xref: /openbmc/linux/drivers/crypto/omap-sham.c (revision 6d99a79c)
1 /*
2  * Cryptographic API.
3  *
4  * Support for OMAP SHA1/MD5 HW acceleration.
5  *
6  * Copyright (c) 2010 Nokia Corporation
7  * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
8  * Copyright (c) 2011 Texas Instruments Incorporated
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  *
14  * Some ideas are from old omap-sha1-md5.c driver.
15  */
16 
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18 
19 #include <linux/err.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/irq.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/delay.h>
38 #include <linux/crypto.h>
39 #include <linux/cryptohash.h>
40 #include <crypto/scatterwalk.h>
41 #include <crypto/algapi.h>
42 #include <crypto/sha.h>
43 #include <crypto/hash.h>
44 #include <crypto/hmac.h>
45 #include <crypto/internal/hash.h>
46 
47 #define MD5_DIGEST_SIZE			16
48 
49 #define SHA_REG_IDIGEST(dd, x)		((dd)->pdata->idigest_ofs + ((x)*0x04))
50 #define SHA_REG_DIN(dd, x)		((dd)->pdata->din_ofs + ((x) * 0x04))
51 #define SHA_REG_DIGCNT(dd)		((dd)->pdata->digcnt_ofs)
52 
53 #define SHA_REG_ODIGEST(dd, x)		((dd)->pdata->odigest_ofs + (x * 0x04))
54 
55 #define SHA_REG_CTRL			0x18
56 #define SHA_REG_CTRL_LENGTH		(0xFFFFFFFF << 5)
57 #define SHA_REG_CTRL_CLOSE_HASH		(1 << 4)
58 #define SHA_REG_CTRL_ALGO_CONST		(1 << 3)
59 #define SHA_REG_CTRL_ALGO		(1 << 2)
60 #define SHA_REG_CTRL_INPUT_READY	(1 << 1)
61 #define SHA_REG_CTRL_OUTPUT_READY	(1 << 0)
62 
63 #define SHA_REG_REV(dd)			((dd)->pdata->rev_ofs)
64 
65 #define SHA_REG_MASK(dd)		((dd)->pdata->mask_ofs)
66 #define SHA_REG_MASK_DMA_EN		(1 << 3)
67 #define SHA_REG_MASK_IT_EN		(1 << 2)
68 #define SHA_REG_MASK_SOFTRESET		(1 << 1)
69 #define SHA_REG_AUTOIDLE		(1 << 0)
70 
71 #define SHA_REG_SYSSTATUS(dd)		((dd)->pdata->sysstatus_ofs)
72 #define SHA_REG_SYSSTATUS_RESETDONE	(1 << 0)
73 
74 #define SHA_REG_MODE(dd)		((dd)->pdata->mode_ofs)
75 #define SHA_REG_MODE_HMAC_OUTER_HASH	(1 << 7)
76 #define SHA_REG_MODE_HMAC_KEY_PROC	(1 << 5)
77 #define SHA_REG_MODE_CLOSE_HASH		(1 << 4)
78 #define SHA_REG_MODE_ALGO_CONSTANT	(1 << 3)
79 
80 #define SHA_REG_MODE_ALGO_MASK		(7 << 0)
81 #define SHA_REG_MODE_ALGO_MD5_128	(0 << 1)
82 #define SHA_REG_MODE_ALGO_SHA1_160	(1 << 1)
83 #define SHA_REG_MODE_ALGO_SHA2_224	(2 << 1)
84 #define SHA_REG_MODE_ALGO_SHA2_256	(3 << 1)
85 #define SHA_REG_MODE_ALGO_SHA2_384	(1 << 0)
86 #define SHA_REG_MODE_ALGO_SHA2_512	(3 << 0)
87 
88 #define SHA_REG_LENGTH(dd)		((dd)->pdata->length_ofs)
89 
90 #define SHA_REG_IRQSTATUS		0x118
91 #define SHA_REG_IRQSTATUS_CTX_RDY	(1 << 3)
92 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
93 #define SHA_REG_IRQSTATUS_INPUT_RDY	(1 << 1)
94 #define SHA_REG_IRQSTATUS_OUTPUT_RDY	(1 << 0)
95 
96 #define SHA_REG_IRQENA			0x11C
97 #define SHA_REG_IRQENA_CTX_RDY		(1 << 3)
98 #define SHA_REG_IRQENA_PARTHASH_RDY	(1 << 2)
99 #define SHA_REG_IRQENA_INPUT_RDY	(1 << 1)
100 #define SHA_REG_IRQENA_OUTPUT_RDY	(1 << 0)
101 
102 #define DEFAULT_TIMEOUT_INTERVAL	HZ
103 
104 #define DEFAULT_AUTOSUSPEND_DELAY	1000
105 
106 /* mostly device flags */
107 #define FLAGS_BUSY		0
108 #define FLAGS_FINAL		1
109 #define FLAGS_DMA_ACTIVE	2
110 #define FLAGS_OUTPUT_READY	3
111 #define FLAGS_INIT		4
112 #define FLAGS_CPU		5
113 #define FLAGS_DMA_READY		6
114 #define FLAGS_AUTO_XOR		7
115 #define FLAGS_BE32_SHA1		8
116 #define FLAGS_SGS_COPIED	9
117 #define FLAGS_SGS_ALLOCED	10
118 /* context flags */
119 #define FLAGS_FINUP		16
120 
121 #define FLAGS_MODE_SHIFT	18
122 #define FLAGS_MODE_MASK		(SHA_REG_MODE_ALGO_MASK	<< FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_MD5		(SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA1		(SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA224	(SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA256	(SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
127 #define FLAGS_MODE_SHA384	(SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
128 #define FLAGS_MODE_SHA512	(SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
129 
130 #define FLAGS_HMAC		21
131 #define FLAGS_ERROR		22
132 
133 #define OP_UPDATE		1
134 #define OP_FINAL		2
135 
136 #define OMAP_ALIGN_MASK		(sizeof(u32)-1)
137 #define OMAP_ALIGNED		__attribute__((aligned(sizeof(u32))))
138 
139 #define BUFLEN			SHA512_BLOCK_SIZE
140 #define OMAP_SHA_DMA_THRESHOLD	256
141 
142 struct omap_sham_dev;
143 
144 struct omap_sham_reqctx {
145 	struct omap_sham_dev	*dd;
146 	unsigned long		flags;
147 	unsigned long		op;
148 
149 	u8			digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 	size_t			digcnt;
151 	size_t			bufcnt;
152 	size_t			buflen;
153 
154 	/* walk state */
155 	struct scatterlist	*sg;
156 	struct scatterlist	sgl[2];
157 	int			offset;	/* offset in current sg */
158 	int			sg_len;
159 	unsigned int		total;	/* total request */
160 
161 	u8			buffer[0] OMAP_ALIGNED;
162 };
163 
164 struct omap_sham_hmac_ctx {
165 	struct crypto_shash	*shash;
166 	u8			ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 	u8			opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169 
170 struct omap_sham_ctx {
171 	struct omap_sham_dev	*dd;
172 
173 	unsigned long		flags;
174 
175 	/* fallback stuff */
176 	struct crypto_shash	*fallback;
177 
178 	struct omap_sham_hmac_ctx base[0];
179 };
180 
181 #define OMAP_SHAM_QUEUE_LENGTH	10
182 
183 struct omap_sham_algs_info {
184 	struct ahash_alg	*algs_list;
185 	unsigned int		size;
186 	unsigned int		registered;
187 };
188 
189 struct omap_sham_pdata {
190 	struct omap_sham_algs_info	*algs_info;
191 	unsigned int	algs_info_size;
192 	unsigned long	flags;
193 	int		digest_size;
194 
195 	void		(*copy_hash)(struct ahash_request *req, int out);
196 	void		(*write_ctrl)(struct omap_sham_dev *dd, size_t length,
197 				      int final, int dma);
198 	void		(*trigger)(struct omap_sham_dev *dd, size_t length);
199 	int		(*poll_irq)(struct omap_sham_dev *dd);
200 	irqreturn_t	(*intr_hdlr)(int irq, void *dev_id);
201 
202 	u32		odigest_ofs;
203 	u32		idigest_ofs;
204 	u32		din_ofs;
205 	u32		digcnt_ofs;
206 	u32		rev_ofs;
207 	u32		mask_ofs;
208 	u32		sysstatus_ofs;
209 	u32		mode_ofs;
210 	u32		length_ofs;
211 
212 	u32		major_mask;
213 	u32		major_shift;
214 	u32		minor_mask;
215 	u32		minor_shift;
216 };
217 
218 struct omap_sham_dev {
219 	struct list_head	list;
220 	unsigned long		phys_base;
221 	struct device		*dev;
222 	void __iomem		*io_base;
223 	int			irq;
224 	spinlock_t		lock;
225 	int			err;
226 	struct dma_chan		*dma_lch;
227 	struct tasklet_struct	done_task;
228 	u8			polling_mode;
229 	u8			xmit_buf[BUFLEN] OMAP_ALIGNED;
230 
231 	unsigned long		flags;
232 	int			fallback_sz;
233 	struct crypto_queue	queue;
234 	struct ahash_request	*req;
235 
236 	const struct omap_sham_pdata	*pdata;
237 };
238 
239 struct omap_sham_drv {
240 	struct list_head	dev_list;
241 	spinlock_t		lock;
242 	unsigned long		flags;
243 };
244 
245 static struct omap_sham_drv sham = {
246 	.dev_list = LIST_HEAD_INIT(sham.dev_list),
247 	.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
248 };
249 
250 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
251 {
252 	return __raw_readl(dd->io_base + offset);
253 }
254 
255 static inline void omap_sham_write(struct omap_sham_dev *dd,
256 					u32 offset, u32 value)
257 {
258 	__raw_writel(value, dd->io_base + offset);
259 }
260 
261 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
262 					u32 value, u32 mask)
263 {
264 	u32 val;
265 
266 	val = omap_sham_read(dd, address);
267 	val &= ~mask;
268 	val |= value;
269 	omap_sham_write(dd, address, val);
270 }
271 
272 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
273 {
274 	unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
275 
276 	while (!(omap_sham_read(dd, offset) & bit)) {
277 		if (time_is_before_jiffies(timeout))
278 			return -ETIMEDOUT;
279 	}
280 
281 	return 0;
282 }
283 
284 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
285 {
286 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
287 	struct omap_sham_dev *dd = ctx->dd;
288 	u32 *hash = (u32 *)ctx->digest;
289 	int i;
290 
291 	for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
292 		if (out)
293 			hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
294 		else
295 			omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
296 	}
297 }
298 
299 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
300 {
301 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
302 	struct omap_sham_dev *dd = ctx->dd;
303 	int i;
304 
305 	if (ctx->flags & BIT(FLAGS_HMAC)) {
306 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
307 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
308 		struct omap_sham_hmac_ctx *bctx = tctx->base;
309 		u32 *opad = (u32 *)bctx->opad;
310 
311 		for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
312 			if (out)
313 				opad[i] = omap_sham_read(dd,
314 						SHA_REG_ODIGEST(dd, i));
315 			else
316 				omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
317 						opad[i]);
318 		}
319 	}
320 
321 	omap_sham_copy_hash_omap2(req, out);
322 }
323 
324 static void omap_sham_copy_ready_hash(struct ahash_request *req)
325 {
326 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
327 	u32 *in = (u32 *)ctx->digest;
328 	u32 *hash = (u32 *)req->result;
329 	int i, d, big_endian = 0;
330 
331 	if (!hash)
332 		return;
333 
334 	switch (ctx->flags & FLAGS_MODE_MASK) {
335 	case FLAGS_MODE_MD5:
336 		d = MD5_DIGEST_SIZE / sizeof(u32);
337 		break;
338 	case FLAGS_MODE_SHA1:
339 		/* OMAP2 SHA1 is big endian */
340 		if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
341 			big_endian = 1;
342 		d = SHA1_DIGEST_SIZE / sizeof(u32);
343 		break;
344 	case FLAGS_MODE_SHA224:
345 		d = SHA224_DIGEST_SIZE / sizeof(u32);
346 		break;
347 	case FLAGS_MODE_SHA256:
348 		d = SHA256_DIGEST_SIZE / sizeof(u32);
349 		break;
350 	case FLAGS_MODE_SHA384:
351 		d = SHA384_DIGEST_SIZE / sizeof(u32);
352 		break;
353 	case FLAGS_MODE_SHA512:
354 		d = SHA512_DIGEST_SIZE / sizeof(u32);
355 		break;
356 	default:
357 		d = 0;
358 	}
359 
360 	if (big_endian)
361 		for (i = 0; i < d; i++)
362 			hash[i] = be32_to_cpu(in[i]);
363 	else
364 		for (i = 0; i < d; i++)
365 			hash[i] = le32_to_cpu(in[i]);
366 }
367 
368 static int omap_sham_hw_init(struct omap_sham_dev *dd)
369 {
370 	int err;
371 
372 	err = pm_runtime_get_sync(dd->dev);
373 	if (err < 0) {
374 		dev_err(dd->dev, "failed to get sync: %d\n", err);
375 		return err;
376 	}
377 
378 	if (!test_bit(FLAGS_INIT, &dd->flags)) {
379 		set_bit(FLAGS_INIT, &dd->flags);
380 		dd->err = 0;
381 	}
382 
383 	return 0;
384 }
385 
386 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
387 				 int final, int dma)
388 {
389 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
390 	u32 val = length << 5, mask;
391 
392 	if (likely(ctx->digcnt))
393 		omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
394 
395 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
396 		SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
397 		SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
398 	/*
399 	 * Setting ALGO_CONST only for the first iteration
400 	 * and CLOSE_HASH only for the last one.
401 	 */
402 	if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
403 		val |= SHA_REG_CTRL_ALGO;
404 	if (!ctx->digcnt)
405 		val |= SHA_REG_CTRL_ALGO_CONST;
406 	if (final)
407 		val |= SHA_REG_CTRL_CLOSE_HASH;
408 
409 	mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
410 			SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
411 
412 	omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
413 }
414 
415 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
416 {
417 }
418 
419 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
420 {
421 	return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
422 }
423 
424 static int get_block_size(struct omap_sham_reqctx *ctx)
425 {
426 	int d;
427 
428 	switch (ctx->flags & FLAGS_MODE_MASK) {
429 	case FLAGS_MODE_MD5:
430 	case FLAGS_MODE_SHA1:
431 		d = SHA1_BLOCK_SIZE;
432 		break;
433 	case FLAGS_MODE_SHA224:
434 	case FLAGS_MODE_SHA256:
435 		d = SHA256_BLOCK_SIZE;
436 		break;
437 	case FLAGS_MODE_SHA384:
438 	case FLAGS_MODE_SHA512:
439 		d = SHA512_BLOCK_SIZE;
440 		break;
441 	default:
442 		d = 0;
443 	}
444 
445 	return d;
446 }
447 
448 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
449 				    u32 *value, int count)
450 {
451 	for (; count--; value++, offset += 4)
452 		omap_sham_write(dd, offset, *value);
453 }
454 
455 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
456 				 int final, int dma)
457 {
458 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
459 	u32 val, mask;
460 
461 	/*
462 	 * Setting ALGO_CONST only for the first iteration and
463 	 * CLOSE_HASH only for the last one. Note that flags mode bits
464 	 * correspond to algorithm encoding in mode register.
465 	 */
466 	val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
467 	if (!ctx->digcnt) {
468 		struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
469 		struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
470 		struct omap_sham_hmac_ctx *bctx = tctx->base;
471 		int bs, nr_dr;
472 
473 		val |= SHA_REG_MODE_ALGO_CONSTANT;
474 
475 		if (ctx->flags & BIT(FLAGS_HMAC)) {
476 			bs = get_block_size(ctx);
477 			nr_dr = bs / (2 * sizeof(u32));
478 			val |= SHA_REG_MODE_HMAC_KEY_PROC;
479 			omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
480 					  (u32 *)bctx->ipad, nr_dr);
481 			omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
482 					  (u32 *)bctx->ipad + nr_dr, nr_dr);
483 			ctx->digcnt += bs;
484 		}
485 	}
486 
487 	if (final) {
488 		val |= SHA_REG_MODE_CLOSE_HASH;
489 
490 		if (ctx->flags & BIT(FLAGS_HMAC))
491 			val |= SHA_REG_MODE_HMAC_OUTER_HASH;
492 	}
493 
494 	mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
495 	       SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
496 	       SHA_REG_MODE_HMAC_KEY_PROC;
497 
498 	dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
499 	omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
500 	omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
501 	omap_sham_write_mask(dd, SHA_REG_MASK(dd),
502 			     SHA_REG_MASK_IT_EN |
503 				     (dma ? SHA_REG_MASK_DMA_EN : 0),
504 			     SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
505 }
506 
507 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
508 {
509 	omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
510 }
511 
512 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
513 {
514 	return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
515 			      SHA_REG_IRQSTATUS_INPUT_RDY);
516 }
517 
518 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
519 			      int final)
520 {
521 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
522 	int count, len32, bs32, offset = 0;
523 	const u32 *buffer;
524 	int mlen;
525 	struct sg_mapping_iter mi;
526 
527 	dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
528 						ctx->digcnt, length, final);
529 
530 	dd->pdata->write_ctrl(dd, length, final, 0);
531 	dd->pdata->trigger(dd, length);
532 
533 	/* should be non-zero before next lines to disable clocks later */
534 	ctx->digcnt += length;
535 	ctx->total -= length;
536 
537 	if (final)
538 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
539 
540 	set_bit(FLAGS_CPU, &dd->flags);
541 
542 	len32 = DIV_ROUND_UP(length, sizeof(u32));
543 	bs32 = get_block_size(ctx) / sizeof(u32);
544 
545 	sg_miter_start(&mi, ctx->sg, ctx->sg_len,
546 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
547 
548 	mlen = 0;
549 
550 	while (len32) {
551 		if (dd->pdata->poll_irq(dd))
552 			return -ETIMEDOUT;
553 
554 		for (count = 0; count < min(len32, bs32); count++, offset++) {
555 			if (!mlen) {
556 				sg_miter_next(&mi);
557 				mlen = mi.length;
558 				if (!mlen) {
559 					pr_err("sg miter failure.\n");
560 					return -EINVAL;
561 				}
562 				offset = 0;
563 				buffer = mi.addr;
564 			}
565 			omap_sham_write(dd, SHA_REG_DIN(dd, count),
566 					buffer[offset]);
567 			mlen -= 4;
568 		}
569 		len32 -= min(len32, bs32);
570 	}
571 
572 	sg_miter_stop(&mi);
573 
574 	return -EINPROGRESS;
575 }
576 
577 static void omap_sham_dma_callback(void *param)
578 {
579 	struct omap_sham_dev *dd = param;
580 
581 	set_bit(FLAGS_DMA_READY, &dd->flags);
582 	tasklet_schedule(&dd->done_task);
583 }
584 
585 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
586 			      int final)
587 {
588 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
589 	struct dma_async_tx_descriptor *tx;
590 	struct dma_slave_config cfg;
591 	int ret;
592 
593 	dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
594 						ctx->digcnt, length, final);
595 
596 	if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
597 		dev_err(dd->dev, "dma_map_sg error\n");
598 		return -EINVAL;
599 	}
600 
601 	memset(&cfg, 0, sizeof(cfg));
602 
603 	cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
604 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 	cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
606 
607 	ret = dmaengine_slave_config(dd->dma_lch, &cfg);
608 	if (ret) {
609 		pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
610 		return ret;
611 	}
612 
613 	tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
614 				     DMA_MEM_TO_DEV,
615 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
616 
617 	if (!tx) {
618 		dev_err(dd->dev, "prep_slave_sg failed\n");
619 		return -EINVAL;
620 	}
621 
622 	tx->callback = omap_sham_dma_callback;
623 	tx->callback_param = dd;
624 
625 	dd->pdata->write_ctrl(dd, length, final, 1);
626 
627 	ctx->digcnt += length;
628 	ctx->total -= length;
629 
630 	if (final)
631 		set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
632 
633 	set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
634 
635 	dmaengine_submit(tx);
636 	dma_async_issue_pending(dd->dma_lch);
637 
638 	dd->pdata->trigger(dd, length);
639 
640 	return -EINPROGRESS;
641 }
642 
643 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
644 				   struct scatterlist *sg, int bs, int new_len)
645 {
646 	int n = sg_nents(sg);
647 	struct scatterlist *tmp;
648 	int offset = ctx->offset;
649 
650 	if (ctx->bufcnt)
651 		n++;
652 
653 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
654 	if (!ctx->sg)
655 		return -ENOMEM;
656 
657 	sg_init_table(ctx->sg, n);
658 
659 	tmp = ctx->sg;
660 
661 	ctx->sg_len = 0;
662 
663 	if (ctx->bufcnt) {
664 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
665 		tmp = sg_next(tmp);
666 		ctx->sg_len++;
667 	}
668 
669 	while (sg && new_len) {
670 		int len = sg->length - offset;
671 
672 		if (offset) {
673 			offset -= sg->length;
674 			if (offset < 0)
675 				offset = 0;
676 		}
677 
678 		if (new_len < len)
679 			len = new_len;
680 
681 		if (len > 0) {
682 			new_len -= len;
683 			sg_set_page(tmp, sg_page(sg), len, sg->offset);
684 			if (new_len <= 0)
685 				sg_mark_end(tmp);
686 			tmp = sg_next(tmp);
687 			ctx->sg_len++;
688 		}
689 
690 		sg = sg_next(sg);
691 	}
692 
693 	set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
694 
695 	ctx->bufcnt = 0;
696 
697 	return 0;
698 }
699 
700 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
701 			      struct scatterlist *sg, int bs, int new_len)
702 {
703 	int pages;
704 	void *buf;
705 	int len;
706 
707 	len = new_len + ctx->bufcnt;
708 
709 	pages = get_order(ctx->total);
710 
711 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
712 	if (!buf) {
713 		pr_err("Couldn't allocate pages for unaligned cases.\n");
714 		return -ENOMEM;
715 	}
716 
717 	if (ctx->bufcnt)
718 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
719 
720 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
721 				 ctx->total - ctx->bufcnt, 0);
722 	sg_init_table(ctx->sgl, 1);
723 	sg_set_buf(ctx->sgl, buf, len);
724 	ctx->sg = ctx->sgl;
725 	set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
726 	ctx->sg_len = 1;
727 	ctx->bufcnt = 0;
728 	ctx->offset = 0;
729 
730 	return 0;
731 }
732 
733 static int omap_sham_align_sgs(struct scatterlist *sg,
734 			       int nbytes, int bs, bool final,
735 			       struct omap_sham_reqctx *rctx)
736 {
737 	int n = 0;
738 	bool aligned = true;
739 	bool list_ok = true;
740 	struct scatterlist *sg_tmp = sg;
741 	int new_len;
742 	int offset = rctx->offset;
743 
744 	if (!sg || !sg->length || !nbytes)
745 		return 0;
746 
747 	new_len = nbytes;
748 
749 	if (offset)
750 		list_ok = false;
751 
752 	if (final)
753 		new_len = DIV_ROUND_UP(new_len, bs) * bs;
754 	else
755 		new_len = (new_len - 1) / bs * bs;
756 
757 	if (nbytes != new_len)
758 		list_ok = false;
759 
760 	while (nbytes > 0 && sg_tmp) {
761 		n++;
762 
763 #ifdef CONFIG_ZONE_DMA
764 		if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
765 			aligned = false;
766 			break;
767 		}
768 #endif
769 
770 		if (offset < sg_tmp->length) {
771 			if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
772 				aligned = false;
773 				break;
774 			}
775 
776 			if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
777 				aligned = false;
778 				break;
779 			}
780 		}
781 
782 		if (offset) {
783 			offset -= sg_tmp->length;
784 			if (offset < 0) {
785 				nbytes += offset;
786 				offset = 0;
787 			}
788 		} else {
789 			nbytes -= sg_tmp->length;
790 		}
791 
792 		sg_tmp = sg_next(sg_tmp);
793 
794 		if (nbytes < 0) {
795 			list_ok = false;
796 			break;
797 		}
798 	}
799 
800 	if (!aligned)
801 		return omap_sham_copy_sgs(rctx, sg, bs, new_len);
802 	else if (!list_ok)
803 		return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
804 
805 	rctx->sg_len = n;
806 	rctx->sg = sg;
807 
808 	return 0;
809 }
810 
811 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
812 {
813 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
814 	int bs;
815 	int ret;
816 	int nbytes;
817 	bool final = rctx->flags & BIT(FLAGS_FINUP);
818 	int xmit_len, hash_later;
819 
820 	bs = get_block_size(rctx);
821 
822 	if (update)
823 		nbytes = req->nbytes;
824 	else
825 		nbytes = 0;
826 
827 	rctx->total = nbytes + rctx->bufcnt;
828 
829 	if (!rctx->total)
830 		return 0;
831 
832 	if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
833 		int len = bs - rctx->bufcnt % bs;
834 
835 		if (len > nbytes)
836 			len = nbytes;
837 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
838 					 0, len, 0);
839 		rctx->bufcnt += len;
840 		nbytes -= len;
841 		rctx->offset = len;
842 	}
843 
844 	if (rctx->bufcnt)
845 		memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
846 
847 	ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
848 	if (ret)
849 		return ret;
850 
851 	xmit_len = rctx->total;
852 
853 	if (!IS_ALIGNED(xmit_len, bs)) {
854 		if (final)
855 			xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
856 		else
857 			xmit_len = xmit_len / bs * bs;
858 	} else if (!final) {
859 		xmit_len -= bs;
860 	}
861 
862 	hash_later = rctx->total - xmit_len;
863 	if (hash_later < 0)
864 		hash_later = 0;
865 
866 	if (rctx->bufcnt && nbytes) {
867 		/* have data from previous operation and current */
868 		sg_init_table(rctx->sgl, 2);
869 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
870 
871 		sg_chain(rctx->sgl, 2, req->src);
872 
873 		rctx->sg = rctx->sgl;
874 
875 		rctx->sg_len++;
876 	} else if (rctx->bufcnt) {
877 		/* have buffered data only */
878 		sg_init_table(rctx->sgl, 1);
879 		sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
880 
881 		rctx->sg = rctx->sgl;
882 
883 		rctx->sg_len = 1;
884 	}
885 
886 	if (hash_later) {
887 		int offset = 0;
888 
889 		if (hash_later > req->nbytes) {
890 			memcpy(rctx->buffer, rctx->buffer + xmit_len,
891 			       hash_later - req->nbytes);
892 			offset = hash_later - req->nbytes;
893 		}
894 
895 		if (req->nbytes) {
896 			scatterwalk_map_and_copy(rctx->buffer + offset,
897 						 req->src,
898 						 offset + req->nbytes -
899 						 hash_later, hash_later, 0);
900 		}
901 
902 		rctx->bufcnt = hash_later;
903 	} else {
904 		rctx->bufcnt = 0;
905 	}
906 
907 	if (!final)
908 		rctx->total = xmit_len;
909 
910 	return 0;
911 }
912 
913 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
914 {
915 	struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
916 
917 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
918 
919 	clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
920 
921 	return 0;
922 }
923 
924 static int omap_sham_init(struct ahash_request *req)
925 {
926 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
927 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
928 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
929 	struct omap_sham_dev *dd = NULL, *tmp;
930 	int bs = 0;
931 
932 	spin_lock_bh(&sham.lock);
933 	if (!tctx->dd) {
934 		list_for_each_entry(tmp, &sham.dev_list, list) {
935 			dd = tmp;
936 			break;
937 		}
938 		tctx->dd = dd;
939 	} else {
940 		dd = tctx->dd;
941 	}
942 	spin_unlock_bh(&sham.lock);
943 
944 	ctx->dd = dd;
945 
946 	ctx->flags = 0;
947 
948 	dev_dbg(dd->dev, "init: digest size: %d\n",
949 		crypto_ahash_digestsize(tfm));
950 
951 	switch (crypto_ahash_digestsize(tfm)) {
952 	case MD5_DIGEST_SIZE:
953 		ctx->flags |= FLAGS_MODE_MD5;
954 		bs = SHA1_BLOCK_SIZE;
955 		break;
956 	case SHA1_DIGEST_SIZE:
957 		ctx->flags |= FLAGS_MODE_SHA1;
958 		bs = SHA1_BLOCK_SIZE;
959 		break;
960 	case SHA224_DIGEST_SIZE:
961 		ctx->flags |= FLAGS_MODE_SHA224;
962 		bs = SHA224_BLOCK_SIZE;
963 		break;
964 	case SHA256_DIGEST_SIZE:
965 		ctx->flags |= FLAGS_MODE_SHA256;
966 		bs = SHA256_BLOCK_SIZE;
967 		break;
968 	case SHA384_DIGEST_SIZE:
969 		ctx->flags |= FLAGS_MODE_SHA384;
970 		bs = SHA384_BLOCK_SIZE;
971 		break;
972 	case SHA512_DIGEST_SIZE:
973 		ctx->flags |= FLAGS_MODE_SHA512;
974 		bs = SHA512_BLOCK_SIZE;
975 		break;
976 	}
977 
978 	ctx->bufcnt = 0;
979 	ctx->digcnt = 0;
980 	ctx->total = 0;
981 	ctx->offset = 0;
982 	ctx->buflen = BUFLEN;
983 
984 	if (tctx->flags & BIT(FLAGS_HMAC)) {
985 		if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
986 			struct omap_sham_hmac_ctx *bctx = tctx->base;
987 
988 			memcpy(ctx->buffer, bctx->ipad, bs);
989 			ctx->bufcnt = bs;
990 		}
991 
992 		ctx->flags |= BIT(FLAGS_HMAC);
993 	}
994 
995 	return 0;
996 
997 }
998 
999 static int omap_sham_update_req(struct omap_sham_dev *dd)
1000 {
1001 	struct ahash_request *req = dd->req;
1002 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1003 	int err;
1004 	bool final = ctx->flags & BIT(FLAGS_FINUP);
1005 
1006 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
1007 		 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
1008 
1009 	if (ctx->total < get_block_size(ctx) ||
1010 	    ctx->total < dd->fallback_sz)
1011 		ctx->flags |= BIT(FLAGS_CPU);
1012 
1013 	if (ctx->flags & BIT(FLAGS_CPU))
1014 		err = omap_sham_xmit_cpu(dd, ctx->total, final);
1015 	else
1016 		err = omap_sham_xmit_dma(dd, ctx->total, final);
1017 
1018 	/* wait for dma completion before can take more data */
1019 	dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1020 
1021 	return err;
1022 }
1023 
1024 static int omap_sham_final_req(struct omap_sham_dev *dd)
1025 {
1026 	struct ahash_request *req = dd->req;
1027 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1028 	int err = 0, use_dma = 1;
1029 
1030 	if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1031 		/*
1032 		 * faster to handle last block with cpu or
1033 		 * use cpu when dma is not present.
1034 		 */
1035 		use_dma = 0;
1036 
1037 	if (use_dma)
1038 		err = omap_sham_xmit_dma(dd, ctx->total, 1);
1039 	else
1040 		err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1041 
1042 	ctx->bufcnt = 0;
1043 
1044 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
1045 
1046 	return err;
1047 }
1048 
1049 static int omap_sham_finish_hmac(struct ahash_request *req)
1050 {
1051 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1052 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1053 	int bs = crypto_shash_blocksize(bctx->shash);
1054 	int ds = crypto_shash_digestsize(bctx->shash);
1055 	SHASH_DESC_ON_STACK(shash, bctx->shash);
1056 
1057 	shash->tfm = bctx->shash;
1058 	shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
1059 
1060 	return crypto_shash_init(shash) ?:
1061 	       crypto_shash_update(shash, bctx->opad, bs) ?:
1062 	       crypto_shash_finup(shash, req->result, ds, req->result);
1063 }
1064 
1065 static int omap_sham_finish(struct ahash_request *req)
1066 {
1067 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1068 	struct omap_sham_dev *dd = ctx->dd;
1069 	int err = 0;
1070 
1071 	if (ctx->digcnt) {
1072 		omap_sham_copy_ready_hash(req);
1073 		if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1074 				!test_bit(FLAGS_AUTO_XOR, &dd->flags))
1075 			err = omap_sham_finish_hmac(req);
1076 	}
1077 
1078 	dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1079 
1080 	return err;
1081 }
1082 
1083 static void omap_sham_finish_req(struct ahash_request *req, int err)
1084 {
1085 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1086 	struct omap_sham_dev *dd = ctx->dd;
1087 
1088 	if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1089 		free_pages((unsigned long)sg_virt(ctx->sg),
1090 			   get_order(ctx->sg->length + ctx->bufcnt));
1091 
1092 	if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1093 		kfree(ctx->sg);
1094 
1095 	ctx->sg = NULL;
1096 
1097 	dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1098 
1099 	if (!err) {
1100 		dd->pdata->copy_hash(req, 1);
1101 		if (test_bit(FLAGS_FINAL, &dd->flags))
1102 			err = omap_sham_finish(req);
1103 	} else {
1104 		ctx->flags |= BIT(FLAGS_ERROR);
1105 	}
1106 
1107 	/* atomic operation is not needed here */
1108 	dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1109 			BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1110 
1111 	pm_runtime_mark_last_busy(dd->dev);
1112 	pm_runtime_put_autosuspend(dd->dev);
1113 
1114 	if (req->base.complete)
1115 		req->base.complete(&req->base, err);
1116 }
1117 
1118 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1119 				  struct ahash_request *req)
1120 {
1121 	struct crypto_async_request *async_req, *backlog;
1122 	struct omap_sham_reqctx *ctx;
1123 	unsigned long flags;
1124 	int err = 0, ret = 0;
1125 
1126 retry:
1127 	spin_lock_irqsave(&dd->lock, flags);
1128 	if (req)
1129 		ret = ahash_enqueue_request(&dd->queue, req);
1130 	if (test_bit(FLAGS_BUSY, &dd->flags)) {
1131 		spin_unlock_irqrestore(&dd->lock, flags);
1132 		return ret;
1133 	}
1134 	backlog = crypto_get_backlog(&dd->queue);
1135 	async_req = crypto_dequeue_request(&dd->queue);
1136 	if (async_req)
1137 		set_bit(FLAGS_BUSY, &dd->flags);
1138 	spin_unlock_irqrestore(&dd->lock, flags);
1139 
1140 	if (!async_req)
1141 		return ret;
1142 
1143 	if (backlog)
1144 		backlog->complete(backlog, -EINPROGRESS);
1145 
1146 	req = ahash_request_cast(async_req);
1147 	dd->req = req;
1148 	ctx = ahash_request_ctx(req);
1149 
1150 	err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1151 	if (err || !ctx->total)
1152 		goto err1;
1153 
1154 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1155 						ctx->op, req->nbytes);
1156 
1157 	err = omap_sham_hw_init(dd);
1158 	if (err)
1159 		goto err1;
1160 
1161 	if (ctx->digcnt)
1162 		/* request has changed - restore hash */
1163 		dd->pdata->copy_hash(req, 0);
1164 
1165 	if (ctx->op == OP_UPDATE) {
1166 		err = omap_sham_update_req(dd);
1167 		if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1168 			/* no final() after finup() */
1169 			err = omap_sham_final_req(dd);
1170 	} else if (ctx->op == OP_FINAL) {
1171 		err = omap_sham_final_req(dd);
1172 	}
1173 err1:
1174 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1175 
1176 	if (err != -EINPROGRESS) {
1177 		/* done_task will not finish it, so do it here */
1178 		omap_sham_finish_req(req, err);
1179 		req = NULL;
1180 
1181 		/*
1182 		 * Execute next request immediately if there is anything
1183 		 * in queue.
1184 		 */
1185 		goto retry;
1186 	}
1187 
1188 	return ret;
1189 }
1190 
1191 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1192 {
1193 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1194 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1195 	struct omap_sham_dev *dd = tctx->dd;
1196 
1197 	ctx->op = op;
1198 
1199 	return omap_sham_handle_queue(dd, req);
1200 }
1201 
1202 static int omap_sham_update(struct ahash_request *req)
1203 {
1204 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1205 	struct omap_sham_dev *dd = ctx->dd;
1206 
1207 	if (!req->nbytes)
1208 		return 0;
1209 
1210 	if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1211 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1212 					 0, req->nbytes, 0);
1213 		ctx->bufcnt += req->nbytes;
1214 		return 0;
1215 	}
1216 
1217 	if (dd->polling_mode)
1218 		ctx->flags |= BIT(FLAGS_CPU);
1219 
1220 	return omap_sham_enqueue(req, OP_UPDATE);
1221 }
1222 
1223 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1224 				  const u8 *data, unsigned int len, u8 *out)
1225 {
1226 	SHASH_DESC_ON_STACK(shash, tfm);
1227 
1228 	shash->tfm = tfm;
1229 	shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1230 
1231 	return crypto_shash_digest(shash, data, len, out);
1232 }
1233 
1234 static int omap_sham_final_shash(struct ahash_request *req)
1235 {
1236 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1237 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1238 	int offset = 0;
1239 
1240 	/*
1241 	 * If we are running HMAC on limited hardware support, skip
1242 	 * the ipad in the beginning of the buffer if we are going for
1243 	 * software fallback algorithm.
1244 	 */
1245 	if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1246 	    !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1247 		offset = get_block_size(ctx);
1248 
1249 	return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1250 				      ctx->buffer + offset,
1251 				      ctx->bufcnt - offset, req->result);
1252 }
1253 
1254 static int omap_sham_final(struct ahash_request *req)
1255 {
1256 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1257 
1258 	ctx->flags |= BIT(FLAGS_FINUP);
1259 
1260 	if (ctx->flags & BIT(FLAGS_ERROR))
1261 		return 0; /* uncompleted hash is not needed */
1262 
1263 	/*
1264 	 * OMAP HW accel works only with buffers >= 9.
1265 	 * HMAC is always >= 9 because ipad == block size.
1266 	 * If buffersize is less than fallback_sz, we use fallback
1267 	 * SW encoding, as using DMA + HW in this case doesn't provide
1268 	 * any benefit.
1269 	 */
1270 	if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
1271 		return omap_sham_final_shash(req);
1272 	else if (ctx->bufcnt)
1273 		return omap_sham_enqueue(req, OP_FINAL);
1274 
1275 	/* copy ready hash (+ finalize hmac) */
1276 	return omap_sham_finish(req);
1277 }
1278 
1279 static int omap_sham_finup(struct ahash_request *req)
1280 {
1281 	struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1282 	int err1, err2;
1283 
1284 	ctx->flags |= BIT(FLAGS_FINUP);
1285 
1286 	err1 = omap_sham_update(req);
1287 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1288 		return err1;
1289 	/*
1290 	 * final() has to be always called to cleanup resources
1291 	 * even if udpate() failed, except EINPROGRESS
1292 	 */
1293 	err2 = omap_sham_final(req);
1294 
1295 	return err1 ?: err2;
1296 }
1297 
1298 static int omap_sham_digest(struct ahash_request *req)
1299 {
1300 	return omap_sham_init(req) ?: omap_sham_finup(req);
1301 }
1302 
1303 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1304 		      unsigned int keylen)
1305 {
1306 	struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1307 	struct omap_sham_hmac_ctx *bctx = tctx->base;
1308 	int bs = crypto_shash_blocksize(bctx->shash);
1309 	int ds = crypto_shash_digestsize(bctx->shash);
1310 	struct omap_sham_dev *dd = NULL, *tmp;
1311 	int err, i;
1312 
1313 	spin_lock_bh(&sham.lock);
1314 	if (!tctx->dd) {
1315 		list_for_each_entry(tmp, &sham.dev_list, list) {
1316 			dd = tmp;
1317 			break;
1318 		}
1319 		tctx->dd = dd;
1320 	} else {
1321 		dd = tctx->dd;
1322 	}
1323 	spin_unlock_bh(&sham.lock);
1324 
1325 	err = crypto_shash_setkey(tctx->fallback, key, keylen);
1326 	if (err)
1327 		return err;
1328 
1329 	if (keylen > bs) {
1330 		err = omap_sham_shash_digest(bctx->shash,
1331 				crypto_shash_get_flags(bctx->shash),
1332 				key, keylen, bctx->ipad);
1333 		if (err)
1334 			return err;
1335 		keylen = ds;
1336 	} else {
1337 		memcpy(bctx->ipad, key, keylen);
1338 	}
1339 
1340 	memset(bctx->ipad + keylen, 0, bs - keylen);
1341 
1342 	if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1343 		memcpy(bctx->opad, bctx->ipad, bs);
1344 
1345 		for (i = 0; i < bs; i++) {
1346 			bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1347 			bctx->opad[i] ^= HMAC_OPAD_VALUE;
1348 		}
1349 	}
1350 
1351 	return err;
1352 }
1353 
1354 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1355 {
1356 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1357 	const char *alg_name = crypto_tfm_alg_name(tfm);
1358 
1359 	/* Allocate a fallback and abort if it failed. */
1360 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1361 					    CRYPTO_ALG_NEED_FALLBACK);
1362 	if (IS_ERR(tctx->fallback)) {
1363 		pr_err("omap-sham: fallback driver '%s' "
1364 				"could not be loaded.\n", alg_name);
1365 		return PTR_ERR(tctx->fallback);
1366 	}
1367 
1368 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1369 				 sizeof(struct omap_sham_reqctx) + BUFLEN);
1370 
1371 	if (alg_base) {
1372 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1373 		tctx->flags |= BIT(FLAGS_HMAC);
1374 		bctx->shash = crypto_alloc_shash(alg_base, 0,
1375 						CRYPTO_ALG_NEED_FALLBACK);
1376 		if (IS_ERR(bctx->shash)) {
1377 			pr_err("omap-sham: base driver '%s' "
1378 					"could not be loaded.\n", alg_base);
1379 			crypto_free_shash(tctx->fallback);
1380 			return PTR_ERR(bctx->shash);
1381 		}
1382 
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1389 {
1390 	return omap_sham_cra_init_alg(tfm, NULL);
1391 }
1392 
1393 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1394 {
1395 	return omap_sham_cra_init_alg(tfm, "sha1");
1396 }
1397 
1398 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1399 {
1400 	return omap_sham_cra_init_alg(tfm, "sha224");
1401 }
1402 
1403 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1404 {
1405 	return omap_sham_cra_init_alg(tfm, "sha256");
1406 }
1407 
1408 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1409 {
1410 	return omap_sham_cra_init_alg(tfm, "md5");
1411 }
1412 
1413 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1414 {
1415 	return omap_sham_cra_init_alg(tfm, "sha384");
1416 }
1417 
1418 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1419 {
1420 	return omap_sham_cra_init_alg(tfm, "sha512");
1421 }
1422 
1423 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1424 {
1425 	struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1426 
1427 	crypto_free_shash(tctx->fallback);
1428 	tctx->fallback = NULL;
1429 
1430 	if (tctx->flags & BIT(FLAGS_HMAC)) {
1431 		struct omap_sham_hmac_ctx *bctx = tctx->base;
1432 		crypto_free_shash(bctx->shash);
1433 	}
1434 }
1435 
1436 static int omap_sham_export(struct ahash_request *req, void *out)
1437 {
1438 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1439 
1440 	memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1441 
1442 	return 0;
1443 }
1444 
1445 static int omap_sham_import(struct ahash_request *req, const void *in)
1446 {
1447 	struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1448 	const struct omap_sham_reqctx *ctx_in = in;
1449 
1450 	memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1451 
1452 	return 0;
1453 }
1454 
1455 static struct ahash_alg algs_sha1_md5[] = {
1456 {
1457 	.init		= omap_sham_init,
1458 	.update		= omap_sham_update,
1459 	.final		= omap_sham_final,
1460 	.finup		= omap_sham_finup,
1461 	.digest		= omap_sham_digest,
1462 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1463 	.halg.base	= {
1464 		.cra_name		= "sha1",
1465 		.cra_driver_name	= "omap-sha1",
1466 		.cra_priority		= 400,
1467 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1468 						CRYPTO_ALG_ASYNC |
1469 						CRYPTO_ALG_NEED_FALLBACK,
1470 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1471 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1472 		.cra_alignmask		= OMAP_ALIGN_MASK,
1473 		.cra_module		= THIS_MODULE,
1474 		.cra_init		= omap_sham_cra_init,
1475 		.cra_exit		= omap_sham_cra_exit,
1476 	}
1477 },
1478 {
1479 	.init		= omap_sham_init,
1480 	.update		= omap_sham_update,
1481 	.final		= omap_sham_final,
1482 	.finup		= omap_sham_finup,
1483 	.digest		= omap_sham_digest,
1484 	.halg.digestsize	= MD5_DIGEST_SIZE,
1485 	.halg.base	= {
1486 		.cra_name		= "md5",
1487 		.cra_driver_name	= "omap-md5",
1488 		.cra_priority		= 400,
1489 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1490 						CRYPTO_ALG_ASYNC |
1491 						CRYPTO_ALG_NEED_FALLBACK,
1492 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1493 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1494 		.cra_alignmask		= OMAP_ALIGN_MASK,
1495 		.cra_module		= THIS_MODULE,
1496 		.cra_init		= omap_sham_cra_init,
1497 		.cra_exit		= omap_sham_cra_exit,
1498 	}
1499 },
1500 {
1501 	.init		= omap_sham_init,
1502 	.update		= omap_sham_update,
1503 	.final		= omap_sham_final,
1504 	.finup		= omap_sham_finup,
1505 	.digest		= omap_sham_digest,
1506 	.setkey		= omap_sham_setkey,
1507 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1508 	.halg.base	= {
1509 		.cra_name		= "hmac(sha1)",
1510 		.cra_driver_name	= "omap-hmac-sha1",
1511 		.cra_priority		= 400,
1512 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1513 						CRYPTO_ALG_ASYNC |
1514 						CRYPTO_ALG_NEED_FALLBACK,
1515 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1516 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1517 					sizeof(struct omap_sham_hmac_ctx),
1518 		.cra_alignmask		= OMAP_ALIGN_MASK,
1519 		.cra_module		= THIS_MODULE,
1520 		.cra_init		= omap_sham_cra_sha1_init,
1521 		.cra_exit		= omap_sham_cra_exit,
1522 	}
1523 },
1524 {
1525 	.init		= omap_sham_init,
1526 	.update		= omap_sham_update,
1527 	.final		= omap_sham_final,
1528 	.finup		= omap_sham_finup,
1529 	.digest		= omap_sham_digest,
1530 	.setkey		= omap_sham_setkey,
1531 	.halg.digestsize	= MD5_DIGEST_SIZE,
1532 	.halg.base	= {
1533 		.cra_name		= "hmac(md5)",
1534 		.cra_driver_name	= "omap-hmac-md5",
1535 		.cra_priority		= 400,
1536 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1537 						CRYPTO_ALG_ASYNC |
1538 						CRYPTO_ALG_NEED_FALLBACK,
1539 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1540 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1541 					sizeof(struct omap_sham_hmac_ctx),
1542 		.cra_alignmask		= OMAP_ALIGN_MASK,
1543 		.cra_module		= THIS_MODULE,
1544 		.cra_init		= omap_sham_cra_md5_init,
1545 		.cra_exit		= omap_sham_cra_exit,
1546 	}
1547 }
1548 };
1549 
1550 /* OMAP4 has some algs in addition to what OMAP2 has */
1551 static struct ahash_alg algs_sha224_sha256[] = {
1552 {
1553 	.init		= omap_sham_init,
1554 	.update		= omap_sham_update,
1555 	.final		= omap_sham_final,
1556 	.finup		= omap_sham_finup,
1557 	.digest		= omap_sham_digest,
1558 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1559 	.halg.base	= {
1560 		.cra_name		= "sha224",
1561 		.cra_driver_name	= "omap-sha224",
1562 		.cra_priority		= 400,
1563 		.cra_flags		= CRYPTO_ALG_ASYNC |
1564 						CRYPTO_ALG_NEED_FALLBACK,
1565 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1566 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1567 		.cra_alignmask		= OMAP_ALIGN_MASK,
1568 		.cra_module		= THIS_MODULE,
1569 		.cra_init		= omap_sham_cra_init,
1570 		.cra_exit		= omap_sham_cra_exit,
1571 	}
1572 },
1573 {
1574 	.init		= omap_sham_init,
1575 	.update		= omap_sham_update,
1576 	.final		= omap_sham_final,
1577 	.finup		= omap_sham_finup,
1578 	.digest		= omap_sham_digest,
1579 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1580 	.halg.base	= {
1581 		.cra_name		= "sha256",
1582 		.cra_driver_name	= "omap-sha256",
1583 		.cra_priority		= 400,
1584 		.cra_flags		= CRYPTO_ALG_ASYNC |
1585 						CRYPTO_ALG_NEED_FALLBACK,
1586 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1587 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1588 		.cra_alignmask		= OMAP_ALIGN_MASK,
1589 		.cra_module		= THIS_MODULE,
1590 		.cra_init		= omap_sham_cra_init,
1591 		.cra_exit		= omap_sham_cra_exit,
1592 	}
1593 },
1594 {
1595 	.init		= omap_sham_init,
1596 	.update		= omap_sham_update,
1597 	.final		= omap_sham_final,
1598 	.finup		= omap_sham_finup,
1599 	.digest		= omap_sham_digest,
1600 	.setkey		= omap_sham_setkey,
1601 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1602 	.halg.base	= {
1603 		.cra_name		= "hmac(sha224)",
1604 		.cra_driver_name	= "omap-hmac-sha224",
1605 		.cra_priority		= 400,
1606 		.cra_flags		= CRYPTO_ALG_ASYNC |
1607 						CRYPTO_ALG_NEED_FALLBACK,
1608 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1609 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1610 					sizeof(struct omap_sham_hmac_ctx),
1611 		.cra_alignmask		= OMAP_ALIGN_MASK,
1612 		.cra_module		= THIS_MODULE,
1613 		.cra_init		= omap_sham_cra_sha224_init,
1614 		.cra_exit		= omap_sham_cra_exit,
1615 	}
1616 },
1617 {
1618 	.init		= omap_sham_init,
1619 	.update		= omap_sham_update,
1620 	.final		= omap_sham_final,
1621 	.finup		= omap_sham_finup,
1622 	.digest		= omap_sham_digest,
1623 	.setkey		= omap_sham_setkey,
1624 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1625 	.halg.base	= {
1626 		.cra_name		= "hmac(sha256)",
1627 		.cra_driver_name	= "omap-hmac-sha256",
1628 		.cra_priority		= 400,
1629 		.cra_flags		= CRYPTO_ALG_ASYNC |
1630 						CRYPTO_ALG_NEED_FALLBACK,
1631 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1632 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1633 					sizeof(struct omap_sham_hmac_ctx),
1634 		.cra_alignmask		= OMAP_ALIGN_MASK,
1635 		.cra_module		= THIS_MODULE,
1636 		.cra_init		= omap_sham_cra_sha256_init,
1637 		.cra_exit		= omap_sham_cra_exit,
1638 	}
1639 },
1640 };
1641 
1642 static struct ahash_alg algs_sha384_sha512[] = {
1643 {
1644 	.init		= omap_sham_init,
1645 	.update		= omap_sham_update,
1646 	.final		= omap_sham_final,
1647 	.finup		= omap_sham_finup,
1648 	.digest		= omap_sham_digest,
1649 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1650 	.halg.base	= {
1651 		.cra_name		= "sha384",
1652 		.cra_driver_name	= "omap-sha384",
1653 		.cra_priority		= 400,
1654 		.cra_flags		= CRYPTO_ALG_ASYNC |
1655 						CRYPTO_ALG_NEED_FALLBACK,
1656 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1657 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1658 		.cra_alignmask		= OMAP_ALIGN_MASK,
1659 		.cra_module		= THIS_MODULE,
1660 		.cra_init		= omap_sham_cra_init,
1661 		.cra_exit		= omap_sham_cra_exit,
1662 	}
1663 },
1664 {
1665 	.init		= omap_sham_init,
1666 	.update		= omap_sham_update,
1667 	.final		= omap_sham_final,
1668 	.finup		= omap_sham_finup,
1669 	.digest		= omap_sham_digest,
1670 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1671 	.halg.base	= {
1672 		.cra_name		= "sha512",
1673 		.cra_driver_name	= "omap-sha512",
1674 		.cra_priority		= 400,
1675 		.cra_flags		= CRYPTO_ALG_ASYNC |
1676 						CRYPTO_ALG_NEED_FALLBACK,
1677 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1678 		.cra_ctxsize		= sizeof(struct omap_sham_ctx),
1679 		.cra_alignmask		= OMAP_ALIGN_MASK,
1680 		.cra_module		= THIS_MODULE,
1681 		.cra_init		= omap_sham_cra_init,
1682 		.cra_exit		= omap_sham_cra_exit,
1683 	}
1684 },
1685 {
1686 	.init		= omap_sham_init,
1687 	.update		= omap_sham_update,
1688 	.final		= omap_sham_final,
1689 	.finup		= omap_sham_finup,
1690 	.digest		= omap_sham_digest,
1691 	.setkey		= omap_sham_setkey,
1692 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1693 	.halg.base	= {
1694 		.cra_name		= "hmac(sha384)",
1695 		.cra_driver_name	= "omap-hmac-sha384",
1696 		.cra_priority		= 400,
1697 		.cra_flags		= CRYPTO_ALG_ASYNC |
1698 						CRYPTO_ALG_NEED_FALLBACK,
1699 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1700 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1701 					sizeof(struct omap_sham_hmac_ctx),
1702 		.cra_alignmask		= OMAP_ALIGN_MASK,
1703 		.cra_module		= THIS_MODULE,
1704 		.cra_init		= omap_sham_cra_sha384_init,
1705 		.cra_exit		= omap_sham_cra_exit,
1706 	}
1707 },
1708 {
1709 	.init		= omap_sham_init,
1710 	.update		= omap_sham_update,
1711 	.final		= omap_sham_final,
1712 	.finup		= omap_sham_finup,
1713 	.digest		= omap_sham_digest,
1714 	.setkey		= omap_sham_setkey,
1715 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1716 	.halg.base	= {
1717 		.cra_name		= "hmac(sha512)",
1718 		.cra_driver_name	= "omap-hmac-sha512",
1719 		.cra_priority		= 400,
1720 		.cra_flags		= CRYPTO_ALG_ASYNC |
1721 						CRYPTO_ALG_NEED_FALLBACK,
1722 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1723 		.cra_ctxsize		= sizeof(struct omap_sham_ctx) +
1724 					sizeof(struct omap_sham_hmac_ctx),
1725 		.cra_alignmask		= OMAP_ALIGN_MASK,
1726 		.cra_module		= THIS_MODULE,
1727 		.cra_init		= omap_sham_cra_sha512_init,
1728 		.cra_exit		= omap_sham_cra_exit,
1729 	}
1730 },
1731 };
1732 
1733 static void omap_sham_done_task(unsigned long data)
1734 {
1735 	struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1736 	int err = 0;
1737 
1738 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1739 		omap_sham_handle_queue(dd, NULL);
1740 		return;
1741 	}
1742 
1743 	if (test_bit(FLAGS_CPU, &dd->flags)) {
1744 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1745 			goto finish;
1746 	} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1747 		if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1748 			omap_sham_update_dma_stop(dd);
1749 			if (dd->err) {
1750 				err = dd->err;
1751 				goto finish;
1752 			}
1753 		}
1754 		if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1755 			/* hash or semi-hash ready */
1756 			clear_bit(FLAGS_DMA_READY, &dd->flags);
1757 			goto finish;
1758 		}
1759 	}
1760 
1761 	return;
1762 
1763 finish:
1764 	dev_dbg(dd->dev, "update done: err: %d\n", err);
1765 	/* finish curent request */
1766 	omap_sham_finish_req(dd->req, err);
1767 
1768 	/* If we are not busy, process next req */
1769 	if (!test_bit(FLAGS_BUSY, &dd->flags))
1770 		omap_sham_handle_queue(dd, NULL);
1771 }
1772 
1773 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1774 {
1775 	if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1776 		dev_warn(dd->dev, "Interrupt when no active requests.\n");
1777 	} else {
1778 		set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1779 		tasklet_schedule(&dd->done_task);
1780 	}
1781 
1782 	return IRQ_HANDLED;
1783 }
1784 
1785 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1786 {
1787 	struct omap_sham_dev *dd = dev_id;
1788 
1789 	if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1790 		/* final -> allow device to go to power-saving mode */
1791 		omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1792 
1793 	omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1794 				 SHA_REG_CTRL_OUTPUT_READY);
1795 	omap_sham_read(dd, SHA_REG_CTRL);
1796 
1797 	return omap_sham_irq_common(dd);
1798 }
1799 
1800 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1801 {
1802 	struct omap_sham_dev *dd = dev_id;
1803 
1804 	omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1805 
1806 	return omap_sham_irq_common(dd);
1807 }
1808 
1809 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1810 	{
1811 		.algs_list	= algs_sha1_md5,
1812 		.size		= ARRAY_SIZE(algs_sha1_md5),
1813 	},
1814 };
1815 
1816 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1817 	.algs_info	= omap_sham_algs_info_omap2,
1818 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap2),
1819 	.flags		= BIT(FLAGS_BE32_SHA1),
1820 	.digest_size	= SHA1_DIGEST_SIZE,
1821 	.copy_hash	= omap_sham_copy_hash_omap2,
1822 	.write_ctrl	= omap_sham_write_ctrl_omap2,
1823 	.trigger	= omap_sham_trigger_omap2,
1824 	.poll_irq	= omap_sham_poll_irq_omap2,
1825 	.intr_hdlr	= omap_sham_irq_omap2,
1826 	.idigest_ofs	= 0x00,
1827 	.din_ofs	= 0x1c,
1828 	.digcnt_ofs	= 0x14,
1829 	.rev_ofs	= 0x5c,
1830 	.mask_ofs	= 0x60,
1831 	.sysstatus_ofs	= 0x64,
1832 	.major_mask	= 0xf0,
1833 	.major_shift	= 4,
1834 	.minor_mask	= 0x0f,
1835 	.minor_shift	= 0,
1836 };
1837 
1838 #ifdef CONFIG_OF
1839 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1840 	{
1841 		.algs_list	= algs_sha1_md5,
1842 		.size		= ARRAY_SIZE(algs_sha1_md5),
1843 	},
1844 	{
1845 		.algs_list	= algs_sha224_sha256,
1846 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1847 	},
1848 };
1849 
1850 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1851 	.algs_info	= omap_sham_algs_info_omap4,
1852 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap4),
1853 	.flags		= BIT(FLAGS_AUTO_XOR),
1854 	.digest_size	= SHA256_DIGEST_SIZE,
1855 	.copy_hash	= omap_sham_copy_hash_omap4,
1856 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1857 	.trigger	= omap_sham_trigger_omap4,
1858 	.poll_irq	= omap_sham_poll_irq_omap4,
1859 	.intr_hdlr	= omap_sham_irq_omap4,
1860 	.idigest_ofs	= 0x020,
1861 	.odigest_ofs	= 0x0,
1862 	.din_ofs	= 0x080,
1863 	.digcnt_ofs	= 0x040,
1864 	.rev_ofs	= 0x100,
1865 	.mask_ofs	= 0x110,
1866 	.sysstatus_ofs	= 0x114,
1867 	.mode_ofs	= 0x44,
1868 	.length_ofs	= 0x48,
1869 	.major_mask	= 0x0700,
1870 	.major_shift	= 8,
1871 	.minor_mask	= 0x003f,
1872 	.minor_shift	= 0,
1873 };
1874 
1875 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1876 	{
1877 		.algs_list	= algs_sha1_md5,
1878 		.size		= ARRAY_SIZE(algs_sha1_md5),
1879 	},
1880 	{
1881 		.algs_list	= algs_sha224_sha256,
1882 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1883 	},
1884 	{
1885 		.algs_list	= algs_sha384_sha512,
1886 		.size		= ARRAY_SIZE(algs_sha384_sha512),
1887 	},
1888 };
1889 
1890 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1891 	.algs_info	= omap_sham_algs_info_omap5,
1892 	.algs_info_size	= ARRAY_SIZE(omap_sham_algs_info_omap5),
1893 	.flags		= BIT(FLAGS_AUTO_XOR),
1894 	.digest_size	= SHA512_DIGEST_SIZE,
1895 	.copy_hash	= omap_sham_copy_hash_omap4,
1896 	.write_ctrl	= omap_sham_write_ctrl_omap4,
1897 	.trigger	= omap_sham_trigger_omap4,
1898 	.poll_irq	= omap_sham_poll_irq_omap4,
1899 	.intr_hdlr	= omap_sham_irq_omap4,
1900 	.idigest_ofs	= 0x240,
1901 	.odigest_ofs	= 0x200,
1902 	.din_ofs	= 0x080,
1903 	.digcnt_ofs	= 0x280,
1904 	.rev_ofs	= 0x100,
1905 	.mask_ofs	= 0x110,
1906 	.sysstatus_ofs	= 0x114,
1907 	.mode_ofs	= 0x284,
1908 	.length_ofs	= 0x288,
1909 	.major_mask	= 0x0700,
1910 	.major_shift	= 8,
1911 	.minor_mask	= 0x003f,
1912 	.minor_shift	= 0,
1913 };
1914 
1915 static const struct of_device_id omap_sham_of_match[] = {
1916 	{
1917 		.compatible	= "ti,omap2-sham",
1918 		.data		= &omap_sham_pdata_omap2,
1919 	},
1920 	{
1921 		.compatible	= "ti,omap3-sham",
1922 		.data		= &omap_sham_pdata_omap2,
1923 	},
1924 	{
1925 		.compatible	= "ti,omap4-sham",
1926 		.data		= &omap_sham_pdata_omap4,
1927 	},
1928 	{
1929 		.compatible	= "ti,omap5-sham",
1930 		.data		= &omap_sham_pdata_omap5,
1931 	},
1932 	{},
1933 };
1934 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1935 
1936 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1937 		struct device *dev, struct resource *res)
1938 {
1939 	struct device_node *node = dev->of_node;
1940 	int err = 0;
1941 
1942 	dd->pdata = of_device_get_match_data(dev);
1943 	if (!dd->pdata) {
1944 		dev_err(dev, "no compatible OF match\n");
1945 		err = -EINVAL;
1946 		goto err;
1947 	}
1948 
1949 	err = of_address_to_resource(node, 0, res);
1950 	if (err < 0) {
1951 		dev_err(dev, "can't translate OF node address\n");
1952 		err = -EINVAL;
1953 		goto err;
1954 	}
1955 
1956 	dd->irq = irq_of_parse_and_map(node, 0);
1957 	if (!dd->irq) {
1958 		dev_err(dev, "can't translate OF irq value\n");
1959 		err = -EINVAL;
1960 		goto err;
1961 	}
1962 
1963 err:
1964 	return err;
1965 }
1966 #else
1967 static const struct of_device_id omap_sham_of_match[] = {
1968 	{},
1969 };
1970 
1971 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1972 		struct device *dev, struct resource *res)
1973 {
1974 	return -EINVAL;
1975 }
1976 #endif
1977 
1978 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1979 		struct platform_device *pdev, struct resource *res)
1980 {
1981 	struct device *dev = &pdev->dev;
1982 	struct resource *r;
1983 	int err = 0;
1984 
1985 	/* Get the base address */
1986 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1987 	if (!r) {
1988 		dev_err(dev, "no MEM resource info\n");
1989 		err = -ENODEV;
1990 		goto err;
1991 	}
1992 	memcpy(res, r, sizeof(*res));
1993 
1994 	/* Get the IRQ */
1995 	dd->irq = platform_get_irq(pdev, 0);
1996 	if (dd->irq < 0) {
1997 		dev_err(dev, "no IRQ resource info\n");
1998 		err = dd->irq;
1999 		goto err;
2000 	}
2001 
2002 	/* Only OMAP2/3 can be non-DT */
2003 	dd->pdata = &omap_sham_pdata_omap2;
2004 
2005 err:
2006 	return err;
2007 }
2008 
2009 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
2010 			     char *buf)
2011 {
2012 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2013 
2014 	return sprintf(buf, "%d\n", dd->fallback_sz);
2015 }
2016 
2017 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
2018 			      const char *buf, size_t size)
2019 {
2020 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2021 	ssize_t status;
2022 	long value;
2023 
2024 	status = kstrtol(buf, 0, &value);
2025 	if (status)
2026 		return status;
2027 
2028 	/* HW accelerator only works with buffers > 9 */
2029 	if (value < 9) {
2030 		dev_err(dev, "minimum fallback size 9\n");
2031 		return -EINVAL;
2032 	}
2033 
2034 	dd->fallback_sz = value;
2035 
2036 	return size;
2037 }
2038 
2039 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
2040 			      char *buf)
2041 {
2042 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2043 
2044 	return sprintf(buf, "%d\n", dd->queue.max_qlen);
2045 }
2046 
2047 static ssize_t queue_len_store(struct device *dev,
2048 			       struct device_attribute *attr, const char *buf,
2049 			       size_t size)
2050 {
2051 	struct omap_sham_dev *dd = dev_get_drvdata(dev);
2052 	ssize_t status;
2053 	long value;
2054 	unsigned long flags;
2055 
2056 	status = kstrtol(buf, 0, &value);
2057 	if (status)
2058 		return status;
2059 
2060 	if (value < 1)
2061 		return -EINVAL;
2062 
2063 	/*
2064 	 * Changing the queue size in fly is safe, if size becomes smaller
2065 	 * than current size, it will just not accept new entries until
2066 	 * it has shrank enough.
2067 	 */
2068 	spin_lock_irqsave(&dd->lock, flags);
2069 	dd->queue.max_qlen = value;
2070 	spin_unlock_irqrestore(&dd->lock, flags);
2071 
2072 	return size;
2073 }
2074 
2075 static DEVICE_ATTR_RW(queue_len);
2076 static DEVICE_ATTR_RW(fallback);
2077 
2078 static struct attribute *omap_sham_attrs[] = {
2079 	&dev_attr_queue_len.attr,
2080 	&dev_attr_fallback.attr,
2081 	NULL,
2082 };
2083 
2084 static struct attribute_group omap_sham_attr_group = {
2085 	.attrs = omap_sham_attrs,
2086 };
2087 
2088 static int omap_sham_probe(struct platform_device *pdev)
2089 {
2090 	struct omap_sham_dev *dd;
2091 	struct device *dev = &pdev->dev;
2092 	struct resource res;
2093 	dma_cap_mask_t mask;
2094 	int err, i, j;
2095 	u32 rev;
2096 
2097 	dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2098 	if (dd == NULL) {
2099 		dev_err(dev, "unable to alloc data struct.\n");
2100 		err = -ENOMEM;
2101 		goto data_err;
2102 	}
2103 	dd->dev = dev;
2104 	platform_set_drvdata(pdev, dd);
2105 
2106 	INIT_LIST_HEAD(&dd->list);
2107 	spin_lock_init(&dd->lock);
2108 	tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2109 	crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2110 
2111 	err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2112 			       omap_sham_get_res_pdev(dd, pdev, &res);
2113 	if (err)
2114 		goto data_err;
2115 
2116 	dd->io_base = devm_ioremap_resource(dev, &res);
2117 	if (IS_ERR(dd->io_base)) {
2118 		err = PTR_ERR(dd->io_base);
2119 		goto data_err;
2120 	}
2121 	dd->phys_base = res.start;
2122 
2123 	err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2124 			       IRQF_TRIGGER_NONE, dev_name(dev), dd);
2125 	if (err) {
2126 		dev_err(dev, "unable to request irq %d, err = %d\n",
2127 			dd->irq, err);
2128 		goto data_err;
2129 	}
2130 
2131 	dma_cap_zero(mask);
2132 	dma_cap_set(DMA_SLAVE, mask);
2133 
2134 	dd->dma_lch = dma_request_chan(dev, "rx");
2135 	if (IS_ERR(dd->dma_lch)) {
2136 		err = PTR_ERR(dd->dma_lch);
2137 		if (err == -EPROBE_DEFER)
2138 			goto data_err;
2139 
2140 		dd->polling_mode = 1;
2141 		dev_dbg(dev, "using polling mode instead of dma\n");
2142 	}
2143 
2144 	dd->flags |= dd->pdata->flags;
2145 
2146 	pm_runtime_use_autosuspend(dev);
2147 	pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2148 
2149 	dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
2150 
2151 	pm_runtime_enable(dev);
2152 	pm_runtime_irq_safe(dev);
2153 
2154 	err = pm_runtime_get_sync(dev);
2155 	if (err < 0) {
2156 		dev_err(dev, "failed to get sync: %d\n", err);
2157 		goto err_pm;
2158 	}
2159 
2160 	rev = omap_sham_read(dd, SHA_REG_REV(dd));
2161 	pm_runtime_put_sync(&pdev->dev);
2162 
2163 	dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2164 		(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2165 		(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2166 
2167 	spin_lock(&sham.lock);
2168 	list_add_tail(&dd->list, &sham.dev_list);
2169 	spin_unlock(&sham.lock);
2170 
2171 	for (i = 0; i < dd->pdata->algs_info_size; i++) {
2172 		for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2173 			struct ahash_alg *alg;
2174 
2175 			alg = &dd->pdata->algs_info[i].algs_list[j];
2176 			alg->export = omap_sham_export;
2177 			alg->import = omap_sham_import;
2178 			alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2179 					      BUFLEN;
2180 			err = crypto_register_ahash(alg);
2181 			if (err)
2182 				goto err_algs;
2183 
2184 			dd->pdata->algs_info[i].registered++;
2185 		}
2186 	}
2187 
2188 	err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
2189 	if (err) {
2190 		dev_err(dev, "could not create sysfs device attrs\n");
2191 		goto err_algs;
2192 	}
2193 
2194 	return 0;
2195 
2196 err_algs:
2197 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2198 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2199 			crypto_unregister_ahash(
2200 					&dd->pdata->algs_info[i].algs_list[j]);
2201 err_pm:
2202 	pm_runtime_disable(dev);
2203 	if (!dd->polling_mode)
2204 		dma_release_channel(dd->dma_lch);
2205 data_err:
2206 	dev_err(dev, "initialization failed.\n");
2207 
2208 	return err;
2209 }
2210 
2211 static int omap_sham_remove(struct platform_device *pdev)
2212 {
2213 	struct omap_sham_dev *dd;
2214 	int i, j;
2215 
2216 	dd = platform_get_drvdata(pdev);
2217 	if (!dd)
2218 		return -ENODEV;
2219 	spin_lock(&sham.lock);
2220 	list_del(&dd->list);
2221 	spin_unlock(&sham.lock);
2222 	for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2223 		for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2224 			crypto_unregister_ahash(
2225 					&dd->pdata->algs_info[i].algs_list[j]);
2226 	tasklet_kill(&dd->done_task);
2227 	pm_runtime_disable(&pdev->dev);
2228 
2229 	if (!dd->polling_mode)
2230 		dma_release_channel(dd->dma_lch);
2231 
2232 	return 0;
2233 }
2234 
2235 #ifdef CONFIG_PM_SLEEP
2236 static int omap_sham_suspend(struct device *dev)
2237 {
2238 	pm_runtime_put_sync(dev);
2239 	return 0;
2240 }
2241 
2242 static int omap_sham_resume(struct device *dev)
2243 {
2244 	int err = pm_runtime_get_sync(dev);
2245 	if (err < 0) {
2246 		dev_err(dev, "failed to get sync: %d\n", err);
2247 		return err;
2248 	}
2249 	return 0;
2250 }
2251 #endif
2252 
2253 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2254 
2255 static struct platform_driver omap_sham_driver = {
2256 	.probe	= omap_sham_probe,
2257 	.remove	= omap_sham_remove,
2258 	.driver	= {
2259 		.name	= "omap-sham",
2260 		.pm	= &omap_sham_pm_ops,
2261 		.of_match_table	= omap_sham_of_match,
2262 	},
2263 };
2264 
2265 module_platform_driver(omap_sham_driver);
2266 
2267 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2268 MODULE_LICENSE("GPL v2");
2269 MODULE_AUTHOR("Dmitry Kasatkin");
2270 MODULE_ALIAS("platform:omap-sham");
2271