1 /* 2 * Cryptographic API. 3 * 4 * Support for OMAP SHA1/MD5 HW acceleration. 5 * 6 * Copyright (c) 2010 Nokia Corporation 7 * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com> 8 * Copyright (c) 2011 Texas Instruments Incorporated 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as published 12 * by the Free Software Foundation. 13 * 14 * Some ideas are from old omap-sha1-md5.c driver. 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/err.h> 20 #include <linux/device.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/errno.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/irq.h> 27 #include <linux/io.h> 28 #include <linux/platform_device.h> 29 #include <linux/scatterlist.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/dmaengine.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/of_address.h> 36 #include <linux/of_irq.h> 37 #include <linux/delay.h> 38 #include <linux/crypto.h> 39 #include <linux/cryptohash.h> 40 #include <crypto/scatterwalk.h> 41 #include <crypto/algapi.h> 42 #include <crypto/sha.h> 43 #include <crypto/hash.h> 44 #include <crypto/hmac.h> 45 #include <crypto/internal/hash.h> 46 47 #define MD5_DIGEST_SIZE 16 48 49 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04)) 50 #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04)) 51 #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs) 52 53 #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04)) 54 55 #define SHA_REG_CTRL 0x18 56 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5) 57 #define SHA_REG_CTRL_CLOSE_HASH (1 << 4) 58 #define SHA_REG_CTRL_ALGO_CONST (1 << 3) 59 #define SHA_REG_CTRL_ALGO (1 << 2) 60 #define SHA_REG_CTRL_INPUT_READY (1 << 1) 61 #define SHA_REG_CTRL_OUTPUT_READY (1 << 0) 62 63 #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs) 64 65 #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs) 66 #define SHA_REG_MASK_DMA_EN (1 << 3) 67 #define SHA_REG_MASK_IT_EN (1 << 2) 68 #define SHA_REG_MASK_SOFTRESET (1 << 1) 69 #define SHA_REG_AUTOIDLE (1 << 0) 70 71 #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs) 72 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0) 73 74 #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs) 75 #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7) 76 #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5) 77 #define SHA_REG_MODE_CLOSE_HASH (1 << 4) 78 #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3) 79 80 #define SHA_REG_MODE_ALGO_MASK (7 << 0) 81 #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1) 82 #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1) 83 #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1) 84 #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1) 85 #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0) 86 #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0) 87 88 #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs) 89 90 #define SHA_REG_IRQSTATUS 0x118 91 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3) 92 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2) 93 #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1) 94 #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0) 95 96 #define SHA_REG_IRQENA 0x11C 97 #define SHA_REG_IRQENA_CTX_RDY (1 << 3) 98 #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2) 99 #define SHA_REG_IRQENA_INPUT_RDY (1 << 1) 100 #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0) 101 102 #define DEFAULT_TIMEOUT_INTERVAL HZ 103 104 #define DEFAULT_AUTOSUSPEND_DELAY 1000 105 106 /* mostly device flags */ 107 #define FLAGS_BUSY 0 108 #define FLAGS_FINAL 1 109 #define FLAGS_DMA_ACTIVE 2 110 #define FLAGS_OUTPUT_READY 3 111 #define FLAGS_INIT 4 112 #define FLAGS_CPU 5 113 #define FLAGS_DMA_READY 6 114 #define FLAGS_AUTO_XOR 7 115 #define FLAGS_BE32_SHA1 8 116 #define FLAGS_SGS_COPIED 9 117 #define FLAGS_SGS_ALLOCED 10 118 /* context flags */ 119 #define FLAGS_FINUP 16 120 121 #define FLAGS_MODE_SHIFT 18 122 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT) 123 #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT) 124 #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT) 125 #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT) 126 #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT) 127 #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT) 128 #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT) 129 130 #define FLAGS_HMAC 21 131 #define FLAGS_ERROR 22 132 133 #define OP_UPDATE 1 134 #define OP_FINAL 2 135 136 #define OMAP_ALIGN_MASK (sizeof(u32)-1) 137 #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32)))) 138 139 #define BUFLEN SHA512_BLOCK_SIZE 140 #define OMAP_SHA_DMA_THRESHOLD 256 141 142 struct omap_sham_dev; 143 144 struct omap_sham_reqctx { 145 struct omap_sham_dev *dd; 146 unsigned long flags; 147 unsigned long op; 148 149 u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED; 150 size_t digcnt; 151 size_t bufcnt; 152 size_t buflen; 153 154 /* walk state */ 155 struct scatterlist *sg; 156 struct scatterlist sgl[2]; 157 int offset; /* offset in current sg */ 158 int sg_len; 159 unsigned int total; /* total request */ 160 161 u8 buffer[0] OMAP_ALIGNED; 162 }; 163 164 struct omap_sham_hmac_ctx { 165 struct crypto_shash *shash; 166 u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; 167 u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; 168 }; 169 170 struct omap_sham_ctx { 171 struct omap_sham_dev *dd; 172 173 unsigned long flags; 174 175 /* fallback stuff */ 176 struct crypto_shash *fallback; 177 178 struct omap_sham_hmac_ctx base[0]; 179 }; 180 181 #define OMAP_SHAM_QUEUE_LENGTH 10 182 183 struct omap_sham_algs_info { 184 struct ahash_alg *algs_list; 185 unsigned int size; 186 unsigned int registered; 187 }; 188 189 struct omap_sham_pdata { 190 struct omap_sham_algs_info *algs_info; 191 unsigned int algs_info_size; 192 unsigned long flags; 193 int digest_size; 194 195 void (*copy_hash)(struct ahash_request *req, int out); 196 void (*write_ctrl)(struct omap_sham_dev *dd, size_t length, 197 int final, int dma); 198 void (*trigger)(struct omap_sham_dev *dd, size_t length); 199 int (*poll_irq)(struct omap_sham_dev *dd); 200 irqreturn_t (*intr_hdlr)(int irq, void *dev_id); 201 202 u32 odigest_ofs; 203 u32 idigest_ofs; 204 u32 din_ofs; 205 u32 digcnt_ofs; 206 u32 rev_ofs; 207 u32 mask_ofs; 208 u32 sysstatus_ofs; 209 u32 mode_ofs; 210 u32 length_ofs; 211 212 u32 major_mask; 213 u32 major_shift; 214 u32 minor_mask; 215 u32 minor_shift; 216 }; 217 218 struct omap_sham_dev { 219 struct list_head list; 220 unsigned long phys_base; 221 struct device *dev; 222 void __iomem *io_base; 223 int irq; 224 spinlock_t lock; 225 int err; 226 struct dma_chan *dma_lch; 227 struct tasklet_struct done_task; 228 u8 polling_mode; 229 u8 xmit_buf[BUFLEN] OMAP_ALIGNED; 230 231 unsigned long flags; 232 int fallback_sz; 233 struct crypto_queue queue; 234 struct ahash_request *req; 235 236 const struct omap_sham_pdata *pdata; 237 }; 238 239 struct omap_sham_drv { 240 struct list_head dev_list; 241 spinlock_t lock; 242 unsigned long flags; 243 }; 244 245 static struct omap_sham_drv sham = { 246 .dev_list = LIST_HEAD_INIT(sham.dev_list), 247 .lock = __SPIN_LOCK_UNLOCKED(sham.lock), 248 }; 249 250 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset) 251 { 252 return __raw_readl(dd->io_base + offset); 253 } 254 255 static inline void omap_sham_write(struct omap_sham_dev *dd, 256 u32 offset, u32 value) 257 { 258 __raw_writel(value, dd->io_base + offset); 259 } 260 261 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address, 262 u32 value, u32 mask) 263 { 264 u32 val; 265 266 val = omap_sham_read(dd, address); 267 val &= ~mask; 268 val |= value; 269 omap_sham_write(dd, address, val); 270 } 271 272 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit) 273 { 274 unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL; 275 276 while (!(omap_sham_read(dd, offset) & bit)) { 277 if (time_is_before_jiffies(timeout)) 278 return -ETIMEDOUT; 279 } 280 281 return 0; 282 } 283 284 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out) 285 { 286 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 287 struct omap_sham_dev *dd = ctx->dd; 288 u32 *hash = (u32 *)ctx->digest; 289 int i; 290 291 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { 292 if (out) 293 hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i)); 294 else 295 omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]); 296 } 297 } 298 299 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out) 300 { 301 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 302 struct omap_sham_dev *dd = ctx->dd; 303 int i; 304 305 if (ctx->flags & BIT(FLAGS_HMAC)) { 306 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); 307 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 308 struct omap_sham_hmac_ctx *bctx = tctx->base; 309 u32 *opad = (u32 *)bctx->opad; 310 311 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { 312 if (out) 313 opad[i] = omap_sham_read(dd, 314 SHA_REG_ODIGEST(dd, i)); 315 else 316 omap_sham_write(dd, SHA_REG_ODIGEST(dd, i), 317 opad[i]); 318 } 319 } 320 321 omap_sham_copy_hash_omap2(req, out); 322 } 323 324 static void omap_sham_copy_ready_hash(struct ahash_request *req) 325 { 326 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 327 u32 *in = (u32 *)ctx->digest; 328 u32 *hash = (u32 *)req->result; 329 int i, d, big_endian = 0; 330 331 if (!hash) 332 return; 333 334 switch (ctx->flags & FLAGS_MODE_MASK) { 335 case FLAGS_MODE_MD5: 336 d = MD5_DIGEST_SIZE / sizeof(u32); 337 break; 338 case FLAGS_MODE_SHA1: 339 /* OMAP2 SHA1 is big endian */ 340 if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags)) 341 big_endian = 1; 342 d = SHA1_DIGEST_SIZE / sizeof(u32); 343 break; 344 case FLAGS_MODE_SHA224: 345 d = SHA224_DIGEST_SIZE / sizeof(u32); 346 break; 347 case FLAGS_MODE_SHA256: 348 d = SHA256_DIGEST_SIZE / sizeof(u32); 349 break; 350 case FLAGS_MODE_SHA384: 351 d = SHA384_DIGEST_SIZE / sizeof(u32); 352 break; 353 case FLAGS_MODE_SHA512: 354 d = SHA512_DIGEST_SIZE / sizeof(u32); 355 break; 356 default: 357 d = 0; 358 } 359 360 if (big_endian) 361 for (i = 0; i < d; i++) 362 hash[i] = be32_to_cpu(in[i]); 363 else 364 for (i = 0; i < d; i++) 365 hash[i] = le32_to_cpu(in[i]); 366 } 367 368 static int omap_sham_hw_init(struct omap_sham_dev *dd) 369 { 370 int err; 371 372 err = pm_runtime_get_sync(dd->dev); 373 if (err < 0) { 374 dev_err(dd->dev, "failed to get sync: %d\n", err); 375 return err; 376 } 377 378 if (!test_bit(FLAGS_INIT, &dd->flags)) { 379 set_bit(FLAGS_INIT, &dd->flags); 380 dd->err = 0; 381 } 382 383 return 0; 384 } 385 386 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length, 387 int final, int dma) 388 { 389 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 390 u32 val = length << 5, mask; 391 392 if (likely(ctx->digcnt)) 393 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt); 394 395 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 396 SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0), 397 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); 398 /* 399 * Setting ALGO_CONST only for the first iteration 400 * and CLOSE_HASH only for the last one. 401 */ 402 if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1) 403 val |= SHA_REG_CTRL_ALGO; 404 if (!ctx->digcnt) 405 val |= SHA_REG_CTRL_ALGO_CONST; 406 if (final) 407 val |= SHA_REG_CTRL_CLOSE_HASH; 408 409 mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH | 410 SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH; 411 412 omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask); 413 } 414 415 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length) 416 { 417 } 418 419 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd) 420 { 421 return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY); 422 } 423 424 static int get_block_size(struct omap_sham_reqctx *ctx) 425 { 426 int d; 427 428 switch (ctx->flags & FLAGS_MODE_MASK) { 429 case FLAGS_MODE_MD5: 430 case FLAGS_MODE_SHA1: 431 d = SHA1_BLOCK_SIZE; 432 break; 433 case FLAGS_MODE_SHA224: 434 case FLAGS_MODE_SHA256: 435 d = SHA256_BLOCK_SIZE; 436 break; 437 case FLAGS_MODE_SHA384: 438 case FLAGS_MODE_SHA512: 439 d = SHA512_BLOCK_SIZE; 440 break; 441 default: 442 d = 0; 443 } 444 445 return d; 446 } 447 448 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset, 449 u32 *value, int count) 450 { 451 for (; count--; value++, offset += 4) 452 omap_sham_write(dd, offset, *value); 453 } 454 455 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length, 456 int final, int dma) 457 { 458 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 459 u32 val, mask; 460 461 /* 462 * Setting ALGO_CONST only for the first iteration and 463 * CLOSE_HASH only for the last one. Note that flags mode bits 464 * correspond to algorithm encoding in mode register. 465 */ 466 val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT); 467 if (!ctx->digcnt) { 468 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); 469 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 470 struct omap_sham_hmac_ctx *bctx = tctx->base; 471 int bs, nr_dr; 472 473 val |= SHA_REG_MODE_ALGO_CONSTANT; 474 475 if (ctx->flags & BIT(FLAGS_HMAC)) { 476 bs = get_block_size(ctx); 477 nr_dr = bs / (2 * sizeof(u32)); 478 val |= SHA_REG_MODE_HMAC_KEY_PROC; 479 omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0), 480 (u32 *)bctx->ipad, nr_dr); 481 omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0), 482 (u32 *)bctx->ipad + nr_dr, nr_dr); 483 ctx->digcnt += bs; 484 } 485 } 486 487 if (final) { 488 val |= SHA_REG_MODE_CLOSE_HASH; 489 490 if (ctx->flags & BIT(FLAGS_HMAC)) 491 val |= SHA_REG_MODE_HMAC_OUTER_HASH; 492 } 493 494 mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH | 495 SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH | 496 SHA_REG_MODE_HMAC_KEY_PROC; 497 498 dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags); 499 omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask); 500 omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY); 501 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 502 SHA_REG_MASK_IT_EN | 503 (dma ? SHA_REG_MASK_DMA_EN : 0), 504 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); 505 } 506 507 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length) 508 { 509 omap_sham_write(dd, SHA_REG_LENGTH(dd), length); 510 } 511 512 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd) 513 { 514 return omap_sham_wait(dd, SHA_REG_IRQSTATUS, 515 SHA_REG_IRQSTATUS_INPUT_RDY); 516 } 517 518 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length, 519 int final) 520 { 521 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 522 int count, len32, bs32, offset = 0; 523 const u32 *buffer; 524 int mlen; 525 struct sg_mapping_iter mi; 526 527 dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n", 528 ctx->digcnt, length, final); 529 530 dd->pdata->write_ctrl(dd, length, final, 0); 531 dd->pdata->trigger(dd, length); 532 533 /* should be non-zero before next lines to disable clocks later */ 534 ctx->digcnt += length; 535 ctx->total -= length; 536 537 if (final) 538 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ 539 540 set_bit(FLAGS_CPU, &dd->flags); 541 542 len32 = DIV_ROUND_UP(length, sizeof(u32)); 543 bs32 = get_block_size(ctx) / sizeof(u32); 544 545 sg_miter_start(&mi, ctx->sg, ctx->sg_len, 546 SG_MITER_FROM_SG | SG_MITER_ATOMIC); 547 548 mlen = 0; 549 550 while (len32) { 551 if (dd->pdata->poll_irq(dd)) 552 return -ETIMEDOUT; 553 554 for (count = 0; count < min(len32, bs32); count++, offset++) { 555 if (!mlen) { 556 sg_miter_next(&mi); 557 mlen = mi.length; 558 if (!mlen) { 559 pr_err("sg miter failure.\n"); 560 return -EINVAL; 561 } 562 offset = 0; 563 buffer = mi.addr; 564 } 565 omap_sham_write(dd, SHA_REG_DIN(dd, count), 566 buffer[offset]); 567 mlen -= 4; 568 } 569 len32 -= min(len32, bs32); 570 } 571 572 sg_miter_stop(&mi); 573 574 return -EINPROGRESS; 575 } 576 577 static void omap_sham_dma_callback(void *param) 578 { 579 struct omap_sham_dev *dd = param; 580 581 set_bit(FLAGS_DMA_READY, &dd->flags); 582 tasklet_schedule(&dd->done_task); 583 } 584 585 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length, 586 int final) 587 { 588 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 589 struct dma_async_tx_descriptor *tx; 590 struct dma_slave_config cfg; 591 int ret; 592 593 dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n", 594 ctx->digcnt, length, final); 595 596 if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) { 597 dev_err(dd->dev, "dma_map_sg error\n"); 598 return -EINVAL; 599 } 600 601 memset(&cfg, 0, sizeof(cfg)); 602 603 cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0); 604 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 605 cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES; 606 607 ret = dmaengine_slave_config(dd->dma_lch, &cfg); 608 if (ret) { 609 pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret); 610 return ret; 611 } 612 613 tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len, 614 DMA_MEM_TO_DEV, 615 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 616 617 if (!tx) { 618 dev_err(dd->dev, "prep_slave_sg failed\n"); 619 return -EINVAL; 620 } 621 622 tx->callback = omap_sham_dma_callback; 623 tx->callback_param = dd; 624 625 dd->pdata->write_ctrl(dd, length, final, 1); 626 627 ctx->digcnt += length; 628 ctx->total -= length; 629 630 if (final) 631 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ 632 633 set_bit(FLAGS_DMA_ACTIVE, &dd->flags); 634 635 dmaengine_submit(tx); 636 dma_async_issue_pending(dd->dma_lch); 637 638 dd->pdata->trigger(dd, length); 639 640 return -EINPROGRESS; 641 } 642 643 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx, 644 struct scatterlist *sg, int bs, int new_len) 645 { 646 int n = sg_nents(sg); 647 struct scatterlist *tmp; 648 int offset = ctx->offset; 649 650 if (ctx->bufcnt) 651 n++; 652 653 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 654 if (!ctx->sg) 655 return -ENOMEM; 656 657 sg_init_table(ctx->sg, n); 658 659 tmp = ctx->sg; 660 661 ctx->sg_len = 0; 662 663 if (ctx->bufcnt) { 664 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 665 tmp = sg_next(tmp); 666 ctx->sg_len++; 667 } 668 669 while (sg && new_len) { 670 int len = sg->length - offset; 671 672 if (offset) { 673 offset -= sg->length; 674 if (offset < 0) 675 offset = 0; 676 } 677 678 if (new_len < len) 679 len = new_len; 680 681 if (len > 0) { 682 new_len -= len; 683 sg_set_page(tmp, sg_page(sg), len, sg->offset); 684 if (new_len <= 0) 685 sg_mark_end(tmp); 686 tmp = sg_next(tmp); 687 ctx->sg_len++; 688 } 689 690 sg = sg_next(sg); 691 } 692 693 set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags); 694 695 ctx->bufcnt = 0; 696 697 return 0; 698 } 699 700 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx, 701 struct scatterlist *sg, int bs, int new_len) 702 { 703 int pages; 704 void *buf; 705 int len; 706 707 len = new_len + ctx->bufcnt; 708 709 pages = get_order(ctx->total); 710 711 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 712 if (!buf) { 713 pr_err("Couldn't allocate pages for unaligned cases.\n"); 714 return -ENOMEM; 715 } 716 717 if (ctx->bufcnt) 718 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 719 720 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset, 721 ctx->total - ctx->bufcnt, 0); 722 sg_init_table(ctx->sgl, 1); 723 sg_set_buf(ctx->sgl, buf, len); 724 ctx->sg = ctx->sgl; 725 set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags); 726 ctx->sg_len = 1; 727 ctx->bufcnt = 0; 728 ctx->offset = 0; 729 730 return 0; 731 } 732 733 static int omap_sham_align_sgs(struct scatterlist *sg, 734 int nbytes, int bs, bool final, 735 struct omap_sham_reqctx *rctx) 736 { 737 int n = 0; 738 bool aligned = true; 739 bool list_ok = true; 740 struct scatterlist *sg_tmp = sg; 741 int new_len; 742 int offset = rctx->offset; 743 744 if (!sg || !sg->length || !nbytes) 745 return 0; 746 747 new_len = nbytes; 748 749 if (offset) 750 list_ok = false; 751 752 if (final) 753 new_len = DIV_ROUND_UP(new_len, bs) * bs; 754 else 755 new_len = (new_len - 1) / bs * bs; 756 757 if (nbytes != new_len) 758 list_ok = false; 759 760 while (nbytes > 0 && sg_tmp) { 761 n++; 762 763 #ifdef CONFIG_ZONE_DMA 764 if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) { 765 aligned = false; 766 break; 767 } 768 #endif 769 770 if (offset < sg_tmp->length) { 771 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) { 772 aligned = false; 773 break; 774 } 775 776 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) { 777 aligned = false; 778 break; 779 } 780 } 781 782 if (offset) { 783 offset -= sg_tmp->length; 784 if (offset < 0) { 785 nbytes += offset; 786 offset = 0; 787 } 788 } else { 789 nbytes -= sg_tmp->length; 790 } 791 792 sg_tmp = sg_next(sg_tmp); 793 794 if (nbytes < 0) { 795 list_ok = false; 796 break; 797 } 798 } 799 800 if (!aligned) 801 return omap_sham_copy_sgs(rctx, sg, bs, new_len); 802 else if (!list_ok) 803 return omap_sham_copy_sg_lists(rctx, sg, bs, new_len); 804 805 rctx->sg_len = n; 806 rctx->sg = sg; 807 808 return 0; 809 } 810 811 static int omap_sham_prepare_request(struct ahash_request *req, bool update) 812 { 813 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 814 int bs; 815 int ret; 816 int nbytes; 817 bool final = rctx->flags & BIT(FLAGS_FINUP); 818 int xmit_len, hash_later; 819 820 bs = get_block_size(rctx); 821 822 if (update) 823 nbytes = req->nbytes; 824 else 825 nbytes = 0; 826 827 rctx->total = nbytes + rctx->bufcnt; 828 829 if (!rctx->total) 830 return 0; 831 832 if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) { 833 int len = bs - rctx->bufcnt % bs; 834 835 if (len > nbytes) 836 len = nbytes; 837 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src, 838 0, len, 0); 839 rctx->bufcnt += len; 840 nbytes -= len; 841 rctx->offset = len; 842 } 843 844 if (rctx->bufcnt) 845 memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt); 846 847 ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx); 848 if (ret) 849 return ret; 850 851 xmit_len = rctx->total; 852 853 if (!IS_ALIGNED(xmit_len, bs)) { 854 if (final) 855 xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs; 856 else 857 xmit_len = xmit_len / bs * bs; 858 } else if (!final) { 859 xmit_len -= bs; 860 } 861 862 hash_later = rctx->total - xmit_len; 863 if (hash_later < 0) 864 hash_later = 0; 865 866 if (rctx->bufcnt && nbytes) { 867 /* have data from previous operation and current */ 868 sg_init_table(rctx->sgl, 2); 869 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt); 870 871 sg_chain(rctx->sgl, 2, req->src); 872 873 rctx->sg = rctx->sgl; 874 875 rctx->sg_len++; 876 } else if (rctx->bufcnt) { 877 /* have buffered data only */ 878 sg_init_table(rctx->sgl, 1); 879 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len); 880 881 rctx->sg = rctx->sgl; 882 883 rctx->sg_len = 1; 884 } 885 886 if (hash_later) { 887 int offset = 0; 888 889 if (hash_later > req->nbytes) { 890 memcpy(rctx->buffer, rctx->buffer + xmit_len, 891 hash_later - req->nbytes); 892 offset = hash_later - req->nbytes; 893 } 894 895 if (req->nbytes) { 896 scatterwalk_map_and_copy(rctx->buffer + offset, 897 req->src, 898 offset + req->nbytes - 899 hash_later, hash_later, 0); 900 } 901 902 rctx->bufcnt = hash_later; 903 } else { 904 rctx->bufcnt = 0; 905 } 906 907 if (!final) 908 rctx->total = xmit_len; 909 910 return 0; 911 } 912 913 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd) 914 { 915 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 916 917 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 918 919 clear_bit(FLAGS_DMA_ACTIVE, &dd->flags); 920 921 return 0; 922 } 923 924 static int omap_sham_init(struct ahash_request *req) 925 { 926 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 927 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 928 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 929 struct omap_sham_dev *dd = NULL, *tmp; 930 int bs = 0; 931 932 spin_lock_bh(&sham.lock); 933 if (!tctx->dd) { 934 list_for_each_entry(tmp, &sham.dev_list, list) { 935 dd = tmp; 936 break; 937 } 938 tctx->dd = dd; 939 } else { 940 dd = tctx->dd; 941 } 942 spin_unlock_bh(&sham.lock); 943 944 ctx->dd = dd; 945 946 ctx->flags = 0; 947 948 dev_dbg(dd->dev, "init: digest size: %d\n", 949 crypto_ahash_digestsize(tfm)); 950 951 switch (crypto_ahash_digestsize(tfm)) { 952 case MD5_DIGEST_SIZE: 953 ctx->flags |= FLAGS_MODE_MD5; 954 bs = SHA1_BLOCK_SIZE; 955 break; 956 case SHA1_DIGEST_SIZE: 957 ctx->flags |= FLAGS_MODE_SHA1; 958 bs = SHA1_BLOCK_SIZE; 959 break; 960 case SHA224_DIGEST_SIZE: 961 ctx->flags |= FLAGS_MODE_SHA224; 962 bs = SHA224_BLOCK_SIZE; 963 break; 964 case SHA256_DIGEST_SIZE: 965 ctx->flags |= FLAGS_MODE_SHA256; 966 bs = SHA256_BLOCK_SIZE; 967 break; 968 case SHA384_DIGEST_SIZE: 969 ctx->flags |= FLAGS_MODE_SHA384; 970 bs = SHA384_BLOCK_SIZE; 971 break; 972 case SHA512_DIGEST_SIZE: 973 ctx->flags |= FLAGS_MODE_SHA512; 974 bs = SHA512_BLOCK_SIZE; 975 break; 976 } 977 978 ctx->bufcnt = 0; 979 ctx->digcnt = 0; 980 ctx->total = 0; 981 ctx->offset = 0; 982 ctx->buflen = BUFLEN; 983 984 if (tctx->flags & BIT(FLAGS_HMAC)) { 985 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) { 986 struct omap_sham_hmac_ctx *bctx = tctx->base; 987 988 memcpy(ctx->buffer, bctx->ipad, bs); 989 ctx->bufcnt = bs; 990 } 991 992 ctx->flags |= BIT(FLAGS_HMAC); 993 } 994 995 return 0; 996 997 } 998 999 static int omap_sham_update_req(struct omap_sham_dev *dd) 1000 { 1001 struct ahash_request *req = dd->req; 1002 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1003 int err; 1004 bool final = ctx->flags & BIT(FLAGS_FINUP); 1005 1006 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n", 1007 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0); 1008 1009 if (ctx->total < get_block_size(ctx) || 1010 ctx->total < dd->fallback_sz) 1011 ctx->flags |= BIT(FLAGS_CPU); 1012 1013 if (ctx->flags & BIT(FLAGS_CPU)) 1014 err = omap_sham_xmit_cpu(dd, ctx->total, final); 1015 else 1016 err = omap_sham_xmit_dma(dd, ctx->total, final); 1017 1018 /* wait for dma completion before can take more data */ 1019 dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt); 1020 1021 return err; 1022 } 1023 1024 static int omap_sham_final_req(struct omap_sham_dev *dd) 1025 { 1026 struct ahash_request *req = dd->req; 1027 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1028 int err = 0, use_dma = 1; 1029 1030 if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode) 1031 /* 1032 * faster to handle last block with cpu or 1033 * use cpu when dma is not present. 1034 */ 1035 use_dma = 0; 1036 1037 if (use_dma) 1038 err = omap_sham_xmit_dma(dd, ctx->total, 1); 1039 else 1040 err = omap_sham_xmit_cpu(dd, ctx->total, 1); 1041 1042 ctx->bufcnt = 0; 1043 1044 dev_dbg(dd->dev, "final_req: err: %d\n", err); 1045 1046 return err; 1047 } 1048 1049 static int omap_sham_finish_hmac(struct ahash_request *req) 1050 { 1051 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1052 struct omap_sham_hmac_ctx *bctx = tctx->base; 1053 int bs = crypto_shash_blocksize(bctx->shash); 1054 int ds = crypto_shash_digestsize(bctx->shash); 1055 SHASH_DESC_ON_STACK(shash, bctx->shash); 1056 1057 shash->tfm = bctx->shash; 1058 shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */ 1059 1060 return crypto_shash_init(shash) ?: 1061 crypto_shash_update(shash, bctx->opad, bs) ?: 1062 crypto_shash_finup(shash, req->result, ds, req->result); 1063 } 1064 1065 static int omap_sham_finish(struct ahash_request *req) 1066 { 1067 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1068 struct omap_sham_dev *dd = ctx->dd; 1069 int err = 0; 1070 1071 if (ctx->digcnt) { 1072 omap_sham_copy_ready_hash(req); 1073 if ((ctx->flags & BIT(FLAGS_HMAC)) && 1074 !test_bit(FLAGS_AUTO_XOR, &dd->flags)) 1075 err = omap_sham_finish_hmac(req); 1076 } 1077 1078 dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt); 1079 1080 return err; 1081 } 1082 1083 static void omap_sham_finish_req(struct ahash_request *req, int err) 1084 { 1085 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1086 struct omap_sham_dev *dd = ctx->dd; 1087 1088 if (test_bit(FLAGS_SGS_COPIED, &dd->flags)) 1089 free_pages((unsigned long)sg_virt(ctx->sg), 1090 get_order(ctx->sg->length + ctx->bufcnt)); 1091 1092 if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags)) 1093 kfree(ctx->sg); 1094 1095 ctx->sg = NULL; 1096 1097 dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED)); 1098 1099 if (!err) { 1100 dd->pdata->copy_hash(req, 1); 1101 if (test_bit(FLAGS_FINAL, &dd->flags)) 1102 err = omap_sham_finish(req); 1103 } else { 1104 ctx->flags |= BIT(FLAGS_ERROR); 1105 } 1106 1107 /* atomic operation is not needed here */ 1108 dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) | 1109 BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY)); 1110 1111 pm_runtime_mark_last_busy(dd->dev); 1112 pm_runtime_put_autosuspend(dd->dev); 1113 1114 if (req->base.complete) 1115 req->base.complete(&req->base, err); 1116 } 1117 1118 static int omap_sham_handle_queue(struct omap_sham_dev *dd, 1119 struct ahash_request *req) 1120 { 1121 struct crypto_async_request *async_req, *backlog; 1122 struct omap_sham_reqctx *ctx; 1123 unsigned long flags; 1124 int err = 0, ret = 0; 1125 1126 retry: 1127 spin_lock_irqsave(&dd->lock, flags); 1128 if (req) 1129 ret = ahash_enqueue_request(&dd->queue, req); 1130 if (test_bit(FLAGS_BUSY, &dd->flags)) { 1131 spin_unlock_irqrestore(&dd->lock, flags); 1132 return ret; 1133 } 1134 backlog = crypto_get_backlog(&dd->queue); 1135 async_req = crypto_dequeue_request(&dd->queue); 1136 if (async_req) 1137 set_bit(FLAGS_BUSY, &dd->flags); 1138 spin_unlock_irqrestore(&dd->lock, flags); 1139 1140 if (!async_req) 1141 return ret; 1142 1143 if (backlog) 1144 backlog->complete(backlog, -EINPROGRESS); 1145 1146 req = ahash_request_cast(async_req); 1147 dd->req = req; 1148 ctx = ahash_request_ctx(req); 1149 1150 err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE); 1151 if (err || !ctx->total) 1152 goto err1; 1153 1154 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", 1155 ctx->op, req->nbytes); 1156 1157 err = omap_sham_hw_init(dd); 1158 if (err) 1159 goto err1; 1160 1161 if (ctx->digcnt) 1162 /* request has changed - restore hash */ 1163 dd->pdata->copy_hash(req, 0); 1164 1165 if (ctx->op == OP_UPDATE) { 1166 err = omap_sham_update_req(dd); 1167 if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP))) 1168 /* no final() after finup() */ 1169 err = omap_sham_final_req(dd); 1170 } else if (ctx->op == OP_FINAL) { 1171 err = omap_sham_final_req(dd); 1172 } 1173 err1: 1174 dev_dbg(dd->dev, "exit, err: %d\n", err); 1175 1176 if (err != -EINPROGRESS) { 1177 /* done_task will not finish it, so do it here */ 1178 omap_sham_finish_req(req, err); 1179 req = NULL; 1180 1181 /* 1182 * Execute next request immediately if there is anything 1183 * in queue. 1184 */ 1185 goto retry; 1186 } 1187 1188 return ret; 1189 } 1190 1191 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op) 1192 { 1193 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1194 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1195 struct omap_sham_dev *dd = tctx->dd; 1196 1197 ctx->op = op; 1198 1199 return omap_sham_handle_queue(dd, req); 1200 } 1201 1202 static int omap_sham_update(struct ahash_request *req) 1203 { 1204 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1205 struct omap_sham_dev *dd = ctx->dd; 1206 1207 if (!req->nbytes) 1208 return 0; 1209 1210 if (ctx->bufcnt + req->nbytes <= ctx->buflen) { 1211 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1212 0, req->nbytes, 0); 1213 ctx->bufcnt += req->nbytes; 1214 return 0; 1215 } 1216 1217 if (dd->polling_mode) 1218 ctx->flags |= BIT(FLAGS_CPU); 1219 1220 return omap_sham_enqueue(req, OP_UPDATE); 1221 } 1222 1223 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags, 1224 const u8 *data, unsigned int len, u8 *out) 1225 { 1226 SHASH_DESC_ON_STACK(shash, tfm); 1227 1228 shash->tfm = tfm; 1229 shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP; 1230 1231 return crypto_shash_digest(shash, data, len, out); 1232 } 1233 1234 static int omap_sham_final_shash(struct ahash_request *req) 1235 { 1236 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1237 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1238 int offset = 0; 1239 1240 /* 1241 * If we are running HMAC on limited hardware support, skip 1242 * the ipad in the beginning of the buffer if we are going for 1243 * software fallback algorithm. 1244 */ 1245 if (test_bit(FLAGS_HMAC, &ctx->flags) && 1246 !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags)) 1247 offset = get_block_size(ctx); 1248 1249 return omap_sham_shash_digest(tctx->fallback, req->base.flags, 1250 ctx->buffer + offset, 1251 ctx->bufcnt - offset, req->result); 1252 } 1253 1254 static int omap_sham_final(struct ahash_request *req) 1255 { 1256 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1257 1258 ctx->flags |= BIT(FLAGS_FINUP); 1259 1260 if (ctx->flags & BIT(FLAGS_ERROR)) 1261 return 0; /* uncompleted hash is not needed */ 1262 1263 /* 1264 * OMAP HW accel works only with buffers >= 9. 1265 * HMAC is always >= 9 because ipad == block size. 1266 * If buffersize is less than fallback_sz, we use fallback 1267 * SW encoding, as using DMA + HW in this case doesn't provide 1268 * any benefit. 1269 */ 1270 if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz) 1271 return omap_sham_final_shash(req); 1272 else if (ctx->bufcnt) 1273 return omap_sham_enqueue(req, OP_FINAL); 1274 1275 /* copy ready hash (+ finalize hmac) */ 1276 return omap_sham_finish(req); 1277 } 1278 1279 static int omap_sham_finup(struct ahash_request *req) 1280 { 1281 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1282 int err1, err2; 1283 1284 ctx->flags |= BIT(FLAGS_FINUP); 1285 1286 err1 = omap_sham_update(req); 1287 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1288 return err1; 1289 /* 1290 * final() has to be always called to cleanup resources 1291 * even if udpate() failed, except EINPROGRESS 1292 */ 1293 err2 = omap_sham_final(req); 1294 1295 return err1 ?: err2; 1296 } 1297 1298 static int omap_sham_digest(struct ahash_request *req) 1299 { 1300 return omap_sham_init(req) ?: omap_sham_finup(req); 1301 } 1302 1303 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key, 1304 unsigned int keylen) 1305 { 1306 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 1307 struct omap_sham_hmac_ctx *bctx = tctx->base; 1308 int bs = crypto_shash_blocksize(bctx->shash); 1309 int ds = crypto_shash_digestsize(bctx->shash); 1310 struct omap_sham_dev *dd = NULL, *tmp; 1311 int err, i; 1312 1313 spin_lock_bh(&sham.lock); 1314 if (!tctx->dd) { 1315 list_for_each_entry(tmp, &sham.dev_list, list) { 1316 dd = tmp; 1317 break; 1318 } 1319 tctx->dd = dd; 1320 } else { 1321 dd = tctx->dd; 1322 } 1323 spin_unlock_bh(&sham.lock); 1324 1325 err = crypto_shash_setkey(tctx->fallback, key, keylen); 1326 if (err) 1327 return err; 1328 1329 if (keylen > bs) { 1330 err = omap_sham_shash_digest(bctx->shash, 1331 crypto_shash_get_flags(bctx->shash), 1332 key, keylen, bctx->ipad); 1333 if (err) 1334 return err; 1335 keylen = ds; 1336 } else { 1337 memcpy(bctx->ipad, key, keylen); 1338 } 1339 1340 memset(bctx->ipad + keylen, 0, bs - keylen); 1341 1342 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) { 1343 memcpy(bctx->opad, bctx->ipad, bs); 1344 1345 for (i = 0; i < bs; i++) { 1346 bctx->ipad[i] ^= HMAC_IPAD_VALUE; 1347 bctx->opad[i] ^= HMAC_OPAD_VALUE; 1348 } 1349 } 1350 1351 return err; 1352 } 1353 1354 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) 1355 { 1356 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); 1357 const char *alg_name = crypto_tfm_alg_name(tfm); 1358 1359 /* Allocate a fallback and abort if it failed. */ 1360 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1361 CRYPTO_ALG_NEED_FALLBACK); 1362 if (IS_ERR(tctx->fallback)) { 1363 pr_err("omap-sham: fallback driver '%s' " 1364 "could not be loaded.\n", alg_name); 1365 return PTR_ERR(tctx->fallback); 1366 } 1367 1368 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1369 sizeof(struct omap_sham_reqctx) + BUFLEN); 1370 1371 if (alg_base) { 1372 struct omap_sham_hmac_ctx *bctx = tctx->base; 1373 tctx->flags |= BIT(FLAGS_HMAC); 1374 bctx->shash = crypto_alloc_shash(alg_base, 0, 1375 CRYPTO_ALG_NEED_FALLBACK); 1376 if (IS_ERR(bctx->shash)) { 1377 pr_err("omap-sham: base driver '%s' " 1378 "could not be loaded.\n", alg_base); 1379 crypto_free_shash(tctx->fallback); 1380 return PTR_ERR(bctx->shash); 1381 } 1382 1383 } 1384 1385 return 0; 1386 } 1387 1388 static int omap_sham_cra_init(struct crypto_tfm *tfm) 1389 { 1390 return omap_sham_cra_init_alg(tfm, NULL); 1391 } 1392 1393 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm) 1394 { 1395 return omap_sham_cra_init_alg(tfm, "sha1"); 1396 } 1397 1398 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm) 1399 { 1400 return omap_sham_cra_init_alg(tfm, "sha224"); 1401 } 1402 1403 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm) 1404 { 1405 return omap_sham_cra_init_alg(tfm, "sha256"); 1406 } 1407 1408 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm) 1409 { 1410 return omap_sham_cra_init_alg(tfm, "md5"); 1411 } 1412 1413 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm) 1414 { 1415 return omap_sham_cra_init_alg(tfm, "sha384"); 1416 } 1417 1418 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm) 1419 { 1420 return omap_sham_cra_init_alg(tfm, "sha512"); 1421 } 1422 1423 static void omap_sham_cra_exit(struct crypto_tfm *tfm) 1424 { 1425 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); 1426 1427 crypto_free_shash(tctx->fallback); 1428 tctx->fallback = NULL; 1429 1430 if (tctx->flags & BIT(FLAGS_HMAC)) { 1431 struct omap_sham_hmac_ctx *bctx = tctx->base; 1432 crypto_free_shash(bctx->shash); 1433 } 1434 } 1435 1436 static int omap_sham_export(struct ahash_request *req, void *out) 1437 { 1438 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 1439 1440 memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt); 1441 1442 return 0; 1443 } 1444 1445 static int omap_sham_import(struct ahash_request *req, const void *in) 1446 { 1447 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 1448 const struct omap_sham_reqctx *ctx_in = in; 1449 1450 memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt); 1451 1452 return 0; 1453 } 1454 1455 static struct ahash_alg algs_sha1_md5[] = { 1456 { 1457 .init = omap_sham_init, 1458 .update = omap_sham_update, 1459 .final = omap_sham_final, 1460 .finup = omap_sham_finup, 1461 .digest = omap_sham_digest, 1462 .halg.digestsize = SHA1_DIGEST_SIZE, 1463 .halg.base = { 1464 .cra_name = "sha1", 1465 .cra_driver_name = "omap-sha1", 1466 .cra_priority = 400, 1467 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1468 CRYPTO_ALG_ASYNC | 1469 CRYPTO_ALG_NEED_FALLBACK, 1470 .cra_blocksize = SHA1_BLOCK_SIZE, 1471 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1472 .cra_alignmask = OMAP_ALIGN_MASK, 1473 .cra_module = THIS_MODULE, 1474 .cra_init = omap_sham_cra_init, 1475 .cra_exit = omap_sham_cra_exit, 1476 } 1477 }, 1478 { 1479 .init = omap_sham_init, 1480 .update = omap_sham_update, 1481 .final = omap_sham_final, 1482 .finup = omap_sham_finup, 1483 .digest = omap_sham_digest, 1484 .halg.digestsize = MD5_DIGEST_SIZE, 1485 .halg.base = { 1486 .cra_name = "md5", 1487 .cra_driver_name = "omap-md5", 1488 .cra_priority = 400, 1489 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1490 CRYPTO_ALG_ASYNC | 1491 CRYPTO_ALG_NEED_FALLBACK, 1492 .cra_blocksize = SHA1_BLOCK_SIZE, 1493 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1494 .cra_alignmask = OMAP_ALIGN_MASK, 1495 .cra_module = THIS_MODULE, 1496 .cra_init = omap_sham_cra_init, 1497 .cra_exit = omap_sham_cra_exit, 1498 } 1499 }, 1500 { 1501 .init = omap_sham_init, 1502 .update = omap_sham_update, 1503 .final = omap_sham_final, 1504 .finup = omap_sham_finup, 1505 .digest = omap_sham_digest, 1506 .setkey = omap_sham_setkey, 1507 .halg.digestsize = SHA1_DIGEST_SIZE, 1508 .halg.base = { 1509 .cra_name = "hmac(sha1)", 1510 .cra_driver_name = "omap-hmac-sha1", 1511 .cra_priority = 400, 1512 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1513 CRYPTO_ALG_ASYNC | 1514 CRYPTO_ALG_NEED_FALLBACK, 1515 .cra_blocksize = SHA1_BLOCK_SIZE, 1516 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1517 sizeof(struct omap_sham_hmac_ctx), 1518 .cra_alignmask = OMAP_ALIGN_MASK, 1519 .cra_module = THIS_MODULE, 1520 .cra_init = omap_sham_cra_sha1_init, 1521 .cra_exit = omap_sham_cra_exit, 1522 } 1523 }, 1524 { 1525 .init = omap_sham_init, 1526 .update = omap_sham_update, 1527 .final = omap_sham_final, 1528 .finup = omap_sham_finup, 1529 .digest = omap_sham_digest, 1530 .setkey = omap_sham_setkey, 1531 .halg.digestsize = MD5_DIGEST_SIZE, 1532 .halg.base = { 1533 .cra_name = "hmac(md5)", 1534 .cra_driver_name = "omap-hmac-md5", 1535 .cra_priority = 400, 1536 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1537 CRYPTO_ALG_ASYNC | 1538 CRYPTO_ALG_NEED_FALLBACK, 1539 .cra_blocksize = SHA1_BLOCK_SIZE, 1540 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1541 sizeof(struct omap_sham_hmac_ctx), 1542 .cra_alignmask = OMAP_ALIGN_MASK, 1543 .cra_module = THIS_MODULE, 1544 .cra_init = omap_sham_cra_md5_init, 1545 .cra_exit = omap_sham_cra_exit, 1546 } 1547 } 1548 }; 1549 1550 /* OMAP4 has some algs in addition to what OMAP2 has */ 1551 static struct ahash_alg algs_sha224_sha256[] = { 1552 { 1553 .init = omap_sham_init, 1554 .update = omap_sham_update, 1555 .final = omap_sham_final, 1556 .finup = omap_sham_finup, 1557 .digest = omap_sham_digest, 1558 .halg.digestsize = SHA224_DIGEST_SIZE, 1559 .halg.base = { 1560 .cra_name = "sha224", 1561 .cra_driver_name = "omap-sha224", 1562 .cra_priority = 400, 1563 .cra_flags = CRYPTO_ALG_ASYNC | 1564 CRYPTO_ALG_NEED_FALLBACK, 1565 .cra_blocksize = SHA224_BLOCK_SIZE, 1566 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1567 .cra_alignmask = OMAP_ALIGN_MASK, 1568 .cra_module = THIS_MODULE, 1569 .cra_init = omap_sham_cra_init, 1570 .cra_exit = omap_sham_cra_exit, 1571 } 1572 }, 1573 { 1574 .init = omap_sham_init, 1575 .update = omap_sham_update, 1576 .final = omap_sham_final, 1577 .finup = omap_sham_finup, 1578 .digest = omap_sham_digest, 1579 .halg.digestsize = SHA256_DIGEST_SIZE, 1580 .halg.base = { 1581 .cra_name = "sha256", 1582 .cra_driver_name = "omap-sha256", 1583 .cra_priority = 400, 1584 .cra_flags = CRYPTO_ALG_ASYNC | 1585 CRYPTO_ALG_NEED_FALLBACK, 1586 .cra_blocksize = SHA256_BLOCK_SIZE, 1587 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1588 .cra_alignmask = OMAP_ALIGN_MASK, 1589 .cra_module = THIS_MODULE, 1590 .cra_init = omap_sham_cra_init, 1591 .cra_exit = omap_sham_cra_exit, 1592 } 1593 }, 1594 { 1595 .init = omap_sham_init, 1596 .update = omap_sham_update, 1597 .final = omap_sham_final, 1598 .finup = omap_sham_finup, 1599 .digest = omap_sham_digest, 1600 .setkey = omap_sham_setkey, 1601 .halg.digestsize = SHA224_DIGEST_SIZE, 1602 .halg.base = { 1603 .cra_name = "hmac(sha224)", 1604 .cra_driver_name = "omap-hmac-sha224", 1605 .cra_priority = 400, 1606 .cra_flags = CRYPTO_ALG_ASYNC | 1607 CRYPTO_ALG_NEED_FALLBACK, 1608 .cra_blocksize = SHA224_BLOCK_SIZE, 1609 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1610 sizeof(struct omap_sham_hmac_ctx), 1611 .cra_alignmask = OMAP_ALIGN_MASK, 1612 .cra_module = THIS_MODULE, 1613 .cra_init = omap_sham_cra_sha224_init, 1614 .cra_exit = omap_sham_cra_exit, 1615 } 1616 }, 1617 { 1618 .init = omap_sham_init, 1619 .update = omap_sham_update, 1620 .final = omap_sham_final, 1621 .finup = omap_sham_finup, 1622 .digest = omap_sham_digest, 1623 .setkey = omap_sham_setkey, 1624 .halg.digestsize = SHA256_DIGEST_SIZE, 1625 .halg.base = { 1626 .cra_name = "hmac(sha256)", 1627 .cra_driver_name = "omap-hmac-sha256", 1628 .cra_priority = 400, 1629 .cra_flags = CRYPTO_ALG_ASYNC | 1630 CRYPTO_ALG_NEED_FALLBACK, 1631 .cra_blocksize = SHA256_BLOCK_SIZE, 1632 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1633 sizeof(struct omap_sham_hmac_ctx), 1634 .cra_alignmask = OMAP_ALIGN_MASK, 1635 .cra_module = THIS_MODULE, 1636 .cra_init = omap_sham_cra_sha256_init, 1637 .cra_exit = omap_sham_cra_exit, 1638 } 1639 }, 1640 }; 1641 1642 static struct ahash_alg algs_sha384_sha512[] = { 1643 { 1644 .init = omap_sham_init, 1645 .update = omap_sham_update, 1646 .final = omap_sham_final, 1647 .finup = omap_sham_finup, 1648 .digest = omap_sham_digest, 1649 .halg.digestsize = SHA384_DIGEST_SIZE, 1650 .halg.base = { 1651 .cra_name = "sha384", 1652 .cra_driver_name = "omap-sha384", 1653 .cra_priority = 400, 1654 .cra_flags = CRYPTO_ALG_ASYNC | 1655 CRYPTO_ALG_NEED_FALLBACK, 1656 .cra_blocksize = SHA384_BLOCK_SIZE, 1657 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1658 .cra_alignmask = OMAP_ALIGN_MASK, 1659 .cra_module = THIS_MODULE, 1660 .cra_init = omap_sham_cra_init, 1661 .cra_exit = omap_sham_cra_exit, 1662 } 1663 }, 1664 { 1665 .init = omap_sham_init, 1666 .update = omap_sham_update, 1667 .final = omap_sham_final, 1668 .finup = omap_sham_finup, 1669 .digest = omap_sham_digest, 1670 .halg.digestsize = SHA512_DIGEST_SIZE, 1671 .halg.base = { 1672 .cra_name = "sha512", 1673 .cra_driver_name = "omap-sha512", 1674 .cra_priority = 400, 1675 .cra_flags = CRYPTO_ALG_ASYNC | 1676 CRYPTO_ALG_NEED_FALLBACK, 1677 .cra_blocksize = SHA512_BLOCK_SIZE, 1678 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1679 .cra_alignmask = OMAP_ALIGN_MASK, 1680 .cra_module = THIS_MODULE, 1681 .cra_init = omap_sham_cra_init, 1682 .cra_exit = omap_sham_cra_exit, 1683 } 1684 }, 1685 { 1686 .init = omap_sham_init, 1687 .update = omap_sham_update, 1688 .final = omap_sham_final, 1689 .finup = omap_sham_finup, 1690 .digest = omap_sham_digest, 1691 .setkey = omap_sham_setkey, 1692 .halg.digestsize = SHA384_DIGEST_SIZE, 1693 .halg.base = { 1694 .cra_name = "hmac(sha384)", 1695 .cra_driver_name = "omap-hmac-sha384", 1696 .cra_priority = 400, 1697 .cra_flags = CRYPTO_ALG_ASYNC | 1698 CRYPTO_ALG_NEED_FALLBACK, 1699 .cra_blocksize = SHA384_BLOCK_SIZE, 1700 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1701 sizeof(struct omap_sham_hmac_ctx), 1702 .cra_alignmask = OMAP_ALIGN_MASK, 1703 .cra_module = THIS_MODULE, 1704 .cra_init = omap_sham_cra_sha384_init, 1705 .cra_exit = omap_sham_cra_exit, 1706 } 1707 }, 1708 { 1709 .init = omap_sham_init, 1710 .update = omap_sham_update, 1711 .final = omap_sham_final, 1712 .finup = omap_sham_finup, 1713 .digest = omap_sham_digest, 1714 .setkey = omap_sham_setkey, 1715 .halg.digestsize = SHA512_DIGEST_SIZE, 1716 .halg.base = { 1717 .cra_name = "hmac(sha512)", 1718 .cra_driver_name = "omap-hmac-sha512", 1719 .cra_priority = 400, 1720 .cra_flags = CRYPTO_ALG_ASYNC | 1721 CRYPTO_ALG_NEED_FALLBACK, 1722 .cra_blocksize = SHA512_BLOCK_SIZE, 1723 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1724 sizeof(struct omap_sham_hmac_ctx), 1725 .cra_alignmask = OMAP_ALIGN_MASK, 1726 .cra_module = THIS_MODULE, 1727 .cra_init = omap_sham_cra_sha512_init, 1728 .cra_exit = omap_sham_cra_exit, 1729 } 1730 }, 1731 }; 1732 1733 static void omap_sham_done_task(unsigned long data) 1734 { 1735 struct omap_sham_dev *dd = (struct omap_sham_dev *)data; 1736 int err = 0; 1737 1738 if (!test_bit(FLAGS_BUSY, &dd->flags)) { 1739 omap_sham_handle_queue(dd, NULL); 1740 return; 1741 } 1742 1743 if (test_bit(FLAGS_CPU, &dd->flags)) { 1744 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) 1745 goto finish; 1746 } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) { 1747 if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) { 1748 omap_sham_update_dma_stop(dd); 1749 if (dd->err) { 1750 err = dd->err; 1751 goto finish; 1752 } 1753 } 1754 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) { 1755 /* hash or semi-hash ready */ 1756 clear_bit(FLAGS_DMA_READY, &dd->flags); 1757 goto finish; 1758 } 1759 } 1760 1761 return; 1762 1763 finish: 1764 dev_dbg(dd->dev, "update done: err: %d\n", err); 1765 /* finish curent request */ 1766 omap_sham_finish_req(dd->req, err); 1767 1768 /* If we are not busy, process next req */ 1769 if (!test_bit(FLAGS_BUSY, &dd->flags)) 1770 omap_sham_handle_queue(dd, NULL); 1771 } 1772 1773 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd) 1774 { 1775 if (!test_bit(FLAGS_BUSY, &dd->flags)) { 1776 dev_warn(dd->dev, "Interrupt when no active requests.\n"); 1777 } else { 1778 set_bit(FLAGS_OUTPUT_READY, &dd->flags); 1779 tasklet_schedule(&dd->done_task); 1780 } 1781 1782 return IRQ_HANDLED; 1783 } 1784 1785 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id) 1786 { 1787 struct omap_sham_dev *dd = dev_id; 1788 1789 if (unlikely(test_bit(FLAGS_FINAL, &dd->flags))) 1790 /* final -> allow device to go to power-saving mode */ 1791 omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH); 1792 1793 omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY, 1794 SHA_REG_CTRL_OUTPUT_READY); 1795 omap_sham_read(dd, SHA_REG_CTRL); 1796 1797 return omap_sham_irq_common(dd); 1798 } 1799 1800 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id) 1801 { 1802 struct omap_sham_dev *dd = dev_id; 1803 1804 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN); 1805 1806 return omap_sham_irq_common(dd); 1807 } 1808 1809 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = { 1810 { 1811 .algs_list = algs_sha1_md5, 1812 .size = ARRAY_SIZE(algs_sha1_md5), 1813 }, 1814 }; 1815 1816 static const struct omap_sham_pdata omap_sham_pdata_omap2 = { 1817 .algs_info = omap_sham_algs_info_omap2, 1818 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2), 1819 .flags = BIT(FLAGS_BE32_SHA1), 1820 .digest_size = SHA1_DIGEST_SIZE, 1821 .copy_hash = omap_sham_copy_hash_omap2, 1822 .write_ctrl = omap_sham_write_ctrl_omap2, 1823 .trigger = omap_sham_trigger_omap2, 1824 .poll_irq = omap_sham_poll_irq_omap2, 1825 .intr_hdlr = omap_sham_irq_omap2, 1826 .idigest_ofs = 0x00, 1827 .din_ofs = 0x1c, 1828 .digcnt_ofs = 0x14, 1829 .rev_ofs = 0x5c, 1830 .mask_ofs = 0x60, 1831 .sysstatus_ofs = 0x64, 1832 .major_mask = 0xf0, 1833 .major_shift = 4, 1834 .minor_mask = 0x0f, 1835 .minor_shift = 0, 1836 }; 1837 1838 #ifdef CONFIG_OF 1839 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = { 1840 { 1841 .algs_list = algs_sha1_md5, 1842 .size = ARRAY_SIZE(algs_sha1_md5), 1843 }, 1844 { 1845 .algs_list = algs_sha224_sha256, 1846 .size = ARRAY_SIZE(algs_sha224_sha256), 1847 }, 1848 }; 1849 1850 static const struct omap_sham_pdata omap_sham_pdata_omap4 = { 1851 .algs_info = omap_sham_algs_info_omap4, 1852 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4), 1853 .flags = BIT(FLAGS_AUTO_XOR), 1854 .digest_size = SHA256_DIGEST_SIZE, 1855 .copy_hash = omap_sham_copy_hash_omap4, 1856 .write_ctrl = omap_sham_write_ctrl_omap4, 1857 .trigger = omap_sham_trigger_omap4, 1858 .poll_irq = omap_sham_poll_irq_omap4, 1859 .intr_hdlr = omap_sham_irq_omap4, 1860 .idigest_ofs = 0x020, 1861 .odigest_ofs = 0x0, 1862 .din_ofs = 0x080, 1863 .digcnt_ofs = 0x040, 1864 .rev_ofs = 0x100, 1865 .mask_ofs = 0x110, 1866 .sysstatus_ofs = 0x114, 1867 .mode_ofs = 0x44, 1868 .length_ofs = 0x48, 1869 .major_mask = 0x0700, 1870 .major_shift = 8, 1871 .minor_mask = 0x003f, 1872 .minor_shift = 0, 1873 }; 1874 1875 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = { 1876 { 1877 .algs_list = algs_sha1_md5, 1878 .size = ARRAY_SIZE(algs_sha1_md5), 1879 }, 1880 { 1881 .algs_list = algs_sha224_sha256, 1882 .size = ARRAY_SIZE(algs_sha224_sha256), 1883 }, 1884 { 1885 .algs_list = algs_sha384_sha512, 1886 .size = ARRAY_SIZE(algs_sha384_sha512), 1887 }, 1888 }; 1889 1890 static const struct omap_sham_pdata omap_sham_pdata_omap5 = { 1891 .algs_info = omap_sham_algs_info_omap5, 1892 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5), 1893 .flags = BIT(FLAGS_AUTO_XOR), 1894 .digest_size = SHA512_DIGEST_SIZE, 1895 .copy_hash = omap_sham_copy_hash_omap4, 1896 .write_ctrl = omap_sham_write_ctrl_omap4, 1897 .trigger = omap_sham_trigger_omap4, 1898 .poll_irq = omap_sham_poll_irq_omap4, 1899 .intr_hdlr = omap_sham_irq_omap4, 1900 .idigest_ofs = 0x240, 1901 .odigest_ofs = 0x200, 1902 .din_ofs = 0x080, 1903 .digcnt_ofs = 0x280, 1904 .rev_ofs = 0x100, 1905 .mask_ofs = 0x110, 1906 .sysstatus_ofs = 0x114, 1907 .mode_ofs = 0x284, 1908 .length_ofs = 0x288, 1909 .major_mask = 0x0700, 1910 .major_shift = 8, 1911 .minor_mask = 0x003f, 1912 .minor_shift = 0, 1913 }; 1914 1915 static const struct of_device_id omap_sham_of_match[] = { 1916 { 1917 .compatible = "ti,omap2-sham", 1918 .data = &omap_sham_pdata_omap2, 1919 }, 1920 { 1921 .compatible = "ti,omap3-sham", 1922 .data = &omap_sham_pdata_omap2, 1923 }, 1924 { 1925 .compatible = "ti,omap4-sham", 1926 .data = &omap_sham_pdata_omap4, 1927 }, 1928 { 1929 .compatible = "ti,omap5-sham", 1930 .data = &omap_sham_pdata_omap5, 1931 }, 1932 {}, 1933 }; 1934 MODULE_DEVICE_TABLE(of, omap_sham_of_match); 1935 1936 static int omap_sham_get_res_of(struct omap_sham_dev *dd, 1937 struct device *dev, struct resource *res) 1938 { 1939 struct device_node *node = dev->of_node; 1940 int err = 0; 1941 1942 dd->pdata = of_device_get_match_data(dev); 1943 if (!dd->pdata) { 1944 dev_err(dev, "no compatible OF match\n"); 1945 err = -EINVAL; 1946 goto err; 1947 } 1948 1949 err = of_address_to_resource(node, 0, res); 1950 if (err < 0) { 1951 dev_err(dev, "can't translate OF node address\n"); 1952 err = -EINVAL; 1953 goto err; 1954 } 1955 1956 dd->irq = irq_of_parse_and_map(node, 0); 1957 if (!dd->irq) { 1958 dev_err(dev, "can't translate OF irq value\n"); 1959 err = -EINVAL; 1960 goto err; 1961 } 1962 1963 err: 1964 return err; 1965 } 1966 #else 1967 static const struct of_device_id omap_sham_of_match[] = { 1968 {}, 1969 }; 1970 1971 static int omap_sham_get_res_of(struct omap_sham_dev *dd, 1972 struct device *dev, struct resource *res) 1973 { 1974 return -EINVAL; 1975 } 1976 #endif 1977 1978 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd, 1979 struct platform_device *pdev, struct resource *res) 1980 { 1981 struct device *dev = &pdev->dev; 1982 struct resource *r; 1983 int err = 0; 1984 1985 /* Get the base address */ 1986 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1987 if (!r) { 1988 dev_err(dev, "no MEM resource info\n"); 1989 err = -ENODEV; 1990 goto err; 1991 } 1992 memcpy(res, r, sizeof(*res)); 1993 1994 /* Get the IRQ */ 1995 dd->irq = platform_get_irq(pdev, 0); 1996 if (dd->irq < 0) { 1997 dev_err(dev, "no IRQ resource info\n"); 1998 err = dd->irq; 1999 goto err; 2000 } 2001 2002 /* Only OMAP2/3 can be non-DT */ 2003 dd->pdata = &omap_sham_pdata_omap2; 2004 2005 err: 2006 return err; 2007 } 2008 2009 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr, 2010 char *buf) 2011 { 2012 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2013 2014 return sprintf(buf, "%d\n", dd->fallback_sz); 2015 } 2016 2017 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr, 2018 const char *buf, size_t size) 2019 { 2020 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2021 ssize_t status; 2022 long value; 2023 2024 status = kstrtol(buf, 0, &value); 2025 if (status) 2026 return status; 2027 2028 /* HW accelerator only works with buffers > 9 */ 2029 if (value < 9) { 2030 dev_err(dev, "minimum fallback size 9\n"); 2031 return -EINVAL; 2032 } 2033 2034 dd->fallback_sz = value; 2035 2036 return size; 2037 } 2038 2039 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr, 2040 char *buf) 2041 { 2042 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2043 2044 return sprintf(buf, "%d\n", dd->queue.max_qlen); 2045 } 2046 2047 static ssize_t queue_len_store(struct device *dev, 2048 struct device_attribute *attr, const char *buf, 2049 size_t size) 2050 { 2051 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2052 ssize_t status; 2053 long value; 2054 unsigned long flags; 2055 2056 status = kstrtol(buf, 0, &value); 2057 if (status) 2058 return status; 2059 2060 if (value < 1) 2061 return -EINVAL; 2062 2063 /* 2064 * Changing the queue size in fly is safe, if size becomes smaller 2065 * than current size, it will just not accept new entries until 2066 * it has shrank enough. 2067 */ 2068 spin_lock_irqsave(&dd->lock, flags); 2069 dd->queue.max_qlen = value; 2070 spin_unlock_irqrestore(&dd->lock, flags); 2071 2072 return size; 2073 } 2074 2075 static DEVICE_ATTR_RW(queue_len); 2076 static DEVICE_ATTR_RW(fallback); 2077 2078 static struct attribute *omap_sham_attrs[] = { 2079 &dev_attr_queue_len.attr, 2080 &dev_attr_fallback.attr, 2081 NULL, 2082 }; 2083 2084 static struct attribute_group omap_sham_attr_group = { 2085 .attrs = omap_sham_attrs, 2086 }; 2087 2088 static int omap_sham_probe(struct platform_device *pdev) 2089 { 2090 struct omap_sham_dev *dd; 2091 struct device *dev = &pdev->dev; 2092 struct resource res; 2093 dma_cap_mask_t mask; 2094 int err, i, j; 2095 u32 rev; 2096 2097 dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL); 2098 if (dd == NULL) { 2099 dev_err(dev, "unable to alloc data struct.\n"); 2100 err = -ENOMEM; 2101 goto data_err; 2102 } 2103 dd->dev = dev; 2104 platform_set_drvdata(pdev, dd); 2105 2106 INIT_LIST_HEAD(&dd->list); 2107 spin_lock_init(&dd->lock); 2108 tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd); 2109 crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH); 2110 2111 err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) : 2112 omap_sham_get_res_pdev(dd, pdev, &res); 2113 if (err) 2114 goto data_err; 2115 2116 dd->io_base = devm_ioremap_resource(dev, &res); 2117 if (IS_ERR(dd->io_base)) { 2118 err = PTR_ERR(dd->io_base); 2119 goto data_err; 2120 } 2121 dd->phys_base = res.start; 2122 2123 err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr, 2124 IRQF_TRIGGER_NONE, dev_name(dev), dd); 2125 if (err) { 2126 dev_err(dev, "unable to request irq %d, err = %d\n", 2127 dd->irq, err); 2128 goto data_err; 2129 } 2130 2131 dma_cap_zero(mask); 2132 dma_cap_set(DMA_SLAVE, mask); 2133 2134 dd->dma_lch = dma_request_chan(dev, "rx"); 2135 if (IS_ERR(dd->dma_lch)) { 2136 err = PTR_ERR(dd->dma_lch); 2137 if (err == -EPROBE_DEFER) 2138 goto data_err; 2139 2140 dd->polling_mode = 1; 2141 dev_dbg(dev, "using polling mode instead of dma\n"); 2142 } 2143 2144 dd->flags |= dd->pdata->flags; 2145 2146 pm_runtime_use_autosuspend(dev); 2147 pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY); 2148 2149 dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD; 2150 2151 pm_runtime_enable(dev); 2152 pm_runtime_irq_safe(dev); 2153 2154 err = pm_runtime_get_sync(dev); 2155 if (err < 0) { 2156 dev_err(dev, "failed to get sync: %d\n", err); 2157 goto err_pm; 2158 } 2159 2160 rev = omap_sham_read(dd, SHA_REG_REV(dd)); 2161 pm_runtime_put_sync(&pdev->dev); 2162 2163 dev_info(dev, "hw accel on OMAP rev %u.%u\n", 2164 (rev & dd->pdata->major_mask) >> dd->pdata->major_shift, 2165 (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift); 2166 2167 spin_lock(&sham.lock); 2168 list_add_tail(&dd->list, &sham.dev_list); 2169 spin_unlock(&sham.lock); 2170 2171 for (i = 0; i < dd->pdata->algs_info_size; i++) { 2172 for (j = 0; j < dd->pdata->algs_info[i].size; j++) { 2173 struct ahash_alg *alg; 2174 2175 alg = &dd->pdata->algs_info[i].algs_list[j]; 2176 alg->export = omap_sham_export; 2177 alg->import = omap_sham_import; 2178 alg->halg.statesize = sizeof(struct omap_sham_reqctx) + 2179 BUFLEN; 2180 err = crypto_register_ahash(alg); 2181 if (err) 2182 goto err_algs; 2183 2184 dd->pdata->algs_info[i].registered++; 2185 } 2186 } 2187 2188 err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group); 2189 if (err) { 2190 dev_err(dev, "could not create sysfs device attrs\n"); 2191 goto err_algs; 2192 } 2193 2194 return 0; 2195 2196 err_algs: 2197 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) 2198 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) 2199 crypto_unregister_ahash( 2200 &dd->pdata->algs_info[i].algs_list[j]); 2201 err_pm: 2202 pm_runtime_disable(dev); 2203 if (!dd->polling_mode) 2204 dma_release_channel(dd->dma_lch); 2205 data_err: 2206 dev_err(dev, "initialization failed.\n"); 2207 2208 return err; 2209 } 2210 2211 static int omap_sham_remove(struct platform_device *pdev) 2212 { 2213 struct omap_sham_dev *dd; 2214 int i, j; 2215 2216 dd = platform_get_drvdata(pdev); 2217 if (!dd) 2218 return -ENODEV; 2219 spin_lock(&sham.lock); 2220 list_del(&dd->list); 2221 spin_unlock(&sham.lock); 2222 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) 2223 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) 2224 crypto_unregister_ahash( 2225 &dd->pdata->algs_info[i].algs_list[j]); 2226 tasklet_kill(&dd->done_task); 2227 pm_runtime_disable(&pdev->dev); 2228 2229 if (!dd->polling_mode) 2230 dma_release_channel(dd->dma_lch); 2231 2232 return 0; 2233 } 2234 2235 #ifdef CONFIG_PM_SLEEP 2236 static int omap_sham_suspend(struct device *dev) 2237 { 2238 pm_runtime_put_sync(dev); 2239 return 0; 2240 } 2241 2242 static int omap_sham_resume(struct device *dev) 2243 { 2244 int err = pm_runtime_get_sync(dev); 2245 if (err < 0) { 2246 dev_err(dev, "failed to get sync: %d\n", err); 2247 return err; 2248 } 2249 return 0; 2250 } 2251 #endif 2252 2253 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume); 2254 2255 static struct platform_driver omap_sham_driver = { 2256 .probe = omap_sham_probe, 2257 .remove = omap_sham_remove, 2258 .driver = { 2259 .name = "omap-sham", 2260 .pm = &omap_sham_pm_ops, 2261 .of_match_table = omap_sham_of_match, 2262 }, 2263 }; 2264 2265 module_platform_driver(omap_sham_driver); 2266 2267 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support."); 2268 MODULE_LICENSE("GPL v2"); 2269 MODULE_AUTHOR("Dmitry Kasatkin"); 2270 MODULE_ALIAS("platform:omap-sham"); 2271