xref: /openbmc/linux/drivers/crypto/nx/nx.c (revision f79e4d5f)
1 /**
2  * Routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/device.h>
34 #include <linux/of.h>
35 #include <asm/hvcall.h>
36 #include <asm/vio.h>
37 
38 #include "nx_csbcpb.h"
39 #include "nx.h"
40 
41 
42 /**
43  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
44  *
45  * @nx_ctx: the crypto context handle
46  * @op: PFO operation struct to pass in
47  * @may_sleep: flag indicating the request can sleep
48  *
49  * Make the hcall, retrying while the hardware is busy. If we cannot yield
50  * the thread, limit the number of retries to 10 here.
51  */
52 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
53 		  struct vio_pfo_op    *op,
54 		  u32                   may_sleep)
55 {
56 	int rc, retries = 10;
57 	struct vio_dev *viodev = nx_driver.viodev;
58 
59 	atomic_inc(&(nx_ctx->stats->sync_ops));
60 
61 	do {
62 		rc = vio_h_cop_sync(viodev, op);
63 	} while (rc == -EBUSY && !may_sleep && retries--);
64 
65 	if (rc) {
66 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
67 			"hcall rc: %ld\n", rc, op->hcall_err);
68 		atomic_inc(&(nx_ctx->stats->errors));
69 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
70 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
71 	}
72 
73 	return rc;
74 }
75 
76 /**
77  * nx_build_sg_list - build an NX scatter list describing a single  buffer
78  *
79  * @sg_head: pointer to the first scatter list element to build
80  * @start_addr: pointer to the linear buffer
81  * @len: length of the data at @start_addr
82  * @sgmax: the largest number of scatter list elements we're allowed to create
83  *
84  * This function will start writing nx_sg elements at @sg_head and keep
85  * writing them until all of the data from @start_addr is described or
86  * until sgmax elements have been written. Scatter list elements will be
87  * created such that none of the elements describes a buffer that crosses a 4K
88  * boundary.
89  */
90 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
91 			       u8           *start_addr,
92 			       unsigned int *len,
93 			       u32           sgmax)
94 {
95 	unsigned int sg_len = 0;
96 	struct nx_sg *sg;
97 	u64 sg_addr = (u64)start_addr;
98 	u64 end_addr;
99 
100 	/* determine the start and end for this address range - slightly
101 	 * different if this is in VMALLOC_REGION */
102 	if (is_vmalloc_addr(start_addr))
103 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
104 			  + offset_in_page(sg_addr);
105 	else
106 		sg_addr = __pa(sg_addr);
107 
108 	end_addr = sg_addr + *len;
109 
110 	/* each iteration will write one struct nx_sg element and add the
111 	 * length of data described by that element to sg_len. Once @len bytes
112 	 * have been described (or @sgmax elements have been written), the
113 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
114 	 * as sg_addr, if not, we need to create another nx_sg element for the
115 	 * data on the next page.
116 	 *
117 	 * Also when using vmalloc'ed data, every time that a system page
118 	 * boundary is crossed the physical address needs to be re-calculated.
119 	 */
120 	for (sg = sg_head; sg_len < *len; sg++) {
121 		u64 next_page;
122 
123 		sg->addr = sg_addr;
124 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
125 				end_addr);
126 
127 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
128 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
129 		sg_len += sg->len;
130 
131 		if (sg_addr >= next_page &&
132 				is_vmalloc_addr(start_addr + sg_len)) {
133 			sg_addr = page_to_phys(vmalloc_to_page(
134 						start_addr + sg_len));
135 			end_addr = sg_addr + *len - sg_len;
136 		}
137 
138 		if ((sg - sg_head) == sgmax) {
139 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
140 			       current->pid);
141 			sg++;
142 			break;
143 		}
144 	}
145 	*len = sg_len;
146 
147 	/* return the moved sg_head pointer */
148 	return sg;
149 }
150 
151 /**
152  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
153  *
154  * @nx_dst: pointer to the first nx_sg element to write
155  * @sglen: max number of nx_sg entries we're allowed to write
156  * @sg_src: pointer to the source linux scatterlist to walk
157  * @start: number of bytes to fast-forward past at the beginning of @sg_src
158  * @src_len: number of bytes to walk in @sg_src
159  */
160 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
161 				unsigned int        sglen,
162 				struct scatterlist *sg_src,
163 				unsigned int        start,
164 				unsigned int       *src_len)
165 {
166 	struct scatter_walk walk;
167 	struct nx_sg *nx_sg = nx_dst;
168 	unsigned int n, offset = 0, len = *src_len;
169 	char *dst;
170 
171 	/* we need to fast forward through @start bytes first */
172 	for (;;) {
173 		scatterwalk_start(&walk, sg_src);
174 
175 		if (start < offset + sg_src->length)
176 			break;
177 
178 		offset += sg_src->length;
179 		sg_src = sg_next(sg_src);
180 	}
181 
182 	/* start - offset is the number of bytes to advance in the scatterlist
183 	 * element we're currently looking at */
184 	scatterwalk_advance(&walk, start - offset);
185 
186 	while (len && (nx_sg - nx_dst) < sglen) {
187 		n = scatterwalk_clamp(&walk, len);
188 		if (!n) {
189 			/* In cases where we have scatterlist chain sg_next
190 			 * handles with it properly */
191 			scatterwalk_start(&walk, sg_next(walk.sg));
192 			n = scatterwalk_clamp(&walk, len);
193 		}
194 		dst = scatterwalk_map(&walk);
195 
196 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
197 		len -= n;
198 
199 		scatterwalk_unmap(dst);
200 		scatterwalk_advance(&walk, n);
201 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
202 	}
203 	/* update to_process */
204 	*src_len -= len;
205 
206 	/* return the moved destination pointer */
207 	return nx_sg;
208 }
209 
210 /**
211  * trim_sg_list - ensures the bound in sg list.
212  * @sg: sg list head
213  * @end: sg lisg end
214  * @delta:  is the amount we need to crop in order to bound the list.
215  *
216  */
217 static long int trim_sg_list(struct nx_sg *sg,
218 			     struct nx_sg *end,
219 			     unsigned int delta,
220 			     unsigned int *nbytes)
221 {
222 	long int oplen;
223 	long int data_back;
224 	unsigned int is_delta = delta;
225 
226 	while (delta && end > sg) {
227 		struct nx_sg *last = end - 1;
228 
229 		if (last->len > delta) {
230 			last->len -= delta;
231 			delta = 0;
232 		} else {
233 			end--;
234 			delta -= last->len;
235 		}
236 	}
237 
238 	/* There are cases where we need to crop list in order to make it
239 	 * a block size multiple, but we also need to align data. In order to
240 	 * that we need to calculate how much we need to put back to be
241 	 * processed
242 	 */
243 	oplen = (sg - end) * sizeof(struct nx_sg);
244 	if (is_delta) {
245 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
246 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
247 		*nbytes -= data_back;
248 	}
249 
250 	return oplen;
251 }
252 
253 /**
254  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
255  *                     scatterlists based on them.
256  *
257  * @nx_ctx: NX crypto context for the lists we're building
258  * @desc: the block cipher descriptor for the operation
259  * @dst: destination scatterlist
260  * @src: source scatterlist
261  * @nbytes: length of data described in the scatterlists
262  * @offset: number of bytes to fast-forward past at the beginning of
263  *          scatterlists.
264  * @iv: destination for the iv data, if the algorithm requires it
265  *
266  * This is common code shared by all the AES algorithms. It uses the block
267  * cipher walk routines to traverse input and output scatterlists, building
268  * corresponding NX scatterlists
269  */
270 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
271 		      struct blkcipher_desc *desc,
272 		      struct scatterlist    *dst,
273 		      struct scatterlist    *src,
274 		      unsigned int          *nbytes,
275 		      unsigned int           offset,
276 		      u8                    *iv)
277 {
278 	unsigned int delta = 0;
279 	unsigned int total = *nbytes;
280 	struct nx_sg *nx_insg = nx_ctx->in_sg;
281 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
282 	unsigned int max_sg_len;
283 
284 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
285 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
286 	max_sg_len = min_t(u64, max_sg_len,
287 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
288 
289 	if (iv)
290 		memcpy(iv, desc->info, AES_BLOCK_SIZE);
291 
292 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
293 
294 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
295 					offset, nbytes);
296 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
297 					offset, nbytes);
298 
299 	if (*nbytes < total)
300 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
301 
302 	/* these lengths should be negative, which will indicate to phyp that
303 	 * the input and output parameters are scatterlists, not linear
304 	 * buffers */
305 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
306 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
307 
308 	return 0;
309 }
310 
311 /**
312  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
313  *
314  * @nx_ctx: the nx context to initialize
315  * @function: the function code for the op
316  */
317 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
318 {
319 	spin_lock_init(&nx_ctx->lock);
320 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
321 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
322 
323 	nx_ctx->op.flags = function;
324 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
325 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
326 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
327 
328 	if (nx_ctx->csbcpb_aead) {
329 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
330 
331 		nx_ctx->op_aead.flags = function;
332 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
333 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
334 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
335 	}
336 }
337 
338 static void nx_of_update_status(struct device   *dev,
339 			       struct property *p,
340 			       struct nx_of    *props)
341 {
342 	if (!strncmp(p->value, "okay", p->length)) {
343 		props->status = NX_WAITING;
344 		props->flags |= NX_OF_FLAG_STATUS_SET;
345 	} else {
346 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
347 			 (char *)p->value);
348 	}
349 }
350 
351 static void nx_of_update_sglen(struct device   *dev,
352 			       struct property *p,
353 			       struct nx_of    *props)
354 {
355 	if (p->length != sizeof(props->max_sg_len)) {
356 		dev_err(dev, "%s: unexpected format for "
357 			"ibm,max-sg-len property\n", __func__);
358 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
359 			"long, expected %zd bytes\n", __func__,
360 			p->length, sizeof(props->max_sg_len));
361 		return;
362 	}
363 
364 	props->max_sg_len = *(u32 *)p->value;
365 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
366 }
367 
368 static void nx_of_update_msc(struct device   *dev,
369 			     struct property *p,
370 			     struct nx_of    *props)
371 {
372 	struct msc_triplet *trip;
373 	struct max_sync_cop *msc;
374 	unsigned int bytes_so_far, i, lenp;
375 
376 	msc = (struct max_sync_cop *)p->value;
377 	lenp = p->length;
378 
379 	/* You can't tell if the data read in for this property is sane by its
380 	 * size alone. This is because there are sizes embedded in the data
381 	 * structure. The best we can do is check lengths as we parse and bail
382 	 * as soon as a length error is detected. */
383 	bytes_so_far = 0;
384 
385 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
386 		bytes_so_far += sizeof(struct max_sync_cop);
387 
388 		trip = msc->trip;
389 
390 		for (i = 0;
391 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
392 		     i < msc->triplets;
393 		     i++) {
394 			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
395 				dev_err(dev, "unknown function code/mode "
396 					"combo: %d/%d (ignored)\n", msc->fc,
397 					msc->mode);
398 				goto next_loop;
399 			}
400 
401 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
402 				dev_warn(dev, "bogus sglen/databytelen: "
403 					 "%u/%u (ignored)\n", trip->sglen,
404 					 trip->databytelen);
405 				goto next_loop;
406 			}
407 
408 			switch (trip->keybitlen) {
409 			case 128:
410 			case 160:
411 				props->ap[msc->fc][msc->mode][0].databytelen =
412 					trip->databytelen;
413 				props->ap[msc->fc][msc->mode][0].sglen =
414 					trip->sglen;
415 				break;
416 			case 192:
417 				props->ap[msc->fc][msc->mode][1].databytelen =
418 					trip->databytelen;
419 				props->ap[msc->fc][msc->mode][1].sglen =
420 					trip->sglen;
421 				break;
422 			case 256:
423 				if (msc->fc == NX_FC_AES) {
424 					props->ap[msc->fc][msc->mode][2].
425 						databytelen = trip->databytelen;
426 					props->ap[msc->fc][msc->mode][2].sglen =
427 						trip->sglen;
428 				} else if (msc->fc == NX_FC_AES_HMAC ||
429 					   msc->fc == NX_FC_SHA) {
430 					props->ap[msc->fc][msc->mode][1].
431 						databytelen = trip->databytelen;
432 					props->ap[msc->fc][msc->mode][1].sglen =
433 						trip->sglen;
434 				} else {
435 					dev_warn(dev, "unknown function "
436 						"code/key bit len combo"
437 						": (%u/256)\n", msc->fc);
438 				}
439 				break;
440 			case 512:
441 				props->ap[msc->fc][msc->mode][2].databytelen =
442 					trip->databytelen;
443 				props->ap[msc->fc][msc->mode][2].sglen =
444 					trip->sglen;
445 				break;
446 			default:
447 				dev_warn(dev, "unknown function code/key bit "
448 					 "len combo: (%u/%u)\n", msc->fc,
449 					 trip->keybitlen);
450 				break;
451 			}
452 next_loop:
453 			bytes_so_far += sizeof(struct msc_triplet);
454 			trip++;
455 		}
456 
457 		msc = (struct max_sync_cop *)trip;
458 	}
459 
460 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
461 }
462 
463 /**
464  * nx_of_init - read openFirmware values from the device tree
465  *
466  * @dev: device handle
467  * @props: pointer to struct to hold the properties values
468  *
469  * Called once at driver probe time, this function will read out the
470  * openFirmware properties we use at runtime. If all the OF properties are
471  * acceptable, when we exit this function props->flags will indicate that
472  * we're ready to register our crypto algorithms.
473  */
474 static void nx_of_init(struct device *dev, struct nx_of *props)
475 {
476 	struct device_node *base_node = dev->of_node;
477 	struct property *p;
478 
479 	p = of_find_property(base_node, "status", NULL);
480 	if (!p)
481 		dev_info(dev, "%s: property 'status' not found\n", __func__);
482 	else
483 		nx_of_update_status(dev, p, props);
484 
485 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
486 	if (!p)
487 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
488 			 __func__);
489 	else
490 		nx_of_update_sglen(dev, p, props);
491 
492 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
493 	if (!p)
494 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
495 			 __func__);
496 	else
497 		nx_of_update_msc(dev, p, props);
498 }
499 
500 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
501 {
502 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
503 
504 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
505 		if (dev)
506 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
507 				 "%u/%u (ignored)\n", fc, mode, slot,
508 				 props->sglen, props->databytelen);
509 		return false;
510 	}
511 
512 	return true;
513 }
514 
515 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
516 {
517 	int i;
518 
519 	for (i = 0; i < 3; i++)
520 		if (!nx_check_prop(dev, fc, mode, i))
521 			return false;
522 
523 	return true;
524 }
525 
526 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
527 {
528 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
529 	       crypto_register_alg(alg) : 0;
530 }
531 
532 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
533 {
534 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
535 	       crypto_register_aead(alg) : 0;
536 }
537 
538 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
539 {
540 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
541 					  fc, mode, slot) :
542 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
543 	       crypto_register_shash(alg) : 0;
544 }
545 
546 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
547 {
548 	if (nx_check_props(NULL, fc, mode))
549 		crypto_unregister_alg(alg);
550 }
551 
552 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
553 {
554 	if (nx_check_props(NULL, fc, mode))
555 		crypto_unregister_aead(alg);
556 }
557 
558 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
559 				int slot)
560 {
561 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
562 			nx_check_props(NULL, fc, mode))
563 		crypto_unregister_shash(alg);
564 }
565 
566 /**
567  * nx_register_algs - register algorithms with the crypto API
568  *
569  * Called from nx_probe()
570  *
571  * If all OF properties are in an acceptable state, the driver flags will
572  * indicate that we're ready and we'll create our debugfs files and register
573  * out crypto algorithms.
574  */
575 static int nx_register_algs(void)
576 {
577 	int rc = -1;
578 
579 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
580 		goto out;
581 
582 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
583 
584 	rc = NX_DEBUGFS_INIT(&nx_driver);
585 	if (rc)
586 		goto out;
587 
588 	nx_driver.of.status = NX_OKAY;
589 
590 	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
591 	if (rc)
592 		goto out;
593 
594 	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
595 	if (rc)
596 		goto out_unreg_ecb;
597 
598 	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
599 	if (rc)
600 		goto out_unreg_cbc;
601 
602 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
603 	if (rc)
604 		goto out_unreg_ctr3686;
605 
606 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
607 	if (rc)
608 		goto out_unreg_gcm;
609 
610 	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
611 	if (rc)
612 		goto out_unreg_gcm4106;
613 
614 	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
615 	if (rc)
616 		goto out_unreg_ccm;
617 
618 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
619 			       NX_PROPS_SHA256);
620 	if (rc)
621 		goto out_unreg_ccm4309;
622 
623 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
624 			       NX_PROPS_SHA512);
625 	if (rc)
626 		goto out_unreg_s256;
627 
628 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
629 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
630 	if (rc)
631 		goto out_unreg_s512;
632 
633 	goto out;
634 
635 out_unreg_s512:
636 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
637 			    NX_PROPS_SHA512);
638 out_unreg_s256:
639 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
640 			    NX_PROPS_SHA256);
641 out_unreg_ccm4309:
642 	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
643 out_unreg_ccm:
644 	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
645 out_unreg_gcm4106:
646 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
647 out_unreg_gcm:
648 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
649 out_unreg_ctr3686:
650 	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
651 out_unreg_cbc:
652 	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
653 out_unreg_ecb:
654 	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
655 out:
656 	return rc;
657 }
658 
659 /**
660  * nx_crypto_ctx_init - create and initialize a crypto api context
661  *
662  * @nx_ctx: the crypto api context
663  * @fc: function code for the context
664  * @mode: the function code specific mode for this context
665  */
666 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
667 {
668 	if (nx_driver.of.status != NX_OKAY) {
669 		pr_err("Attempt to initialize NX crypto context while device "
670 		       "is not available!\n");
671 		return -ENODEV;
672 	}
673 
674 	/* we need an extra page for csbcpb_aead for these modes */
675 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
676 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
677 				   sizeof(struct nx_csbcpb);
678 	else
679 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
680 				   sizeof(struct nx_csbcpb);
681 
682 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
683 	if (!nx_ctx->kmem)
684 		return -ENOMEM;
685 
686 	/* the csbcpb and scatterlists must be 4K aligned pages */
687 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
688 						       (u64)NX_PAGE_SIZE));
689 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
690 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
691 
692 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
693 		nx_ctx->csbcpb_aead =
694 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
695 					     NX_PAGE_SIZE);
696 
697 	/* give each context a pointer to global stats and their OF
698 	 * properties */
699 	nx_ctx->stats = &nx_driver.stats;
700 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
701 	       sizeof(struct alg_props) * 3);
702 
703 	return 0;
704 }
705 
706 /* entry points from the crypto tfm initializers */
707 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
708 {
709 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
710 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
711 				  NX_MODE_AES_CCM);
712 }
713 
714 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
715 {
716 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
717 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
718 				  NX_MODE_AES_GCM);
719 }
720 
721 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
722 {
723 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
724 				  NX_MODE_AES_CTR);
725 }
726 
727 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
728 {
729 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
730 				  NX_MODE_AES_CBC);
731 }
732 
733 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
734 {
735 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
736 				  NX_MODE_AES_ECB);
737 }
738 
739 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
740 {
741 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
742 }
743 
744 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
745 {
746 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
747 				  NX_MODE_AES_XCBC_MAC);
748 }
749 
750 /**
751  * nx_crypto_ctx_exit - destroy a crypto api context
752  *
753  * @tfm: the crypto transform pointer for the context
754  *
755  * As crypto API contexts are destroyed, this exit hook is called to free the
756  * memory associated with it.
757  */
758 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
759 {
760 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
761 
762 	kzfree(nx_ctx->kmem);
763 	nx_ctx->csbcpb = NULL;
764 	nx_ctx->csbcpb_aead = NULL;
765 	nx_ctx->in_sg = NULL;
766 	nx_ctx->out_sg = NULL;
767 }
768 
769 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
770 {
771 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
772 
773 	kzfree(nx_ctx->kmem);
774 }
775 
776 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
777 {
778 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
779 		viodev->name, viodev->resource_id);
780 
781 	if (nx_driver.viodev) {
782 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
783 			"instance of the hardware\n", __func__);
784 		return -EINVAL;
785 	}
786 
787 	nx_driver.viodev = viodev;
788 
789 	nx_of_init(&viodev->dev, &nx_driver.of);
790 
791 	return nx_register_algs();
792 }
793 
794 static int nx_remove(struct vio_dev *viodev)
795 {
796 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
797 		viodev->unit_address);
798 
799 	if (nx_driver.of.status == NX_OKAY) {
800 		NX_DEBUGFS_FINI(&nx_driver);
801 
802 		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
803 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
804 		nx_unregister_shash(&nx_shash_sha512_alg,
805 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
806 		nx_unregister_shash(&nx_shash_sha256_alg,
807 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
808 		nx_unregister_aead(&nx_ccm4309_aes_alg,
809 				   NX_FC_AES, NX_MODE_AES_CCM);
810 		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
811 		nx_unregister_aead(&nx_gcm4106_aes_alg,
812 				   NX_FC_AES, NX_MODE_AES_GCM);
813 		nx_unregister_aead(&nx_gcm_aes_alg,
814 				   NX_FC_AES, NX_MODE_AES_GCM);
815 		nx_unregister_alg(&nx_ctr3686_aes_alg,
816 				  NX_FC_AES, NX_MODE_AES_CTR);
817 		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
818 		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
819 	}
820 
821 	return 0;
822 }
823 
824 
825 /* module wide initialization/cleanup */
826 static int __init nx_init(void)
827 {
828 	return vio_register_driver(&nx_driver.viodriver);
829 }
830 
831 static void __exit nx_fini(void)
832 {
833 	vio_unregister_driver(&nx_driver.viodriver);
834 }
835 
836 static const struct vio_device_id nx_crypto_driver_ids[] = {
837 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
838 	{ "", "" }
839 };
840 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
841 
842 /* driver state structure */
843 struct nx_crypto_driver nx_driver = {
844 	.viodriver = {
845 		.id_table = nx_crypto_driver_ids,
846 		.probe = nx_probe,
847 		.remove = nx_remove,
848 		.name  = NX_NAME,
849 	},
850 };
851 
852 module_init(nx_init);
853 module_exit(nx_fini);
854 
855 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
856 MODULE_DESCRIPTION(NX_STRING);
857 MODULE_LICENSE("GPL");
858 MODULE_VERSION(NX_VERSION);
859