->dev, "Interrupt when no active requests.\n");
1790 	} else {
1791 		set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1792 		tasklet_schedule(&dd->done_task);
1793 	}
1794 
1795 	return IRQ_HANDLED;
1796 }
1797 
1798 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1799 {
1800 	struct omap_sham_dev *dd = dev_id;
1801 
1802 	if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1803 		/* final -> allow device to go to power-saving mode */
1804 		omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1805 
1806 	omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1807 				 SHA_REG_CTRL_OUTPUT_READY);
1808 	omap_sham_read(dd, SHA_REG_CTRL);
1809 
1810 	return omap_sham_irq_common(dd);
1811 }
1812 
1813 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1814 {
1815 	struct omap_sham_dev *dd = dev_id;
1816 
1817 	omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1818 
1819 	return omap_sham_irq_common(dd);
1820 }
1821 
1822 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1823 	{
1824 		.algs_list	= algs_sha1_md5,
1825 		.size		= ARRAY_SIZE(algs_sha1_md5),
1826 	},
1827 };
1828 
1829 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1830 	.algs_info	= omap_sham_algs_info_omap2,
1831 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap2),
1832 	.flags		= BIT(FLAGS_BE32_SHA1),
1833 	.digest_size	= SHA1_DIGEST_SIZE,
1834 	.copy_hash	= omap_sham_copy_hash_omap2,
1835 	.write_ctrl	= omap_sham_write_ctrl_omap2,
1836 	.trigger	= omap_sham_trigger_omap2,
1837 	.poll_irq	= omap_sham_poll_irq_omap2,
1838 	.intr_hdlr	= omap_sham_irq_omap2,
1839 	.idigest_ofs	= 0x00,
1840 	.din_ofs	= 0x1c,
1841 	.digcnt_ofs	= 0x14,
1842 	.rev_ofs	= 0x5c,
1843 	.mask_ofs	= 0x60,
1844 	.sysstatus_ofs	= 0x64,
1845 	.major_mask	= 0xf0,
1846 	.major_shift	= 4,
1847 	.minor_mask	= 0x0f,
1848 	.minor_shift	= 0,
1849 };
1850 
1851 #ifdef CONFIG_OF
1852 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1853 	{
1854 		.algs_list	= algs_sha1_md5,
1855 		.size		= ARRAY_SIZE(algs_sha1_md5),
1856 	},
1857 	{
1858 		.algs_list	= algs_sha224_sha256,
1859 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1860 	},
1861 };
1862 
1863 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1864 	.algs_info	= omap_sham_algs_info_omap4,
1865 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap4),
1866 	.flags		= BIT(FLAGS_AUTO_XOR),
1867 	.digest_size	= SHA256_DIGEST_SIZE,
1868 	.copy_hash	= omap_sham_copy_hash_omap4,
1869 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1870 	.trigger	= omap_sham_trigger_omap4,
1871 	.poll_irq	= omap_sham_poll_irq_omap4,
1872 	.intr_hdlr	= omap_sham_irq_omap4,
1873 	.idigest_ofs	= 0x020,
1874 	.odigest_ofs	= 0x0,
1875 	.din_ofs	= 0x080,
1876 	.digcnt_ofs	= 0x040,
1877 	.rev_ofs	= 0x100,
1878 	.mask_ofs	= 0x110,
1879 	.sysstatus_ofs	= 0x114,
1880 	.mode_ofs	= 0x44,
1881 	.length_ofs	= 0x48,
1882 	.major_mask	= 0x0700,
1883 	.major_shift	= 8,
1884 	.minor_mask	= 0x003f,
1885 	.minor_shift	= 0,
1886 };
1887 
1888 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1889 	{
1890 		.algs_list	= algs_sha1_md5,
1891 		.size		= ARRAY_SIZE(algs_sha1_md5),
1892 	},
1893 	{
1894 		.algs_list	= algs_sha224_sha256,
1895 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1896 	},
1897 	{
1898 		.algs_list	= algs_sha384_sha512,
1899 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1900 	},
1901 };
1902 
1903 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1904 	.algs_info	= omap_sham_algs_info_omap5,
1905 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap5),
1906 	.flags		= BIT(FLAGS_AUTO_XOR),
1907 	.digest_size	= SHA512_DIGEST_SIZE,
1908 	.copy_hash	= omap_sham_copy_hash_omap4,
1909 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1910 	.trigger	= omap_sham_trigger_omap4,
1911 	.poll_irq	= omap_sham_poll_irq_omap4,
1912 	.intr_hdlr	= omap_sham_irq_omap4,
1913 	.idigest_ofs	= 0x240,
1914 	.odigest_ofs	= 0x200,
1915 	.din_ofs	= 0x080,
1916 	.digcnt_ofs	= 0x280,
1917 	.rev_ofs	= 0x100,
1918 	.mask_ofs	= 0x110,
1919 	.sysstatus_ofs	= 0x114,
1920 	.mode_ofs	= 0x284,
1921 	.length_ofs	= 0x288,
1922 	.major_mask	= 0x0700,
1923 	.major_shift	= 8,
1924 	.minor_mask	= 0x003f,
1925 	.minor_shift	= 0,
1926 };
1927 
1928 static const struct of_device_id omap_sham_of_match[] = {
1929 	{
1930 		.compatible	= "ti,omap2-sham",
1931 		.data		= &omap_sham_pdata_omap2,
1932 	},
1933 	{
1934 		.compatible	= "ti,omap3-sham",
1935 		.data		= &omap_sham_pdata_omap2,
1936 	},
1937 	{
1938 		.compatible	= "ti,omap4-sham",
1939 		.data		= &omap_sham_pdata_omap4,
1940 	},
1941 	{
1942 		.compatible	= "ti,omap5-sham",
1943 		.data		= &omap_sham_pdata_omap5,
1944 	},
1945 	{},
1946 };
1947 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1948 
1949 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1950 		struct device *dev, struct resource *res)
1951 {
1952 	struct device_node *node = dev->of_node;
1953 	int err = 0;
1954 
1955 	dd->pdata = of_device_get_match_data(dev);
1956 	if (!dd->pdata) {
1957 		dev_err(dev, "no compatible OF match\n");
1958 		err = -EINVAL;
1959 		goto err;
1960 	}
1961 
1962 	err = of_address_to_resource(node, 0, res);
1963 	if (err < 0) {
1964 		dev_err(dev, "can't translate OF node address\n");
1965 		err = -EINVAL;
1966 		goto err;
1967 	}
1968 
1969 	dd->irq = irq_of_parse_and_map(node, 0);
1970 	if (!dd->irq) {
1971 		dev_err(dev, "can't translate OF irq value\n");
1972 		err = -EINVAL;
1973 		goto err;
1974 	}
1975 
1976 err:
1977 	return err;
1978 }
1979 #else
1980 static const struct of_device_id omap_sham_of_match[] = {
1981 	{},
1982 };
1983 
1984 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1985 		struct device *dev, struct resource *res)
1986 {
1987 	return -EINVAL;
1988 }
1989 #endif
1990 
1991 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1992 		struct platform_device *pdev, struct resource *res)
1993 {
1994 	struct device *dev = &pdev->dev;
1995 	struct resource *r;
1996 	int err = 0;
1997 
1998 	/* Get the base address */
1999 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2000 	if (!r) {
2001 		dev_err(dev, "no MEM resource info\n");
2002 		err = -ENODEV;
2003 		goto err;
2004 	}
2005 	memcpy(res, r, sizeof(*res));
2006 
2007 	/* Get the IRQ */
2008 	dd->irq = platform_get_irq(pdev, 0);
2009 	if (dd->irq < 0) {
2010 		err = dd->irq;
2011 		goto err;
2012 	}
2013 
2014 	/* Only OMAP2/3 can be non-DT */
2015 	dd->pdata = &omap_sham_pdata_omap2;
2016 
2017 err:
2018 	return err;
2019 }
2020 
2021 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
2022 			     char *buf)
2023 {
2024 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2025 
2026 	return sprintf(buf, "%d\n", dd->fallback_sz);
2027 }
2028 
2029 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
2030 			      const char *buf, size_t size)
2031 {
2032 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2033 	ssize_t status;
2034 	long value;
2035 
2036 	status = kstrtol(buf, 0, &value);
2037 	if (status)
2038 		return status;
2039 
2040 	/* HW accelerator only works with buffers > 9 */
2041 	if (value < 9) {
2042 		dev_err(dev, "minimum fallback size 9\n");
2043 		return -EINVAL;
2044 	}
2045 
2046 	dd->fallback_sz = value;
2047 
2048 	return size;
2049 }
2050 
2051 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
2052 			      char *buf)
2053 {
2054 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2055 
2056 	return sprintf(buf, "%d\n", dd->queue.max_qlen);
2057 }
2058 
2059 static ssize_t queue_len_store(struct device *dev,
2060 			       struct device_attribute *attr, const char *buf,
2061 			       size_t size)
2062 {
2063 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2064 	ssize_t status;
2065 	long value;
2066 	unsigned long flags;
2067 
2068 	status = kstrtol(buf, 0, &value);
2069 	if (status)
2070 		return status;
2071 
2072 	if (value < 1)
2073 		return -EINVAL;
2074 
2075 	/*
2076 	 * Changing the queue size in fly is safe, if size becomes smaller
2077 	 * than current size, it will just not accept new entries until
2078 	 * it has shrank enough.
2079 	 */
2080 	spin_lock_irqsave(&dd->lock, flags);
2081 	dd->queue.max_qlen = value;
2082 	spin_unlock_irqrestore(&dd->lock, flags);
2083 
2084 	return size;
2085 }
2086 
2087 static DEVICE_ATTR_RW(queue_len);
2088 static DEVICE_ATTR_RW(fallback);
2089 
2090 static struct attribute *omap_sham_attrs[] = {
2091 	&dev_attr_queue_len.attr,
2092 	&dev_attr_fallback.attr,
2093 	NULL,
2094 };
2095 
2096 static struct attribute_group omap_sham_attr_group = {
2097 	.attrs = omap_sham_attrs,
2098 };
2099 
2100 static int omap_sham_probe(struct platform_device *pdev)
2101 {
2102 	struct omap_sham_dev *dd;
2103 	struct device *dev = &pdev->dev;
2104 	struct resource res;
2105 	dma_cap_mask_t mask;
2106 	int err, i, j;
2107 	u32 rev;
2108 
2109 	dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2110 	if (dd == NULL) {
2111 		dev_err(dev, "unable to alloc data struct.\n");
2112 		err = -ENOMEM;
2113 		goto data_err;
2114 	}
2115 	dd->dev = dev;
2116 	platform_set_drvdata(pdev, dd);
2117 
2118 	INIT_LIST_HEAD(&dd->list);
2119 	spin_lock_init(&dd->lock);
2120 	tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2121 	crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2122 
2123 	err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2124 			       omap_sham_get_res_pdev(dd, pdev, &res);
2125 	if (err)
2126 		goto data_err;
2127 
2128 	dd->io_base = devm_ioremap_resource(dev, &res);
2129 	if (IS_ERR(dd->io_base)) {
2130 		err = PTR_ERR(dd->io_base);
2131 		goto data_err;
2132 	}
2133 	dd->phys_base = res.start;
2134 
2135 	err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2136 			       IRQF_TRIGGER_NONE, dev_name(dev), dd);
2137 	if (err) {
2138 		dev_err(dev, "unable to request irq %d, err = %d\n",
2139 			dd->irq, err);
2140 		goto data_err;
2141 	}
2142 
2143 	dma_cap_zero(mask);
2144 	dma_cap_set(DMA_SLAVE, mask);
2145 
2146 	dd->dma_lch = dma_request_chan(dev, "rx");
2147 	if (IS_ERR(dd->dma_lch)) {
2148 		err = PTR_ERR(dd->dma_lch);
2149 		if (err == -EPROBE_DEFER)
2150 			goto data_err;
2151 
2152 		dd->polling_mode = 1;
2153 		dev_dbg(dev, "using polling mode instead of dma\n");
2154 	}
2155 
2156 	dd->flags |= dd->pdata->flags;
2157 
2158 	pm_runtime_use_autosuspend(dev);
2159 	pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2160 
2161 	dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
2162 
2163 	pm_runtime_enable(dev);
2164 	pm_runtime_irq_safe(dev);
2165 
2166 	err = pm_runtime_get_sync(dev);
2167 	if (err < 0) {
2168 		dev_err(dev, "failed to get sync: %d\n", err);
2169 		goto err_pm;
2170 	}
2171 
2172 	rev = omap_sham_read(dd, SHA_REG_REV(dd));
2173 	pm_runtime_put_sync(&pdev->dev);
2174 
2175 	dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2176 		(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2177 		(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2178 
2179 	spin_lock(&sham.lock);
2180 	list_add_tail(&dd->list, &sham.dev_list);
2181 	spin_unlock(&sham.lock);
2182 
2183 	for (i = 0; i < dd->pdata->algs_info_size; i++) {
2184 		for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2185 			struct ahash_alg *alg;
2186 
2187 			alg = &dd->pdata->algs_info[i].algs_list[j];
2188 			alg->export = omap_sham_export;
2189 			alg->import = omap_sham_import;
2190 			alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2191 					      BUFLEN;
2192 			err = crypto_register_ahash(alg);
2193 			if (err)
2194 				goto err_algs;
2195 
2196 			dd->pdata->algs_info[i].registered++;
2197 		}
2198 	}
2199 
2200 	err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
2201 	if (err) {
2202 		dev_err(dev, "could not create sysfs device attrs\n");
2203 		goto err_algs;
2204 	}
2205 
2206 	return 0;
2207 
2208 err_algs:
2209 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2210 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2211 			crypto_unregister_ahash(
2212 					&dd->pdata->algs_info[i].algs_list[j]);
2213 err_pm:
2214 	pm_runtime_disable(dev);
2215 	if (!dd->polling_mode)
2216 		dma_release_channel(dd->dma_lch);
2217 data_err:
2218 	dev_err(dev, "initialization failed.\n");
2219 
2220 	return err;
2221 }
2222 
2223 static int omap_sham_remove(struct platform_device *pdev)
2224 {
2225 	struct omap_sham_dev *dd;
2226 	int i, j;
2227 
2228 	dd = platform_get_drvdata(pdev);
2229 	if (!dd)
2230 		return -ENODEV;
2231 	spin_lock(&sham.lock);
2232 	list_del(&dd->list);
2233 	spin_unlock(&sham.lock);
2234 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2235 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2236 			crypto_unregister_ahash(
2237 					&dd->pdata->algs_info[i].algs_list[j]);
2238 	tasklet_kill(&dd->done_task);
2239 	pm_runtime_disable(&pdev->dev);
2240 
2241 	if (!dd->polling_mode)
2242 		dma_release_channel(dd->dma_lch);
2243 
2244 	sysfs_remove_group(&dd->dev->kobj, &omap_sham_attr_group);
2245 
2246 	return 0;
2247 }
2248 
2249 #ifdef CONFIG_PM_SLEEP
2250 static int omap_sham_suspend(struct device *dev)
2251 {
2252 	pm_runtime_put_sync(dev);
2253 	return 0;
2254 }
2255 
2256 static int omap_sham_resume(struct device *dev)
2257 {
2258 	int err = pm_runtime_get_sync(dev);
2259 	if (err < 0) {
2260 		dev_err(dev, "failed to get sync: %d\n", err);
2261 		return err;
2262 	}
2263 	return 0;
2264 }
2265 #endif
2266 
2267 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2268 
2269 static struct platform_driver omap_sham_driver = {
2270 	.probe	= omap_sham_probe,
2271 	.remove	= omap_sham_remove,
2272 	.driver	= {
2273 		.name	= "omap-sham",
2274 		.pm	= &omap_sham_pm_ops,
2275 		.of_match_table	= omap_sham_of_match,
2276 	},
2277 };
2278 
2279 module_platform_driver(omap_sham_driver);
2280 
2281 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2282 MODULE_LICENSE("GPL v2");
2283 MODULE_AUTHOR("Dmitry Kasatkin");
2284 MODULE_ALIAS("platform:omap-sham");
2285