xref: /openbmc/linux/drivers/crypto/omap-sham.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Cryptographic API.
3  *
4  * Support for OMAP SHA1/MD5 HW acceleration.
5  *
6  * Copyright (c) 2010 Nokia Corporation
7  * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
8  * Copyright (c) 2011 Texas Instruments Incorporated
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  *
14  * Some ideas are from old omap-sha1-md5.c driver.
15  */
16 
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18 
19 #include <linux/err.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/irq.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/delay.h>
38 #include <linux/crypto.h>
39 #include <linux/cryptohash.h>
40 #include <crypto/scatterwalk.h>
41 #include <crypto/algapi.h>
42 #include <crypto/sha.h>
43 #include <crypto/hash.h>
44 #include <crypto/hmac.h>
45 #include <crypto/internal/hash.h>
46 
47 #define MD5_DIGEST_SIZE			16
48 
49 #define SHA_REG_IDIGEST(dd, x)		((dd)->pdata->idigest_ofs + ((x)*0x04))
50 #define SHA_REG_DIN(dd, x)		((dd)->pdata->din_ofs + ((x) * 0x04))
51 #define SHA_REG_DIGCNT(dd)		((dd)->pdata->digcnt_ofs)
52 
53 #define SHA_REG_ODIGEST(dd, x)		((dd)->pdata->odigest_ofs + (x * 0x04))
54 
55 #define SHA_REG_CTRL			0x18
56 #define SHA_REG_CTRL_LENGTH		(0xFFFFFFFF << 5)
57 #define SHA_REG_CTRL_CLOSE_HASH		(1 << 4)
58 #define SHA_REG_CTRL_ALGO_CONST		(1 << 3)
59 #define SHA_REG_CTRL_ALGO		(1 << 2)
60 #define SHA_REG_CTRL_INPUT_READY	(1 << 1)
61 #define SHA_REG_CTRL_OUTPUT_READY	(1 << 0)
62 
63 #define SHA_REG_REV(dd)			((dd)->pdata->rev_ofs)
64 
65 #define SHA_REG_MASK(dd)		((dd)->pdata->mask_ofs)
66 #define SHA_REG_MASK_DMA_EN		(1 << 3)
67 #define SHA_REG_MASK_IT_EN		(1 << 2)
68 #define SHA_REG_MASK_SOFTRESET		(1 << 1)
69 #define SHA_REG_AUTOIDLE		(1 << 0)
70 
71 #define SHA_REG_SYSSTATUS(dd)		((dd)->pdata->sysstatus_ofs)
72 #define SHA_REG_SYSSTATUS_RESETDONE	(1 << 0)
73 
74 #define SHA_REG_MODE(dd)		((dd)->pdata->mode_ofs)
75 #define SHA_REG_MODE_HMAC_OUTER_HASH	(1 << 7)
76 #define SHA_REG_MODE_HMAC_KEY_PROC	(1 << 5)
77 #define SHA_REG_MODE_CLOSE_HASH		(1 << 4)
78 #define SHA_REG_MODE_ALGO_CONSTANT	(1 << 3)
79 
80 #define SHA_REG_MODE_ALGO_MASK		(7 << 0)
81 #define SHA_REG_MODE_ALGO_MD5_128	(0 << 1)
82 #define SHA_REG_MODE_ALGO_SHA1_160	(1 << 1)
83 #define SHA_REG_MODE_ALGO_SHA2_224	(2 << 1)
84 #define SHA_REG_MODE_ALGO_SHA2_256	(3 << 1)
85 #define SHA_REG_MODE_ALGO_SHA2_384	(1 << 0)
86 #define SHA_REG_MODE_ALGO_SHA2_512	(3 << 0)
87 
88 #define SHA_REG_LENGTH(dd)		((dd)->pdata->length_ofs)
89 
90 #define SHA_REG_IRQSTATUS		0x118
91 #define SHA_REG_IRQSTATUS_CTX_RDY	(1 << 3)
92 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
93 #define SHA_REG_IRQSTATUS_INPUT_RDY	(1 << 1)
94 #define SHA_REG_IRQSTATUS_OUTPUT_RDY	(1 << 0)
95 
96 #define SHA_REG_IRQENA			0x11C
97 #define SHA_REG_IRQENA_CTX_RDY		(1 << 3)
98 #define SHA_REG_IRQENA_PARTHASH_RDY	(1 << 2)
99 #define SHA_REG_IRQENA_INPUT_RDY	(1 << 1)
100 #define SHA_REG_IRQENA_OUTPUT_RDY	(1 << 0)
101 
102 #define DEFAULT_TIMEOUT_INTERVAL	HZ
103 
104 #define DEFAULT_AUTOSUSPEND_DELAY	1000
105 
106 /* mostly device flags */
107 #define FLAGS_BUSY		0
108 #define FLAGS_FINAL		1
109 #define FLAGS_DMA_ACTIVE	2
110 #define FLAGS_OUTPUT_READY	3
111 #define FLAGS_INIT		4
112 #define FLAGS_CPU		5
113 #define FLAGS_DMA_READY		6
114 #define FLAGS_AUTO_XOR		7
115 #define FLAGS_BE32_SHA1		8
116 #define FLAGS_SGS_COPIED	9
117 #define FLAGS_SGS_ALLOCED	10
118 /* context flags */
119 #define FLAGS_FINUP		16
120 
121 #define FLAGS_MODE_SHIFT	18
122 #define FLAGS_MODE_MASK		(SHA_REG_MODE_ALGO_MASK	<< FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_MD5		(SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA1		(SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA224	(SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA256	(SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
127 #define FLAGS_MODE_SHA384	(SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
128 #define FLAGS_MODE_SHA512	(SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
129 
130 #define FLAGS_HMAC		21
131 #define FLAGS_ERROR		22
132 
133 #define OP_UPDATE		1
134 #define OP_FINAL		2
135 
136 #define OMAP_ALIGN_MASK		(sizeof(u32)-1)
137 #define OMAP_ALIGNED		__attribute__((aligned(sizeof(u32))))
138 
139 #define BUFLEN			SHA512_BLOCK_SIZE
140 #define OMAP_SHA_DMA_THRESHOLD	256
141 
142 struct omap_sham_dev;
143 
144 struct omap_sham_reqctx {
145 	struct omap_sham_dev	*dd;
146 	unsigned long		flags;
147 	unsigned long		op;
148 
149 	u8			digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 	size_t			digcnt;
151 	size_t			bufcnt;
152 	size_t			buflen;
153 
154 	/* walk state */
155 	struct scatterlist	*sg;
156 	struct scatterlist	sgl[2];
157 	int			offset;	/* offset in current sg */
158 	int			sg_len;
159 	unsigned int		total;	/* total request */
160 
161 	u8			buffer[0] OMAP_ALIGNED;
162 };
163 
164 struct omap_sham_hmac_ctx {
165 	struct crypto_shash	*shash;
166 	u8			ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 	u8			opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169 
170 struct omap_sham_ctx {
171 	struct omap_sham_dev	*dd;
172 
173 	unsigned long		flags;
174 
175 	/* fallback stuff */
176 	struct crypto_shash	*fallback;
177 
178 	struct omap_sham_hmac_ctx base[0];
179 };
180 
181 #define OMAP_SHAM_QUEUE_LENGTH	10
182 
183 struct omap_sham_algs_info {
184 	struct ahash_alg	*algs_list;
185 	unsigned int		size;
186 	unsigned int		registered;
187 };
188 
189 struct omap_sham_pdata {
190 	struct omap_sham_algs_info	*algs_info;
191 	unsigned int	algs_info_size;
192 	unsigned long	flags;
193 	int		digest_size;
194 
195 	void		(*copy_hash)(struct ahash_request *req, int out);
196 	void		(*write_ctrl)(struct omap_sham_dev *dd, size_t length,
197 				      int final, int dma);
198 	void		(*trigger)(struct omap_sham_dev *dd, size_t length);
199 	int		(*poll_irq)(struct omap_sham_dev *dd);
200 	irqreturn_t	(*intr_hdlr)(int irq, void *dev_id);
201 
202 	u32		odigest_ofs;
203 	u32		idigest_ofs;
204 	u32		din_ofs;
205 	u32		digcnt_ofs;
206 	u32		rev_ofs;
207 	u32		mask_ofs;
208 	u32		sysstatus_ofs;
209 	u32		mode_ofs;
210 	u32		length_ofs;
211 
212 	u32		major_mask;
213 	u32		major_shift;
214 	u32		minor_mask;
215 	u32		minor_shift;
216 };
217 
218 struct omap_sham_dev {
219 	struct list_head	list;
220 	unsigned long		phys_base;
221 	struct device		*dev;
222 	void __iomem		*io_base;
223 	int			irq;
224 	spinlock_t		lock;
225 	int			err;
226 	struct dma_chan		*dma_lch;
227 	struct tasklet_struct	done_task;
228 	u8			polling_mode;
229 	u8			xmit_buf[BUFLEN] OMAP_ALIGNED;
230 
231 	unsigned long		flags;
232 	struct crypto_queue	queue;
233 	struct ahash_request	*req;
234 
235 	const struct omap_sham_pdata	*pdata;
236 };
237 
238 struct omap_sham_drv {
239 	struct list_head	dev_list;
240 	spinlock_t		lock;
241 	unsigned long		flags;
242 };
243 
244 static struct omap_sham_drv sham = {
245 	.dev_list = LIST_HEAD_INIT(sham.dev_list),
246 	.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
247 };
248 
249 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
250 {
251 	return __raw_readl(dd->io_base + offset);
252 }
253 
254 static inline void omap_sham_write(struct omap_sham_dev *dd,
255 					u32 offset, u32 value)
256 {
257 	__raw_writel(value, dd->io_base + offset);
258 }
259 
260 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
261 					u32 value, u32 mask)
262 {
263 	u32 val;
264 
265 	val = omap_sham_read(dd, address);
266 	val &= ~mask;
267 	val |= value;
268 	omap_sham_write(dd, address, val);
269 }
270 
271 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
272 {
273 	unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
274 
275 	while (!(omap_sham_read(dd, offset) & bit)) {
276 		if (time_is_before_jiffies(timeout))
277 			return -ETIMEDOUT;
278 	}
279 
280 	return 0;
281 }
282 
283 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
284 {
285 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
286 	struct omap_sham_dev *dd = ctx->dd;
287 	u32 *hash = (u32 *)ctx->digest;
288 	int i;
289 
290 	for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
291 		if (out)
292 			hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
293 		else
294 			omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
295 	}
296 }
297 
298 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
299 {
300 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
301 	struct omap_sham_dev *dd = ctx->dd;
302 	int i;
303 
304 	if (ctx->flags & BIT(FLAGS_HMAC)) {
305 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
306 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
307 		struct omap_sham_hmac_ctx *bctx = tctx->base;
308 		u32 *opad = (u32 *)bctx->opad;
309 
310 		for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
311 			if (out)
312 				opad[i] = omap_sham_read(dd,
313 						SHA_REG_ODIGEST(dd, i));
314 			else
315 				omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
316 						opad[i]);
317 		}
318 	}
319 
320 	omap_sham_copy_hash_omap2(req, out);
321 }
322 
323 static void omap_sham_copy_ready_hash(struct ahash_request *req)
324 {
325 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
326 	u32 *in = (u32 *)ctx->digest;
327 	u32 *hash = (u32 *)req->result;
328 	int i, d, big_endian = 0;
329 
330 	if (!hash)
331 		return;
332 
333 	switch (ctx->flags & FLAGS_MODE_MASK) {
334 	case FLAGS_MODE_MD5:
335 		d = MD5_DIGEST_SIZE / sizeof(u32);
336 		break;
337 	case FLAGS_MODE_SHA1:
338 		/* OMAP2 SHA1 is big endian */
339 		if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
340 			big_endian = 1;
341 		d = SHA1_DIGEST_SIZE / sizeof(u32);
342 		break;
343 	case FLAGS_MODE_SHA224:
344 		d = SHA224_DIGEST_SIZE / sizeof(u32);
345 		break;
346 	case FLAGS_MODE_SHA256:
347 		d = SHA256_DIGEST_SIZE / sizeof(u32);
348 		break;
349 	case FLAGS_MODE_SHA384:
350 		d = SHA384_DIGEST_SIZE / sizeof(u32);
351 		break;
352 	case FLAGS_MODE_SHA512:
353 		d = SHA512_DIGEST_SIZE / sizeof(u32);
354 		break;
355 	default:
356 		d = 0;
357 	}
358 
359 	if (big_endian)
360 		for (i = 0; i < d; i++)
361 			hash[i] = be32_to_cpu(in[i]);
362 	else
363 		for (i = 0; i < d; i++)
364 			hash[i] = le32_to_cpu(in[i]);
365 }
366 
367 static int omap_sham_hw_init(struct omap_sham_dev *dd)
368 {
369 	int err;
370 
371 	err = pm_runtime_get_sync(dd->dev);
372 	if (err < 0) {
373 		dev_err(dd->dev, "failed to get sync: %d\n", err);
374 		return err;
375 	}
376 
377 	if (!test_bit(FLAGS_INIT, &dd->flags)) {
378 		set_bit(FLAGS_INIT, &dd->flags);
379 		dd->err = 0;
380 	}
381 
382 	return 0;
383 }
384 
385 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
386 				 int final, int dma)
387 {
388 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
389 	u32 val = length << 5, mask;
390 
391 	if (likely(ctx->digcnt))
392 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
393 
394 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
395 		SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
396 		SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
397 	/*
398 	 * Setting ALGO_CONST only for the first iteration
399 	 * and CLOSE_HASH only for the last one.
400 	 */
401 	if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
402 		val |= SHA_REG_CTRL_ALGO;
403 	if (!ctx->digcnt)
404 		val |= SHA_REG_CTRL_ALGO_CONST;
405 	if (final)
406 		val |= SHA_REG_CTRL_CLOSE_HASH;
407 
408 	mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
409 			SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
410 
411 	omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
412 }
413 
414 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
415 {
416 }
417 
418 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
419 {
420 	return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
421 }
422 
423 static int get_block_size(struct omap_sham_reqctx *ctx)
424 {
425 	int d;
426 
427 	switch (ctx->flags & FLAGS_MODE_MASK) {
428 	case FLAGS_MODE_MD5:
429 	case FLAGS_MODE_SHA1:
430 		d = SHA1_BLOCK_SIZE;
431 		break;
432 	case FLAGS_MODE_SHA224:
433 	case FLAGS_MODE_SHA256:
434 		d = SHA256_BLOCK_SIZE;
435 		break;
436 	case FLAGS_MODE_SHA384:
437 	case FLAGS_MODE_SHA512:
438 		d = SHA512_BLOCK_SIZE;
439 		break;
440 	default:
441 		d = 0;
442 	}
443 
444 	return d;
445 }
446 
447 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
448 				    u32 *value, int count)
449 {
450 	for (; count--; value++, offset += 4)
451 		omap_sham_write(dd, offset, *value);
452 }
453 
454 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
455 				 int final, int dma)
456 {
457 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
458 	u32 val, mask;
459 
460 	/*
461 	 * Setting ALGO_CONST only for the first iteration and
462 	 * CLOSE_HASH only for the last one. Note that flags mode bits
463 	 * correspond to algorithm encoding in mode register.
464 	 */
465 	val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
466 	if (!ctx->digcnt) {
467 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
468 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
469 		struct omap_sham_hmac_ctx *bctx = tctx->base;
470 		int bs, nr_dr;
471 
472 		val |= SHA_REG_MODE_ALGO_CONSTANT;
473 
474 		if (ctx->flags & BIT(FLAGS_HMAC)) {
475 			bs = get_block_size(ctx);
476 			nr_dr = bs / (2 * sizeof(u32));
477 			val |= SHA_REG_MODE_HMAC_KEY_PROC;
478 			omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
479 					  (u32 *)bctx->ipad, nr_dr);
480 			omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
481 					  (u32 *)bctx->ipad + nr_dr, nr_dr);
482 			ctx->digcnt += bs;
483 		}
484 	}
485 
486 	if (final) {
487 		val |= SHA_REG_MODE_CLOSE_HASH;
488 
489 		if (ctx->flags & BIT(FLAGS_HMAC))
490 			val |= SHA_REG_MODE_HMAC_OUTER_HASH;
491 	}
492 
493 	mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
494 	       SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
495 	       SHA_REG_MODE_HMAC_KEY_PROC;
496 
497 	dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
498 	omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
499 	omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
500 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
501 			     SHA_REG_MASK_IT_EN |
502 				     (dma ? SHA_REG_MASK_DMA_EN : 0),
503 			     SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
504 }
505 
506 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
507 {
508 	omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
509 }
510 
511 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
512 {
513 	return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
514 			      SHA_REG_IRQSTATUS_INPUT_RDY);
515 }
516 
517 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
518 			      int final)
519 {
520 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
521 	int count, len32, bs32, offset = 0;
522 	const u32 *buffer;
523 	int mlen;
524 	struct sg_mapping_iter mi;
525 
526 	dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
527 						ctx->digcnt, length, final);
528 
529 	dd->pdata->write_ctrl(dd, length, final, 0);
530 	dd->pdata->trigger(dd, length);
531 
532 	/* should be non-zero before next lines to disable clocks later */
533 	ctx->digcnt += length;
534 	ctx->total -= length;
535 
536 	if (final)
537 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
538 
539 	set_bit(FLAGS_CPU, &dd->flags);
540 
541 	len32 = DIV_ROUND_UP(length, sizeof(u32));
542 	bs32 = get_block_size(ctx) / sizeof(u32);
543 
544 	sg_miter_start(&mi, ctx->sg, ctx->sg_len,
545 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
546 
547 	mlen = 0;
548 
549 	while (len32) {
550 		if (dd->pdata->poll_irq(dd))
551 			return -ETIMEDOUT;
552 
553 		for (count = 0; count < min(len32, bs32); count++, offset++) {
554 			if (!mlen) {
555 				sg_miter_next(&mi);
556 				mlen = mi.length;
557 				if (!mlen) {
558 					pr_err("sg miter failure.\n");
559 					return -EINVAL;
560 				}
561 				offset = 0;
562 				buffer = mi.addr;
563 			}
564 			omap_sham_write(dd, SHA_REG_DIN(dd, count),
565 					buffer[offset]);
566 			mlen -= 4;
567 		}
568 		len32 -= min(len32, bs32);
569 	}
570 
571 	sg_miter_stop(&mi);
572 
573 	return -EINPROGRESS;
574 }
575 
576 static void omap_sham_dma_callback(void *param)
577 {
578 	struct omap_sham_dev *dd = param;
579 
580 	set_bit(FLAGS_DMA_READY, &dd->flags);
581 	tasklet_schedule(&dd->done_task);
582 }
583 
584 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
585 			      int final)
586 {
587 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
588 	struct dma_async_tx_descriptor *tx;
589 	struct dma_slave_config cfg;
590 	int ret;
591 
592 	dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
593 						ctx->digcnt, length, final);
594 
595 	if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
596 		dev_err(dd->dev, "dma_map_sg error\n");
597 		return -EINVAL;
598 	}
599 
600 	memset(&cfg, 0, sizeof(cfg));
601 
602 	cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
603 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 	cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
605 
606 	ret = dmaengine_slave_config(dd->dma_lch, &cfg);
607 	if (ret) {
608 		pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
609 		return ret;
610 	}
611 
612 	tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
613 				     DMA_MEM_TO_DEV,
614 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
615 
616 	if (!tx) {
617 		dev_err(dd->dev, "prep_slave_sg failed\n");
618 		return -EINVAL;
619 	}
620 
621 	tx->callback = omap_sham_dma_callback;
622 	tx->callback_param = dd;
623 
624 	dd->pdata->write_ctrl(dd, length, final, 1);
625 
626 	ctx->digcnt += length;
627 	ctx->total -= length;
628 
629 	if (final)
630 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
631 
632 	set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
633 
634 	dmaengine_submit(tx);
635 	dma_async_issue_pending(dd->dma_lch);
636 
637 	dd->pdata->trigger(dd, length);
638 
639 	return -EINPROGRESS;
640 }
641 
642 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
643 				   struct scatterlist *sg, int bs, int new_len)
644 {
645 	int n = sg_nents(sg);
646 	struct scatterlist *tmp;
647 	int offset = ctx->offset;
648 
649 	if (ctx->bufcnt)
650 		n++;
651 
652 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
653 	if (!ctx->sg)
654 		return -ENOMEM;
655 
656 	sg_init_table(ctx->sg, n);
657 
658 	tmp = ctx->sg;
659 
660 	ctx->sg_len = 0;
661 
662 	if (ctx->bufcnt) {
663 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
664 		tmp = sg_next(tmp);
665 		ctx->sg_len++;
666 	}
667 
668 	while (sg && new_len) {
669 		int len = sg->length - offset;
670 
671 		if (offset) {
672 			offset -= sg->length;
673 			if (offset < 0)
674 				offset = 0;
675 		}
676 
677 		if (new_len < len)
678 			len = new_len;
679 
680 		if (len > 0) {
681 			new_len -= len;
682 			sg_set_page(tmp, sg_page(sg), len, sg->offset);
683 			if (new_len <= 0)
684 				sg_mark_end(tmp);
685 			tmp = sg_next(tmp);
686 			ctx->sg_len++;
687 		}
688 
689 		sg = sg_next(sg);
690 	}
691 
692 	set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
693 
694 	ctx->bufcnt = 0;
695 
696 	return 0;
697 }
698 
699 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
700 			      struct scatterlist *sg, int bs, int new_len)
701 {
702 	int pages;
703 	void *buf;
704 	int len;
705 
706 	len = new_len + ctx->bufcnt;
707 
708 	pages = get_order(ctx->total);
709 
710 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
711 	if (!buf) {
712 		pr_err("Couldn't allocate pages for unaligned cases.\n");
713 		return -ENOMEM;
714 	}
715 
716 	if (ctx->bufcnt)
717 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
718 
719 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
720 				 ctx->total - ctx->bufcnt, 0);
721 	sg_init_table(ctx->sgl, 1);
722 	sg_set_buf(ctx->sgl, buf, len);
723 	ctx->sg = ctx->sgl;
724 	set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
725 	ctx->sg_len = 1;
726 	ctx->bufcnt = 0;
727 	ctx->offset = 0;
728 
729 	return 0;
730 }
731 
732 static int omap_sham_align_sgs(struct scatterlist *sg,
733 			       int nbytes, int bs, bool final,
734 			       struct omap_sham_reqctx *rctx)
735 {
736 	int n = 0;
737 	bool aligned = true;
738 	bool list_ok = true;
739 	struct scatterlist *sg_tmp = sg;
740 	int new_len;
741 	int offset = rctx->offset;
742 
743 	if (!sg || !sg->length || !nbytes)
744 		return 0;
745 
746 	new_len = nbytes;
747 
748 	if (offset)
749 		list_ok = false;
750 
751 	if (final)
752 		new_len = DIV_ROUND_UP(new_len, bs) * bs;
753 	else
754 		new_len = (new_len - 1) / bs * bs;
755 
756 	if (nbytes != new_len)
757 		list_ok = false;
758 
759 	while (nbytes > 0 && sg_tmp) {
760 		n++;
761 
762 		if (offset < sg_tmp->length) {
763 			if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
764 				aligned = false;
765 				break;
766 			}
767 
768 			if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
769 				aligned = false;
770 				break;
771 			}
772 		}
773 
774 		if (offset) {
775 			offset -= sg_tmp->length;
776 			if (offset < 0) {
777 				nbytes += offset;
778 				offset = 0;
779 			}
780 		} else {
781 			nbytes -= sg_tmp->length;
782 		}
783 
784 		sg_tmp = sg_next(sg_tmp);
785 
786 		if (nbytes < 0) {
787 			list_ok = false;
788 			break;
789 		}
790 	}
791 
792 	if (!aligned)
793 		return omap_sham_copy_sgs(rctx, sg, bs, new_len);
794 	else if (!list_ok)
795 		return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
796 
797 	rctx->sg_len = n;
798 	rctx->sg = sg;
799 
800 	return 0;
801 }
802 
803 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
804 {
805 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
806 	int bs;
807 	int ret;
808 	int nbytes;
809 	bool final = rctx->flags & BIT(FLAGS_FINUP);
810 	int xmit_len, hash_later;
811 
812 	if (!req)
813 		return 0;
814 
815 	bs = get_block_size(rctx);
816 
817 	if (update)
818 		nbytes = req->nbytes;
819 	else
820 		nbytes = 0;
821 
822 	rctx->total = nbytes + rctx->bufcnt;
823 
824 	if (!rctx->total)
825 		return 0;
826 
827 	if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
828 		int len = bs - rctx->bufcnt % bs;
829 
830 		if (len > nbytes)
831 			len = nbytes;
832 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
833 					 0, len, 0);
834 		rctx->bufcnt += len;
835 		nbytes -= len;
836 		rctx->offset = len;
837 	}
838 
839 	if (rctx->bufcnt)
840 		memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
841 
842 	ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
843 	if (ret)
844 		return ret;
845 
846 	xmit_len = rctx->total;
847 
848 	if (!IS_ALIGNED(xmit_len, bs)) {
849 		if (final)
850 			xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
851 		else
852 			xmit_len = xmit_len / bs * bs;
853 	} else if (!final) {
854 		xmit_len -= bs;
855 	}
856 
857 	hash_later = rctx->total - xmit_len;
858 	if (hash_later < 0)
859 		hash_later = 0;
860 
861 	if (rctx->bufcnt && nbytes) {
862 		/* have data from previous operation and current */
863 		sg_init_table(rctx->sgl, 2);
864 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
865 
866 		sg_chain(rctx->sgl, 2, req->src);
867 
868 		rctx->sg = rctx->sgl;
869 
870 		rctx->sg_len++;
871 	} else if (rctx->bufcnt) {
872 		/* have buffered data only */
873 		sg_init_table(rctx->sgl, 1);
874 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
875 
876 		rctx->sg = rctx->sgl;
877 
878 		rctx->sg_len = 1;
879 	}
880 
881 	if (hash_later) {
882 		int offset = 0;
883 
884 		if (hash_later > req->nbytes) {
885 			memcpy(rctx->buffer, rctx->buffer + xmit_len,
886 			       hash_later - req->nbytes);
887 			offset = hash_later - req->nbytes;
888 		}
889 
890 		if (req->nbytes) {
891 			scatterwalk_map_and_copy(rctx->buffer + offset,
892 						 req->src,
893 						 offset + req->nbytes -
894 						 hash_later, hash_later, 0);
895 		}
896 
897 		rctx->bufcnt = hash_later;
898 	} else {
899 		rctx->bufcnt = 0;
900 	}
901 
902 	if (!final)
903 		rctx->total = xmit_len;
904 
905 	return 0;
906 }
907 
908 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
909 {
910 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
911 
912 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
913 
914 	clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
915 
916 	return 0;
917 }
918 
919 static int omap_sham_init(struct ahash_request *req)
920 {
921 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
922 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
923 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
924 	struct omap_sham_dev *dd = NULL, *tmp;
925 	int bs = 0;
926 
927 	spin_lock_bh(&sham.lock);
928 	if (!tctx->dd) {
929 		list_for_each_entry(tmp, &sham.dev_list, list) {
930 			dd = tmp;
931 			break;
932 		}
933 		tctx->dd = dd;
934 	} else {
935 		dd = tctx->dd;
936 	}
937 	spin_unlock_bh(&sham.lock);
938 
939 	ctx->dd = dd;
940 
941 	ctx->flags = 0;
942 
943 	dev_dbg(dd->dev, "init: digest size: %d\n",
944 		crypto_ahash_digestsize(tfm));
945 
946 	switch (crypto_ahash_digestsize(tfm)) {
947 	case MD5_DIGEST_SIZE:
948 		ctx->flags |= FLAGS_MODE_MD5;
949 		bs = SHA1_BLOCK_SIZE;
950 		break;
951 	case SHA1_DIGEST_SIZE:
952 		ctx->flags |= FLAGS_MODE_SHA1;
953 		bs = SHA1_BLOCK_SIZE;
954 		break;
955 	case SHA224_DIGEST_SIZE:
956 		ctx->flags |= FLAGS_MODE_SHA224;
957 		bs = SHA224_BLOCK_SIZE;
958 		break;
959 	case SHA256_DIGEST_SIZE:
960 		ctx->flags |= FLAGS_MODE_SHA256;
961 		bs = SHA256_BLOCK_SIZE;
962 		break;
963 	case SHA384_DIGEST_SIZE:
964 		ctx->flags |= FLAGS_MODE_SHA384;
965 		bs = SHA384_BLOCK_SIZE;
966 		break;
967 	case SHA512_DIGEST_SIZE:
968 		ctx->flags |= FLAGS_MODE_SHA512;
969 		bs = SHA512_BLOCK_SIZE;
970 		break;
971 	}
972 
973 	ctx->bufcnt = 0;
974 	ctx->digcnt = 0;
975 	ctx->total = 0;
976 	ctx->offset = 0;
977 	ctx->buflen = BUFLEN;
978 
979 	if (tctx->flags & BIT(FLAGS_HMAC)) {
980 		if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
981 			struct omap_sham_hmac_ctx *bctx = tctx->base;
982 
983 			memcpy(ctx->buffer, bctx->ipad, bs);
984 			ctx->bufcnt = bs;
985 		}
986 
987 		ctx->flags |= BIT(FLAGS_HMAC);
988 	}
989 
990 	return 0;
991 
992 }
993 
994 static int omap_sham_update_req(struct omap_sham_dev *dd)
995 {
996 	struct ahash_request *req = dd->req;
997 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
998 	int err;
999 	bool final = ctx->flags & BIT(FLAGS_FINUP);
1000 
1001 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
1002 		 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
1003 
1004 	if (ctx->total < get_block_size(ctx) ||
1005 	    ctx->total < OMAP_SHA_DMA_THRESHOLD)
1006 		ctx->flags |= BIT(FLAGS_CPU);
1007 
1008 	if (ctx->flags & BIT(FLAGS_CPU))
1009 		err = omap_sham_xmit_cpu(dd, ctx->total, final);
1010 	else
1011 		err = omap_sham_xmit_dma(dd, ctx->total, final);
1012 
1013 	/* wait for dma completion before can take more data */
1014 	dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1015 
1016 	return err;
1017 }
1018 
1019 static int omap_sham_final_req(struct omap_sham_dev *dd)
1020 {
1021 	struct ahash_request *req = dd->req;
1022 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1023 	int err = 0, use_dma = 1;
1024 
1025 	if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1026 		/*
1027 		 * faster to handle last block with cpu or
1028 		 * use cpu when dma is not present.
1029 		 */
1030 		use_dma = 0;
1031 
1032 	if (use_dma)
1033 		err = omap_sham_xmit_dma(dd, ctx->total, 1);
1034 	else
1035 		err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1036 
1037 	ctx->bufcnt = 0;
1038 
1039 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
1040 
1041 	return err;
1042 }
1043 
1044 static int omap_sham_finish_hmac(struct ahash_request *req)
1045 {
1046 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1047 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1048 	int bs = crypto_shash_blocksize(bctx->shash);
1049 	int ds = crypto_shash_digestsize(bctx->shash);
1050 	SHASH_DESC_ON_STACK(shash, bctx->shash);
1051 
1052 	shash->tfm = bctx->shash;
1053 	shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
1054 
1055 	return crypto_shash_init(shash) ?:
1056 	       crypto_shash_update(shash, bctx->opad, bs) ?:
1057 	       crypto_shash_finup(shash, req->result, ds, req->result);
1058 }
1059 
1060 static int omap_sham_finish(struct ahash_request *req)
1061 {
1062 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1063 	struct omap_sham_dev *dd = ctx->dd;
1064 	int err = 0;
1065 
1066 	if (ctx->digcnt) {
1067 		omap_sham_copy_ready_hash(req);
1068 		if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1069 				!test_bit(FLAGS_AUTO_XOR, &dd->flags))
1070 			err = omap_sham_finish_hmac(req);
1071 	}
1072 
1073 	dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1074 
1075 	return err;
1076 }
1077 
1078 static void omap_sham_finish_req(struct ahash_request *req, int err)
1079 {
1080 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1081 	struct omap_sham_dev *dd = ctx->dd;
1082 
1083 	if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1084 		free_pages((unsigned long)sg_virt(ctx->sg),
1085 			   get_order(ctx->sg->length));
1086 
1087 	if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1088 		kfree(ctx->sg);
1089 
1090 	ctx->sg = NULL;
1091 
1092 	dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1093 
1094 	if (!err) {
1095 		dd->pdata->copy_hash(req, 1);
1096 		if (test_bit(FLAGS_FINAL, &dd->flags))
1097 			err = omap_sham_finish(req);
1098 	} else {
1099 		ctx->flags |= BIT(FLAGS_ERROR);
1100 	}
1101 
1102 	/* atomic operation is not needed here */
1103 	dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1104 			BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1105 
1106 	pm_runtime_mark_last_busy(dd->dev);
1107 	pm_runtime_put_autosuspend(dd->dev);
1108 
1109 	if (req->base.complete)
1110 		req->base.complete(&req->base, err);
1111 }
1112 
1113 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1114 				  struct ahash_request *req)
1115 {
1116 	struct crypto_async_request *async_req, *backlog;
1117 	struct omap_sham_reqctx *ctx;
1118 	unsigned long flags;
1119 	int err = 0, ret = 0;
1120 
1121 retry:
1122 	spin_lock_irqsave(&dd->lock, flags);
1123 	if (req)
1124 		ret = ahash_enqueue_request(&dd->queue, req);
1125 	if (test_bit(FLAGS_BUSY, &dd->flags)) {
1126 		spin_unlock_irqrestore(&dd->lock, flags);
1127 		return ret;
1128 	}
1129 	backlog = crypto_get_backlog(&dd->queue);
1130 	async_req = crypto_dequeue_request(&dd->queue);
1131 	if (async_req)
1132 		set_bit(FLAGS_BUSY, &dd->flags);
1133 	spin_unlock_irqrestore(&dd->lock, flags);
1134 
1135 	if (!async_req)
1136 		return ret;
1137 
1138 	if (backlog)
1139 		backlog->complete(backlog, -EINPROGRESS);
1140 
1141 	req = ahash_request_cast(async_req);
1142 	dd->req = req;
1143 	ctx = ahash_request_ctx(req);
1144 
1145 	err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1146 	if (err || !ctx->total)
1147 		goto err1;
1148 
1149 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1150 						ctx->op, req->nbytes);
1151 
1152 	err = omap_sham_hw_init(dd);
1153 	if (err)
1154 		goto err1;
1155 
1156 	if (ctx->digcnt)
1157 		/* request has changed - restore hash */
1158 		dd->pdata->copy_hash(req, 0);
1159 
1160 	if (ctx->op == OP_UPDATE) {
1161 		err = omap_sham_update_req(dd);
1162 		if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1163 			/* no final() after finup() */
1164 			err = omap_sham_final_req(dd);
1165 	} else if (ctx->op == OP_FINAL) {
1166 		err = omap_sham_final_req(dd);
1167 	}
1168 err1:
1169 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1170 
1171 	if (err != -EINPROGRESS) {
1172 		/* done_task will not finish it, so do it here */
1173 		omap_sham_finish_req(req, err);
1174 		req = NULL;
1175 
1176 		/*
1177 		 * Execute next request immediately if there is anything
1178 		 * in queue.
1179 		 */
1180 		goto retry;
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1187 {
1188 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1189 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1190 	struct omap_sham_dev *dd = tctx->dd;
1191 
1192 	ctx->op = op;
1193 
1194 	return omap_sham_handle_queue(dd, req);
1195 }
1196 
1197 static int omap_sham_update(struct ahash_request *req)
1198 {
1199 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1200 	struct omap_sham_dev *dd = ctx->dd;
1201 
1202 	if (!req->nbytes)
1203 		return 0;
1204 
1205 	if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1206 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1207 					 0, req->nbytes, 0);
1208 		ctx->bufcnt += req->nbytes;
1209 		return 0;
1210 	}
1211 
1212 	if (dd->polling_mode)
1213 		ctx->flags |= BIT(FLAGS_CPU);
1214 
1215 	return omap_sham_enqueue(req, OP_UPDATE);
1216 }
1217 
1218 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1219 				  const u8 *data, unsigned int len, u8 *out)
1220 {
1221 	SHASH_DESC_ON_STACK(shash, tfm);
1222 
1223 	shash->tfm = tfm;
1224 	shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1225 
1226 	return crypto_shash_digest(shash, data, len, out);
1227 }
1228 
1229 static int omap_sham_final_shash(struct ahash_request *req)
1230 {
1231 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1232 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1233 	int offset = 0;
1234 
1235 	/*
1236 	 * If we are running HMAC on limited hardware support, skip
1237 	 * the ipad in the beginning of the buffer if we are going for
1238 	 * software fallback algorithm.
1239 	 */
1240 	if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1241 	    !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1242 		offset = get_block_size(ctx);
1243 
1244 	return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1245 				      ctx->buffer + offset,
1246 				      ctx->bufcnt - offset, req->result);
1247 }
1248 
1249 static int omap_sham_final(struct ahash_request *req)
1250 {
1251 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1252 
1253 	ctx->flags |= BIT(FLAGS_FINUP);
1254 
1255 	if (ctx->flags & BIT(FLAGS_ERROR))
1256 		return 0; /* uncompleted hash is not needed */
1257 
1258 	/*
1259 	 * OMAP HW accel works only with buffers >= 9.
1260 	 * HMAC is always >= 9 because ipad == block size.
1261 	 * If buffersize is less than DMA_THRESHOLD, we use fallback
1262 	 * SW encoding, as using DMA + HW in this case doesn't provide
1263 	 * any benefit.
1264 	 */
1265 	if (!ctx->digcnt && ctx->bufcnt < OMAP_SHA_DMA_THRESHOLD)
1266 		return omap_sham_final_shash(req);
1267 	else if (ctx->bufcnt)
1268 		return omap_sham_enqueue(req, OP_FINAL);
1269 
1270 	/* copy ready hash (+ finalize hmac) */
1271 	return omap_sham_finish(req);
1272 }
1273 
1274 static int omap_sham_finup(struct ahash_request *req)
1275 {
1276 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1277 	int err1, err2;
1278 
1279 	ctx->flags |= BIT(FLAGS_FINUP);
1280 
1281 	err1 = omap_sham_update(req);
1282 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1283 		return err1;
1284 	/*
1285 	 * final() has to be always called to cleanup resources
1286 	 * even if udpate() failed, except EINPROGRESS
1287 	 */
1288 	err2 = omap_sham_final(req);
1289 
1290 	return err1 ?: err2;
1291 }
1292 
1293 static int omap_sham_digest(struct ahash_request *req)
1294 {
1295 	return omap_sham_init(req) ?: omap_sham_finup(req);
1296 }
1297 
1298 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1299 		      unsigned int keylen)
1300 {
1301 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1302 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1303 	int bs = crypto_shash_blocksize(bctx->shash);
1304 	int ds = crypto_shash_digestsize(bctx->shash);
1305 	struct omap_sham_dev *dd = NULL, *tmp;
1306 	int err, i;
1307 
1308 	spin_lock_bh(&sham.lock);
1309 	if (!tctx->dd) {
1310 		list_for_each_entry(tmp, &sham.dev_list, list) {
1311 			dd = tmp;
1312 			break;
1313 		}
1314 		tctx->dd = dd;
1315 	} else {
1316 		dd = tctx->dd;
1317 	}
1318 	spin_unlock_bh(&sham.lock);
1319 
1320 	err = crypto_shash_setkey(tctx->fallback, key, keylen);
1321 	if (err)
1322 		return err;
1323 
1324 	if (keylen > bs) {
1325 		err = omap_sham_shash_digest(bctx->shash,
1326 				crypto_shash_get_flags(bctx->shash),
1327 				key, keylen, bctx->ipad);
1328 		if (err)
1329 			return err;
1330 		keylen = ds;
1331 	} else {
1332 		memcpy(bctx->ipad, key, keylen);
1333 	}
1334 
1335 	memset(bctx->ipad + keylen, 0, bs - keylen);
1336 
1337 	if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1338 		memcpy(bctx->opad, bctx->ipad, bs);
1339 
1340 		for (i = 0; i < bs; i++) {
1341 			bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1342 			bctx->opad[i] ^= HMAC_OPAD_VALUE;
1343 		}
1344 	}
1345 
1346 	return err;
1347 }
1348 
1349 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1350 {
1351 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1352 	const char *alg_name = crypto_tfm_alg_name(tfm);
1353 
1354 	/* Allocate a fallback and abort if it failed. */
1355 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1356 					    CRYPTO_ALG_NEED_FALLBACK);
1357 	if (IS_ERR(tctx->fallback)) {
1358 		pr_err("omap-sham: fallback driver '%s' "
1359 				"could not be loaded.\n", alg_name);
1360 		return PTR_ERR(tctx->fallback);
1361 	}
1362 
1363 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1364 				 sizeof(struct omap_sham_reqctx) + BUFLEN);
1365 
1366 	if (alg_base) {
1367 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1368 		tctx->flags |= BIT(FLAGS_HMAC);
1369 		bctx->shash = crypto_alloc_shash(alg_base, 0,
1370 						CRYPTO_ALG_NEED_FALLBACK);
1371 		if (IS_ERR(bctx->shash)) {
1372 			pr_err("omap-sham: base driver '%s' "
1373 					"could not be loaded.\n", alg_base);
1374 			crypto_free_shash(tctx->fallback);
1375 			return PTR_ERR(bctx->shash);
1376 		}
1377 
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1384 {
1385 	return omap_sham_cra_init_alg(tfm, NULL);
1386 }
1387 
1388 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1389 {
1390 	return omap_sham_cra_init_alg(tfm, "sha1");
1391 }
1392 
1393 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1394 {
1395 	return omap_sham_cra_init_alg(tfm, "sha224");
1396 }
1397 
1398 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1399 {
1400 	return omap_sham_cra_init_alg(tfm, "sha256");
1401 }
1402 
1403 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1404 {
1405 	return omap_sham_cra_init_alg(tfm, "md5");
1406 }
1407 
1408 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1409 {
1410 	return omap_sham_cra_init_alg(tfm, "sha384");
1411 }
1412 
1413 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1414 {
1415 	return omap_sham_cra_init_alg(tfm, "sha512");
1416 }
1417 
1418 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1419 {
1420 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1421 
1422 	crypto_free_shash(tctx->fallback);
1423 	tctx->fallback = NULL;
1424 
1425 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1426 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1427 		crypto_free_shash(bctx->shash);
1428 	}
1429 }
1430 
1431 static int omap_sham_export(struct ahash_request *req, void *out)
1432 {
1433 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1434 
1435 	memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1436 
1437 	return 0;
1438 }
1439 
1440 static int omap_sham_import(struct ahash_request *req, const void *in)
1441 {
1442 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1443 	const struct omap_sham_reqctx *ctx_in = in;
1444 
1445 	memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1446 
1447 	return 0;
1448 }
1449 
1450 static struct ahash_alg algs_sha1_md5[] = {
1451 {
1452 	.init		= omap_sham_init,
1453 	.update		= omap_sham_update,
1454 	.final		= omap_sham_final,
1455 	.finup		= omap_sham_finup,
1456 	.digest		= omap_sham_digest,
1457 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1458 	.halg.base	= {
1459 		.cra_name		= "sha1",
1460 		.cra_driver_name	= "omap-sha1",
1461 		.cra_priority		= 400,
1462 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1463 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1464 						CRYPTO_ALG_ASYNC |
1465 						CRYPTO_ALG_NEED_FALLBACK,
1466 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1467 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1468 		.cra_alignmask		= OMAP_ALIGN_MASK,
1469 		.cra_module		= THIS_MODULE,
1470 		.cra_init		= omap_sham_cra_init,
1471 		.cra_exit		= omap_sham_cra_exit,
1472 	}
1473 },
1474 {
1475 	.init		= omap_sham_init,
1476 	.update		= omap_sham_update,
1477 	.final		= omap_sham_final,
1478 	.finup		= omap_sham_finup,
1479 	.digest		= omap_sham_digest,
1480 	.halg.digestsize	= MD5_DIGEST_SIZE,
1481 	.halg.base	= {
1482 		.cra_name		= "md5",
1483 		.cra_driver_name	= "omap-md5",
1484 		.cra_priority		= 400,
1485 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1486 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1487 						CRYPTO_ALG_ASYNC |
1488 						CRYPTO_ALG_NEED_FALLBACK,
1489 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1490 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1491 		.cra_alignmask		= OMAP_ALIGN_MASK,
1492 		.cra_module		= THIS_MODULE,
1493 		.cra_init		= omap_sham_cra_init,
1494 		.cra_exit		= omap_sham_cra_exit,
1495 	}
1496 },
1497 {
1498 	.init		= omap_sham_init,
1499 	.update		= omap_sham_update,
1500 	.final		= omap_sham_final,
1501 	.finup		= omap_sham_finup,
1502 	.digest		= omap_sham_digest,
1503 	.setkey		= omap_sham_setkey,
1504 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1505 	.halg.base	= {
1506 		.cra_name		= "hmac(sha1)",
1507 		.cra_driver_name	= "omap-hmac-sha1",
1508 		.cra_priority		= 400,
1509 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1510 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1511 						CRYPTO_ALG_ASYNC |
1512 						CRYPTO_ALG_NEED_FALLBACK,
1513 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1514 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1515 					sizeof(struct omap_sham_hmac_ctx),
1516 		.cra_alignmask		= OMAP_ALIGN_MASK,
1517 		.cra_module		= THIS_MODULE,
1518 		.cra_init		= omap_sham_cra_sha1_init,
1519 		.cra_exit		= omap_sham_cra_exit,
1520 	}
1521 },
1522 {
1523 	.init		= omap_sham_init,
1524 	.update		= omap_sham_update,
1525 	.final		= omap_sham_final,
1526 	.finup		= omap_sham_finup,
1527 	.digest		= omap_sham_digest,
1528 	.setkey		= omap_sham_setkey,
1529 	.halg.digestsize	= MD5_DIGEST_SIZE,
1530 	.halg.base	= {
1531 		.cra_name		= "hmac(md5)",
1532 		.cra_driver_name	= "omap-hmac-md5",
1533 		.cra_priority		= 400,
1534 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1535 						CRYPTO_ALG_KERN_DRIVER_ONLY |
1536 						CRYPTO_ALG_ASYNC |
1537 						CRYPTO_ALG_NEED_FALLBACK,
1538 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1539 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1540 					sizeof(struct omap_sham_hmac_ctx),
1541 		.cra_alignmask		= OMAP_ALIGN_MASK,
1542 		.cra_module		= THIS_MODULE,
1543 		.cra_init		= omap_sham_cra_md5_init,
1544 		.cra_exit		= omap_sham_cra_exit,
1545 	}
1546 }
1547 };
1548 
1549 /* OMAP4 has some algs in addition to what OMAP2 has */
1550 static struct ahash_alg algs_sha224_sha256[] = {
1551 {
1552 	.init		= omap_sham_init,
1553 	.update		= omap_sham_update,
1554 	.final		= omap_sham_final,
1555 	.finup		= omap_sham_finup,
1556 	.digest		= omap_sham_digest,
1557 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1558 	.halg.base	= {
1559 		.cra_name		= "sha224",
1560 		.cra_driver_name	= "omap-sha224",
1561 		.cra_priority		= 400,
1562 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1563 						CRYPTO_ALG_ASYNC |
1564 						CRYPTO_ALG_NEED_FALLBACK,
1565 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1566 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1567 		.cra_alignmask		= OMAP_ALIGN_MASK,
1568 		.cra_module		= THIS_MODULE,
1569 		.cra_init		= omap_sham_cra_init,
1570 		.cra_exit		= omap_sham_cra_exit,
1571 	}
1572 },
1573 {
1574 	.init		= omap_sham_init,
1575 	.update		= omap_sham_update,
1576 	.final		= omap_sham_final,
1577 	.finup		= omap_sham_finup,
1578 	.digest		= omap_sham_digest,
1579 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1580 	.halg.base	= {
1581 		.cra_name		= "sha256",
1582 		.cra_driver_name	= "omap-sha256",
1583 		.cra_priority		= 400,
1584 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1585 						CRYPTO_ALG_ASYNC |
1586 						CRYPTO_ALG_NEED_FALLBACK,
1587 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1588 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1589 		.cra_alignmask		= OMAP_ALIGN_MASK,
1590 		.cra_module		= THIS_MODULE,
1591 		.cra_init		= omap_sham_cra_init,
1592 		.cra_exit		= omap_sham_cra_exit,
1593 	}
1594 },
1595 {
1596 	.init		= omap_sham_init,
1597 	.update		= omap_sham_update,
1598 	.final		= omap_sham_final,
1599 	.finup		= omap_sham_finup,
1600 	.digest		= omap_sham_digest,
1601 	.setkey		= omap_sham_setkey,
1602 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1603 	.halg.base	= {
1604 		.cra_name		= "hmac(sha224)",
1605 		.cra_driver_name	= "omap-hmac-sha224",
1606 		.cra_priority		= 400,
1607 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1608 						CRYPTO_ALG_ASYNC |
1609 						CRYPTO_ALG_NEED_FALLBACK,
1610 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1611 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1612 					sizeof(struct omap_sham_hmac_ctx),
1613 		.cra_alignmask		= OMAP_ALIGN_MASK,
1614 		.cra_module		= THIS_MODULE,
1615 		.cra_init		= omap_sham_cra_sha224_init,
1616 		.cra_exit		= omap_sham_cra_exit,
1617 	}
1618 },
1619 {
1620 	.init		= omap_sham_init,
1621 	.update		= omap_sham_update,
1622 	.final		= omap_sham_final,
1623 	.finup		= omap_sham_finup,
1624 	.digest		= omap_sham_digest,
1625 	.setkey		= omap_sham_setkey,
1626 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1627 	.halg.base	= {
1628 		.cra_name		= "hmac(sha256)",
1629 		.cra_driver_name	= "omap-hmac-sha256",
1630 		.cra_priority		= 400,
1631 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1632 						CRYPTO_ALG_ASYNC |
1633 						CRYPTO_ALG_NEED_FALLBACK,
1634 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1635 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1636 					sizeof(struct omap_sham_hmac_ctx),
1637 		.cra_alignmask		= OMAP_ALIGN_MASK,
1638 		.cra_module		= THIS_MODULE,
1639 		.cra_init		= omap_sham_cra_sha256_init,
1640 		.cra_exit		= omap_sham_cra_exit,
1641 	}
1642 },
1643 };
1644 
1645 static struct ahash_alg algs_sha384_sha512[] = {
1646 {
1647 	.init		= omap_sham_init,
1648 	.update		= omap_sham_update,
1649 	.final		= omap_sham_final,
1650 	.finup		= omap_sham_finup,
1651 	.digest		= omap_sham_digest,
1652 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1653 	.halg.base	= {
1654 		.cra_name		= "sha384",
1655 		.cra_driver_name	= "omap-sha384",
1656 		.cra_priority		= 400,
1657 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1658 						CRYPTO_ALG_ASYNC |
1659 						CRYPTO_ALG_NEED_FALLBACK,
1660 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1661 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1662 		.cra_alignmask		= OMAP_ALIGN_MASK,
1663 		.cra_module		= THIS_MODULE,
1664 		.cra_init		= omap_sham_cra_init,
1665 		.cra_exit		= omap_sham_cra_exit,
1666 	}
1667 },
1668 {
1669 	.init		= omap_sham_init,
1670 	.update		= omap_sham_update,
1671 	.final		= omap_sham_final,
1672 	.finup		= omap_sham_finup,
1673 	.digest		= omap_sham_digest,
1674 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1675 	.halg.base	= {
1676 		.cra_name		= "sha512",
1677 		.cra_driver_name	= "omap-sha512",
1678 		.cra_priority		= 400,
1679 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1680 						CRYPTO_ALG_ASYNC |
1681 						CRYPTO_ALG_NEED_FALLBACK,
1682 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1683 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1684 		.cra_alignmask		= OMAP_ALIGN_MASK,
1685 		.cra_module		= THIS_MODULE,
1686 		.cra_init		= omap_sham_cra_init,
1687 		.cra_exit		= omap_sham_cra_exit,
1688 	}
1689 },
1690 {
1691 	.init		= omap_sham_init,
1692 	.update		= omap_sham_update,
1693 	.final		= omap_sham_final,
1694 	.finup		= omap_sham_finup,
1695 	.digest		= omap_sham_digest,
1696 	.setkey		= omap_sham_setkey,
1697 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1698 	.halg.base	= {
1699 		.cra_name		= "hmac(sha384)",
1700 		.cra_driver_name	= "omap-hmac-sha384",
1701 		.cra_priority		= 400,
1702 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1703 						CRYPTO_ALG_ASYNC |
1704 						CRYPTO_ALG_NEED_FALLBACK,
1705 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1706 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1707 					sizeof(struct omap_sham_hmac_ctx),
1708 		.cra_alignmask		= OMAP_ALIGN_MASK,
1709 		.cra_module		= THIS_MODULE,
1710 		.cra_init		= omap_sham_cra_sha384_init,
1711 		.cra_exit		= omap_sham_cra_exit,
1712 	}
1713 },
1714 {
1715 	.init		= omap_sham_init,
1716 	.update		= omap_sham_update,
1717 	.final		= omap_sham_final,
1718 	.finup		= omap_sham_finup,
1719 	.digest		= omap_sham_digest,
1720 	.setkey		= omap_sham_setkey,
1721 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1722 	.halg.base	= {
1723 		.cra_name		= "hmac(sha512)",
1724 		.cra_driver_name	= "omap-hmac-sha512",
1725 		.cra_priority		= 400,
1726 		.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1727 						CRYPTO_ALG_ASYNC |
1728 						CRYPTO_ALG_NEED_FALLBACK,
1729 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1730 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1731 					sizeof(struct omap_sham_hmac_ctx),
1732 		.cra_alignmask		= OMAP_ALIGN_MASK,
1733 		.cra_module		= THIS_MODULE,
1734 		.cra_init		= omap_sham_cra_sha512_init,
1735 		.cra_exit		= omap_sham_cra_exit,
1736 	}
1737 },
1738 };
1739 
1740 static void omap_sham_done_task(unsigned long data)
1741 {
1742 	struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1743 	int err = 0;
1744 
1745 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1746 		omap_sham_handle_queue(dd, NULL);
1747 		return;
1748 	}
1749 
1750 	if (test_bit(FLAGS_CPU, &dd->flags)) {
1751 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1752 			goto finish;
1753 	} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1754 		if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1755 			omap_sham_update_dma_stop(dd);
1756 			if (dd->err) {
1757 				err = dd->err;
1758 				goto finish;
1759 			}
1760 		}
1761 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1762 			/* hash or semi-hash ready */
1763 			clear_bit(FLAGS_DMA_READY, &dd->flags);
1764 				goto finish;
1765 		}
1766 	}
1767 
1768 	return;
1769 
1770 finish:
1771 	dev_dbg(dd->dev, "update done: err: %d\n", err);
1772 	/* finish curent request */
1773 	omap_sham_finish_req(dd->req, err);
1774 
1775 	/* If we are not busy, process next req */
1776 	if (!test_bit(FLAGS_BUSY, &dd->flags))
1777 		omap_sham_handle_queue(dd, NULL);
1778 }
1779 
1780 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1781 {
1782 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1783 		dev_warn(dd->dev, "Interrupt when no active requests.\n");
1784 	} else {
1785 		set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1786 		tasklet_schedule(&dd->done_task);
1787 	}
1788 
1789 	return IRQ_HANDLED;
1790 }
1791 
1792 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1793 {
1794 	struct omap_sham_dev *dd = dev_id;
1795 
1796 	if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1797 		/* final -> allow device to go to power-saving mode */
1798 		omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1799 
1800 	omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1801 				 SHA_REG_CTRL_OUTPUT_READY);
1802 	omap_sham_read(dd, SHA_REG_CTRL);
1803 
1804 	return omap_sham_irq_common(dd);
1805 }
1806 
1807 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1808 {
1809 	struct omap_sham_dev *dd = dev_id;
1810 
1811 	omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1812 
1813 	return omap_sham_irq_common(dd);
1814 }
1815 
1816 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1817 	{
1818 		.algs_list	= algs_sha1_md5,
1819 		.size		= ARRAY_SIZE(algs_sha1_md5),
1820 	},
1821 };
1822 
1823 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1824 	.algs_info	= omap_sham_algs_info_omap2,
1825 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap2),
1826 	.flags		= BIT(FLAGS_BE32_SHA1),
1827 	.digest_size	= SHA1_DIGEST_SIZE,
1828 	.copy_hash	= omap_sham_copy_hash_omap2,
1829 	.write_ctrl	= omap_sham_write_ctrl_omap2,
1830 	.trigger	= omap_sham_trigger_omap2,
1831 	.poll_irq	= omap_sham_poll_irq_omap2,
1832 	.intr_hdlr	= omap_sham_irq_omap2,
1833 	.idigest_ofs	= 0x00,
1834 	.din_ofs	= 0x1c,
1835 	.digcnt_ofs	= 0x14,
1836 	.rev_ofs	= 0x5c,
1837 	.mask_ofs	= 0x60,
1838 	.sysstatus_ofs	= 0x64,
1839 	.major_mask	= 0xf0,
1840 	.major_shift	= 4,
1841 	.minor_mask	= 0x0f,
1842 	.minor_shift	= 0,
1843 };
1844 
1845 #ifdef CONFIG_OF
1846 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1847 	{
1848 		.algs_list	= algs_sha1_md5,
1849 		.size		= ARRAY_SIZE(algs_sha1_md5),
1850 	},
1851 	{
1852 		.algs_list	= algs_sha224_sha256,
1853 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1854 	},
1855 };
1856 
1857 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1858 	.algs_info	= omap_sham_algs_info_omap4,
1859 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap4),
1860 	.flags		= BIT(FLAGS_AUTO_XOR),
1861 	.digest_size	= SHA256_DIGEST_SIZE,
1862 	.copy_hash	= omap_sham_copy_hash_omap4,
1863 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1864 	.trigger	= omap_sham_trigger_omap4,
1865 	.poll_irq	= omap_sham_poll_irq_omap4,
1866 	.intr_hdlr	= omap_sham_irq_omap4,
1867 	.idigest_ofs	= 0x020,
1868 	.odigest_ofs	= 0x0,
1869 	.din_ofs	= 0x080,
1870 	.digcnt_ofs	= 0x040,
1871 	.rev_ofs	= 0x100,
1872 	.mask_ofs	= 0x110,
1873 	.sysstatus_ofs	= 0x114,
1874 	.mode_ofs	= 0x44,
1875 	.length_ofs	= 0x48,
1876 	.major_mask	= 0x0700,
1877 	.major_shift	= 8,
1878 	.minor_mask	= 0x003f,
1879 	.minor_shift	= 0,
1880 };
1881 
1882 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1883 	{
1884 		.algs_list	= algs_sha1_md5,
1885 		.size		= ARRAY_SIZE(algs_sha1_md5),
1886 	},
1887 	{
1888 		.algs_list	= algs_sha224_sha256,
1889 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1890 	},
1891 	{
1892 		.algs_list	= algs_sha384_sha512,
1893 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1894 	},
1895 };
1896 
1897 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1898 	.algs_info	= omap_sham_algs_info_omap5,
1899 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap5),
1900 	.flags		= BIT(FLAGS_AUTO_XOR),
1901 	.digest_size	= SHA512_DIGEST_SIZE,
1902 	.copy_hash	= omap_sham_copy_hash_omap4,
1903 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1904 	.trigger	= omap_sham_trigger_omap4,
1905 	.poll_irq	= omap_sham_poll_irq_omap4,
1906 	.intr_hdlr	= omap_sham_irq_omap4,
1907 	.idigest_ofs	= 0x240,
1908 	.odigest_ofs	= 0x200,
1909 	.din_ofs	= 0x080,
1910 	.digcnt_ofs	= 0x280,
1911 	.rev_ofs	= 0x100,
1912 	.mask_ofs	= 0x110,
1913 	.sysstatus_ofs	= 0x114,
1914 	.mode_ofs	= 0x284,
1915 	.length_ofs	= 0x288,
1916 	.major_mask	= 0x0700,
1917 	.major_shift	= 8,
1918 	.minor_mask	= 0x003f,
1919 	.minor_shift	= 0,
1920 };
1921 
1922 static const struct of_device_id omap_sham_of_match[] = {
1923 	{
1924 		.compatible	= "ti,omap2-sham",
1925 		.data		= &omap_sham_pdata_omap2,
1926 	},
1927 	{
1928 		.compatible	= "ti,omap3-sham",
1929 		.data		= &omap_sham_pdata_omap2,
1930 	},
1931 	{
1932 		.compatible	= "ti,omap4-sham",
1933 		.data		= &omap_sham_pdata_omap4,
1934 	},
1935 	{
1936 		.compatible	= "ti,omap5-sham",
1937 		.data		= &omap_sham_pdata_omap5,
1938 	},
1939 	{},
1940 };
1941 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1942 
1943 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1944 		struct device *dev, struct resource *res)
1945 {
1946 	struct device_node *node = dev->of_node;
1947 	int err = 0;
1948 
1949 	dd->pdata = of_device_get_match_data(dev);
1950 	if (!dd->pdata) {
1951 		dev_err(dev, "no compatible OF match\n");
1952 		err = -EINVAL;
1953 		goto err;
1954 	}
1955 
1956 	err = of_address_to_resource(node, 0, res);
1957 	if (err < 0) {
1958 		dev_err(dev, "can't translate OF node address\n");
1959 		err = -EINVAL;
1960 		goto err;
1961 	}
1962 
1963 	dd->irq = irq_of_parse_and_map(node, 0);
1964 	if (!dd->irq) {
1965 		dev_err(dev, "can't translate OF irq value\n");
1966 		err = -EINVAL;
1967 		goto err;
1968 	}
1969 
1970 err:
1971 	return err;
1972 }
1973 #else
1974 static const struct of_device_id omap_sham_of_match[] = {
1975 	{},
1976 };
1977 
1978 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1979 		struct device *dev, struct resource *res)
1980 {
1981 	return -EINVAL;
1982 }
1983 #endif
1984 
1985 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1986 		struct platform_device *pdev, struct resource *res)
1987 {
1988 	struct device *dev = &pdev->dev;
1989 	struct resource *r;
1990 	int err = 0;
1991 
1992 	/* Get the base address */
1993 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1994 	if (!r) {
1995 		dev_err(dev, "no MEM resource info\n");
1996 		err = -ENODEV;
1997 		goto err;
1998 	}
1999 	memcpy(res, r, sizeof(*res));
2000 
2001 	/* Get the IRQ */
2002 	dd->irq = platform_get_irq(pdev, 0);
2003 	if (dd->irq < 0) {
2004 		dev_err(dev, "no IRQ resource info\n");
2005 		err = dd->irq;
2006 		goto err;
2007 	}
2008 
2009 	/* Only OMAP2/3 can be non-DT */
2010 	dd->pdata = &omap_sham_pdata_omap2;
2011 
2012 err:
2013 	return err;
2014 }
2015 
2016 static int omap_sham_probe(struct platform_device *pdev)
2017 {
2018 	struct omap_sham_dev *dd;
2019 	struct device *dev = &pdev->dev;
2020 	struct resource res;
2021 	dma_cap_mask_t mask;
2022 	int err, i, j;
2023 	u32 rev;
2024 
2025 	dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2026 	if (dd == NULL) {
2027 		dev_err(dev, "unable to alloc data struct.\n");
2028 		err = -ENOMEM;
2029 		goto data_err;
2030 	}
2031 	dd->dev = dev;
2032 	platform_set_drvdata(pdev, dd);
2033 
2034 	INIT_LIST_HEAD(&dd->list);
2035 	spin_lock_init(&dd->lock);
2036 	tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2037 	crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2038 
2039 	err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2040 			       omap_sham_get_res_pdev(dd, pdev, &res);
2041 	if (err)
2042 		goto data_err;
2043 
2044 	dd->io_base = devm_ioremap_resource(dev, &res);
2045 	if (IS_ERR(dd->io_base)) {
2046 		err = PTR_ERR(dd->io_base);
2047 		goto data_err;
2048 	}
2049 	dd->phys_base = res.start;
2050 
2051 	err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2052 			       IRQF_TRIGGER_NONE, dev_name(dev), dd);
2053 	if (err) {
2054 		dev_err(dev, "unable to request irq %d, err = %d\n",
2055 			dd->irq, err);
2056 		goto data_err;
2057 	}
2058 
2059 	dma_cap_zero(mask);
2060 	dma_cap_set(DMA_SLAVE, mask);
2061 
2062 	dd->dma_lch = dma_request_chan(dev, "rx");
2063 	if (IS_ERR(dd->dma_lch)) {
2064 		err = PTR_ERR(dd->dma_lch);
2065 		if (err == -EPROBE_DEFER)
2066 			goto data_err;
2067 
2068 		dd->polling_mode = 1;
2069 		dev_dbg(dev, "using polling mode instead of dma\n");
2070 	}
2071 
2072 	dd->flags |= dd->pdata->flags;
2073 
2074 	pm_runtime_use_autosuspend(dev);
2075 	pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2076 
2077 	pm_runtime_enable(dev);
2078 	pm_runtime_irq_safe(dev);
2079 
2080 	err = pm_runtime_get_sync(dev);
2081 	if (err < 0) {
2082 		dev_err(dev, "failed to get sync: %d\n", err);
2083 		goto err_pm;
2084 	}
2085 
2086 	rev = omap_sham_read(dd, SHA_REG_REV(dd));
2087 	pm_runtime_put_sync(&pdev->dev);
2088 
2089 	dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2090 		(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2091 		(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2092 
2093 	spin_lock(&sham.lock);
2094 	list_add_tail(&dd->list, &sham.dev_list);
2095 	spin_unlock(&sham.lock);
2096 
2097 	for (i = 0; i < dd->pdata->algs_info_size; i++) {
2098 		for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2099 			struct ahash_alg *alg;
2100 
2101 			alg = &dd->pdata->algs_info[i].algs_list[j];
2102 			alg->export = omap_sham_export;
2103 			alg->import = omap_sham_import;
2104 			alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2105 					      BUFLEN;
2106 			err = crypto_register_ahash(alg);
2107 			if (err)
2108 				goto err_algs;
2109 
2110 			dd->pdata->algs_info[i].registered++;
2111 		}
2112 	}
2113 
2114 	return 0;
2115 
2116 err_algs:
2117 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2118 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2119 			crypto_unregister_ahash(
2120 					&dd->pdata->algs_info[i].algs_list[j]);
2121 err_pm:
2122 	pm_runtime_disable(dev);
2123 	if (!dd->polling_mode)
2124 		dma_release_channel(dd->dma_lch);
2125 data_err:
2126 	dev_err(dev, "initialization failed.\n");
2127 
2128 	return err;
2129 }
2130 
2131 static int omap_sham_remove(struct platform_device *pdev)
2132 {
2133 	struct omap_sham_dev *dd;
2134 	int i, j;
2135 
2136 	dd = platform_get_drvdata(pdev);
2137 	if (!dd)
2138 		return -ENODEV;
2139 	spin_lock(&sham.lock);
2140 	list_del(&dd->list);
2141 	spin_unlock(&sham.lock);
2142 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2143 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2144 			crypto_unregister_ahash(
2145 					&dd->pdata->algs_info[i].algs_list[j]);
2146 	tasklet_kill(&dd->done_task);
2147 	pm_runtime_disable(&pdev->dev);
2148 
2149 	if (!dd->polling_mode)
2150 		dma_release_channel(dd->dma_lch);
2151 
2152 	return 0;
2153 }
2154 
2155 #ifdef CONFIG_PM_SLEEP
2156 static int omap_sham_suspend(struct device *dev)
2157 {
2158 	pm_runtime_put_sync(dev);
2159 	return 0;
2160 }
2161 
2162 static int omap_sham_resume(struct device *dev)
2163 {
2164 	int err = pm_runtime_get_sync(dev);
2165 	if (err < 0) {
2166 		dev_err(dev, "failed to get sync: %d\n", err);
2167 		return err;
2168 	}
2169 	return 0;
2170 }
2171 #endif
2172 
2173 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2174 
2175 static struct platform_driver omap_sham_driver = {
2176 	.probe	= omap_sham_probe,
2177 	.remove	= omap_sham_remove,
2178 	.driver	= {
2179 		.name	= "omap-sham",
2180 		.pm	= &omap_sham_pm_ops,
2181 		.of_match_table	= omap_sham_of_match,
2182 	},
2183 };
2184 
2185 module_platform_driver(omap_sham_driver);
2186 
2187 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2188 MODULE_LICENSE("GPL v2");
2189 MODULE_AUTHOR("Dmitry Kasatkin");
2190 MODULE_ALIAS("platform:omap-sham");
2191