xref: /openbmc/linux/drivers/crypto/nx/nx.c (revision d5e7cafd)
1 /**
2  * Routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <linux/device.h>
35 #include <linux/of.h>
36 #include <asm/hvcall.h>
37 #include <asm/vio.h>
38 
39 #include "nx_csbcpb.h"
40 #include "nx.h"
41 
42 
43 /**
44  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
45  *
46  * @nx_ctx: the crypto context handle
47  * @op: PFO operation struct to pass in
48  * @may_sleep: flag indicating the request can sleep
49  *
50  * Make the hcall, retrying while the hardware is busy. If we cannot yield
51  * the thread, limit the number of retries to 10 here.
52  */
53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
54 		  struct vio_pfo_op    *op,
55 		  u32                   may_sleep)
56 {
57 	int rc, retries = 10;
58 	struct vio_dev *viodev = nx_driver.viodev;
59 
60 	atomic_inc(&(nx_ctx->stats->sync_ops));
61 
62 	do {
63 		rc = vio_h_cop_sync(viodev, op);
64 	} while (rc == -EBUSY && !may_sleep && retries--);
65 
66 	if (rc) {
67 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
68 			"hcall rc: %ld\n", rc, op->hcall_err);
69 		atomic_inc(&(nx_ctx->stats->errors));
70 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
71 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
72 	}
73 
74 	return rc;
75 }
76 
77 /**
78  * nx_build_sg_list - build an NX scatter list describing a single  buffer
79  *
80  * @sg_head: pointer to the first scatter list element to build
81  * @start_addr: pointer to the linear buffer
82  * @len: length of the data at @start_addr
83  * @sgmax: the largest number of scatter list elements we're allowed to create
84  *
85  * This function will start writing nx_sg elements at @sg_head and keep
86  * writing them until all of the data from @start_addr is described or
87  * until sgmax elements have been written. Scatter list elements will be
88  * created such that none of the elements describes a buffer that crosses a 4K
89  * boundary.
90  */
91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
92 			       u8           *start_addr,
93 			       unsigned int *len,
94 			       u32           sgmax)
95 {
96 	unsigned int sg_len = 0;
97 	struct nx_sg *sg;
98 	u64 sg_addr = (u64)start_addr;
99 	u64 end_addr;
100 
101 	/* determine the start and end for this address range - slightly
102 	 * different if this is in VMALLOC_REGION */
103 	if (is_vmalloc_addr(start_addr))
104 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
105 			  + offset_in_page(sg_addr);
106 	else
107 		sg_addr = __pa(sg_addr);
108 
109 	end_addr = sg_addr + *len;
110 
111 	/* each iteration will write one struct nx_sg element and add the
112 	 * length of data described by that element to sg_len. Once @len bytes
113 	 * have been described (or @sgmax elements have been written), the
114 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
115 	 * as sg_addr, if not, we need to create another nx_sg element for the
116 	 * data on the next page.
117 	 *
118 	 * Also when using vmalloc'ed data, every time that a system page
119 	 * boundary is crossed the physical address needs to be re-calculated.
120 	 */
121 	for (sg = sg_head; sg_len < *len; sg++) {
122 		u64 next_page;
123 
124 		sg->addr = sg_addr;
125 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
126 				end_addr);
127 
128 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
129 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
130 		sg_len += sg->len;
131 
132 		if (sg_addr >= next_page &&
133 				is_vmalloc_addr(start_addr + sg_len)) {
134 			sg_addr = page_to_phys(vmalloc_to_page(
135 						start_addr + sg_len));
136 			end_addr = sg_addr + *len - sg_len;
137 		}
138 
139 		if ((sg - sg_head) == sgmax) {
140 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
141 			       current->pid);
142 			sg++;
143 			break;
144 		}
145 	}
146 	*len = sg_len;
147 
148 	/* return the moved sg_head pointer */
149 	return sg;
150 }
151 
152 /**
153  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
154  *
155  * @nx_dst: pointer to the first nx_sg element to write
156  * @sglen: max number of nx_sg entries we're allowed to write
157  * @sg_src: pointer to the source linux scatterlist to walk
158  * @start: number of bytes to fast-forward past at the beginning of @sg_src
159  * @src_len: number of bytes to walk in @sg_src
160  */
161 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
162 				unsigned int        sglen,
163 				struct scatterlist *sg_src,
164 				unsigned int        start,
165 				unsigned int       *src_len)
166 {
167 	struct scatter_walk walk;
168 	struct nx_sg *nx_sg = nx_dst;
169 	unsigned int n, offset = 0, len = *src_len;
170 	char *dst;
171 
172 	/* we need to fast forward through @start bytes first */
173 	for (;;) {
174 		scatterwalk_start(&walk, sg_src);
175 
176 		if (start < offset + sg_src->length)
177 			break;
178 
179 		offset += sg_src->length;
180 		sg_src = sg_next(sg_src);
181 	}
182 
183 	/* start - offset is the number of bytes to advance in the scatterlist
184 	 * element we're currently looking at */
185 	scatterwalk_advance(&walk, start - offset);
186 
187 	while (len && (nx_sg - nx_dst) < sglen) {
188 		n = scatterwalk_clamp(&walk, len);
189 		if (!n) {
190 			/* In cases where we have scatterlist chain sg_next
191 			 * handles with it properly */
192 			scatterwalk_start(&walk, sg_next(walk.sg));
193 			n = scatterwalk_clamp(&walk, len);
194 		}
195 		dst = scatterwalk_map(&walk);
196 
197 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
198 		len -= n;
199 
200 		scatterwalk_unmap(dst);
201 		scatterwalk_advance(&walk, n);
202 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
203 	}
204 	/* update to_process */
205 	*src_len -= len;
206 
207 	/* return the moved destination pointer */
208 	return nx_sg;
209 }
210 
211 /**
212  * trim_sg_list - ensures the bound in sg list.
213  * @sg: sg list head
214  * @end: sg lisg end
215  * @delta:  is the amount we need to crop in order to bound the list.
216  *
217  */
218 static long int trim_sg_list(struct nx_sg *sg, struct nx_sg *end, unsigned int delta)
219 {
220 	while (delta && end > sg) {
221 		struct nx_sg *last = end - 1;
222 
223 		if (last->len > delta) {
224 			last->len -= delta;
225 			delta = 0;
226 		} else {
227 			end--;
228 			delta -= last->len;
229 		}
230 	}
231 	return (sg - end) * sizeof(struct nx_sg);
232 }
233 
234 /**
235  * nx_sha_build_sg_list - walk and build sg list to sha modes
236  *			  using right bounds and limits.
237  * @nx_ctx: NX crypto context for the lists we're building
238  * @nx_sg: current sg list in or out list
239  * @op_len: current op_len to be used in order to build a sg list
240  * @nbytes:  number or bytes to be processed
241  * @offset: buf offset
242  * @mode: SHA256 or SHA512
243  */
244 int nx_sha_build_sg_list(struct nx_crypto_ctx *nx_ctx,
245 			  struct nx_sg 	      *nx_in_outsg,
246 			  s64		      *op_len,
247 			  unsigned int        *nbytes,
248 			  u8 		      *offset,
249 			  u32		      mode)
250 {
251 	unsigned int delta = 0;
252 	unsigned int total = *nbytes;
253 	struct nx_sg *nx_insg = nx_in_outsg;
254 	unsigned int max_sg_len;
255 
256 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
257 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
258 	max_sg_len = min_t(u64, max_sg_len,
259 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
260 
261 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
262 	nx_insg = nx_build_sg_list(nx_insg, offset, nbytes, max_sg_len);
263 
264 	switch (mode) {
265 	case NX_DS_SHA256:
266 		if (*nbytes < total)
267 			delta = *nbytes - (*nbytes & ~(SHA256_BLOCK_SIZE - 1));
268 		break;
269 	case NX_DS_SHA512:
270 		if (*nbytes < total)
271 			delta = *nbytes - (*nbytes & ~(SHA512_BLOCK_SIZE - 1));
272 		break;
273 	default:
274 		return -EINVAL;
275 	}
276 	*op_len = trim_sg_list(nx_in_outsg, nx_insg, delta);
277 
278 	return 0;
279 }
280 
281 /**
282  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
283  *                     scatterlists based on them.
284  *
285  * @nx_ctx: NX crypto context for the lists we're building
286  * @desc: the block cipher descriptor for the operation
287  * @dst: destination scatterlist
288  * @src: source scatterlist
289  * @nbytes: length of data described in the scatterlists
290  * @offset: number of bytes to fast-forward past at the beginning of
291  *          scatterlists.
292  * @iv: destination for the iv data, if the algorithm requires it
293  *
294  * This is common code shared by all the AES algorithms. It uses the block
295  * cipher walk routines to traverse input and output scatterlists, building
296  * corresponding NX scatterlists
297  */
298 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
299 		      struct blkcipher_desc *desc,
300 		      struct scatterlist    *dst,
301 		      struct scatterlist    *src,
302 		      unsigned int          *nbytes,
303 		      unsigned int           offset,
304 		      u8                    *iv)
305 {
306 	unsigned int delta = 0;
307 	unsigned int total = *nbytes;
308 	struct nx_sg *nx_insg = nx_ctx->in_sg;
309 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
310 	unsigned int max_sg_len;
311 
312 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
313 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
314 	max_sg_len = min_t(u64, max_sg_len,
315 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
316 
317 	if (iv)
318 		memcpy(iv, desc->info, AES_BLOCK_SIZE);
319 
320 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
321 
322 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
323 					offset, nbytes);
324 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
325 					offset, nbytes);
326 
327 	if (*nbytes < total)
328 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
329 
330 	/* these lengths should be negative, which will indicate to phyp that
331 	 * the input and output parameters are scatterlists, not linear
332 	 * buffers */
333 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta);
334 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta);
335 
336 	return 0;
337 }
338 
339 /**
340  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
341  *
342  * @nx_ctx: the nx context to initialize
343  * @function: the function code for the op
344  */
345 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
346 {
347 	spin_lock_init(&nx_ctx->lock);
348 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
349 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
350 
351 	nx_ctx->op.flags = function;
352 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
353 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
354 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
355 
356 	if (nx_ctx->csbcpb_aead) {
357 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
358 
359 		nx_ctx->op_aead.flags = function;
360 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
361 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
362 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
363 	}
364 }
365 
366 static void nx_of_update_status(struct device   *dev,
367 			       struct property *p,
368 			       struct nx_of    *props)
369 {
370 	if (!strncmp(p->value, "okay", p->length)) {
371 		props->status = NX_WAITING;
372 		props->flags |= NX_OF_FLAG_STATUS_SET;
373 	} else {
374 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
375 			 (char *)p->value);
376 	}
377 }
378 
379 static void nx_of_update_sglen(struct device   *dev,
380 			       struct property *p,
381 			       struct nx_of    *props)
382 {
383 	if (p->length != sizeof(props->max_sg_len)) {
384 		dev_err(dev, "%s: unexpected format for "
385 			"ibm,max-sg-len property\n", __func__);
386 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
387 			"long, expected %zd bytes\n", __func__,
388 			p->length, sizeof(props->max_sg_len));
389 		return;
390 	}
391 
392 	props->max_sg_len = *(u32 *)p->value;
393 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
394 }
395 
396 static void nx_of_update_msc(struct device   *dev,
397 			     struct property *p,
398 			     struct nx_of    *props)
399 {
400 	struct msc_triplet *trip;
401 	struct max_sync_cop *msc;
402 	unsigned int bytes_so_far, i, lenp;
403 
404 	msc = (struct max_sync_cop *)p->value;
405 	lenp = p->length;
406 
407 	/* You can't tell if the data read in for this property is sane by its
408 	 * size alone. This is because there are sizes embedded in the data
409 	 * structure. The best we can do is check lengths as we parse and bail
410 	 * as soon as a length error is detected. */
411 	bytes_so_far = 0;
412 
413 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
414 		bytes_so_far += sizeof(struct max_sync_cop);
415 
416 		trip = msc->trip;
417 
418 		for (i = 0;
419 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
420 		     i < msc->triplets;
421 		     i++) {
422 			if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
423 				dev_err(dev, "unknown function code/mode "
424 					"combo: %d/%d (ignored)\n", msc->fc,
425 					msc->mode);
426 				goto next_loop;
427 			}
428 
429 			switch (trip->keybitlen) {
430 			case 128:
431 			case 160:
432 				props->ap[msc->fc][msc->mode][0].databytelen =
433 					trip->databytelen;
434 				props->ap[msc->fc][msc->mode][0].sglen =
435 					trip->sglen;
436 				break;
437 			case 192:
438 				props->ap[msc->fc][msc->mode][1].databytelen =
439 					trip->databytelen;
440 				props->ap[msc->fc][msc->mode][1].sglen =
441 					trip->sglen;
442 				break;
443 			case 256:
444 				if (msc->fc == NX_FC_AES) {
445 					props->ap[msc->fc][msc->mode][2].
446 						databytelen = trip->databytelen;
447 					props->ap[msc->fc][msc->mode][2].sglen =
448 						trip->sglen;
449 				} else if (msc->fc == NX_FC_AES_HMAC ||
450 					   msc->fc == NX_FC_SHA) {
451 					props->ap[msc->fc][msc->mode][1].
452 						databytelen = trip->databytelen;
453 					props->ap[msc->fc][msc->mode][1].sglen =
454 						trip->sglen;
455 				} else {
456 					dev_warn(dev, "unknown function "
457 						"code/key bit len combo"
458 						": (%u/256)\n", msc->fc);
459 				}
460 				break;
461 			case 512:
462 				props->ap[msc->fc][msc->mode][2].databytelen =
463 					trip->databytelen;
464 				props->ap[msc->fc][msc->mode][2].sglen =
465 					trip->sglen;
466 				break;
467 			default:
468 				dev_warn(dev, "unknown function code/key bit "
469 					 "len combo: (%u/%u)\n", msc->fc,
470 					 trip->keybitlen);
471 				break;
472 			}
473 next_loop:
474 			bytes_so_far += sizeof(struct msc_triplet);
475 			trip++;
476 		}
477 
478 		msc = (struct max_sync_cop *)trip;
479 	}
480 
481 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
482 }
483 
484 /**
485  * nx_of_init - read openFirmware values from the device tree
486  *
487  * @dev: device handle
488  * @props: pointer to struct to hold the properties values
489  *
490  * Called once at driver probe time, this function will read out the
491  * openFirmware properties we use at runtime. If all the OF properties are
492  * acceptable, when we exit this function props->flags will indicate that
493  * we're ready to register our crypto algorithms.
494  */
495 static void nx_of_init(struct device *dev, struct nx_of *props)
496 {
497 	struct device_node *base_node = dev->of_node;
498 	struct property *p;
499 
500 	p = of_find_property(base_node, "status", NULL);
501 	if (!p)
502 		dev_info(dev, "%s: property 'status' not found\n", __func__);
503 	else
504 		nx_of_update_status(dev, p, props);
505 
506 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
507 	if (!p)
508 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
509 			 __func__);
510 	else
511 		nx_of_update_sglen(dev, p, props);
512 
513 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
514 	if (!p)
515 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
516 			 __func__);
517 	else
518 		nx_of_update_msc(dev, p, props);
519 }
520 
521 /**
522  * nx_register_algs - register algorithms with the crypto API
523  *
524  * Called from nx_probe()
525  *
526  * If all OF properties are in an acceptable state, the driver flags will
527  * indicate that we're ready and we'll create our debugfs files and register
528  * out crypto algorithms.
529  */
530 static int nx_register_algs(void)
531 {
532 	int rc = -1;
533 
534 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
535 		goto out;
536 
537 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
538 
539 	rc = NX_DEBUGFS_INIT(&nx_driver);
540 	if (rc)
541 		goto out;
542 
543 	nx_driver.of.status = NX_OKAY;
544 
545 	rc = crypto_register_alg(&nx_ecb_aes_alg);
546 	if (rc)
547 		goto out;
548 
549 	rc = crypto_register_alg(&nx_cbc_aes_alg);
550 	if (rc)
551 		goto out_unreg_ecb;
552 
553 	rc = crypto_register_alg(&nx_ctr_aes_alg);
554 	if (rc)
555 		goto out_unreg_cbc;
556 
557 	rc = crypto_register_alg(&nx_ctr3686_aes_alg);
558 	if (rc)
559 		goto out_unreg_ctr;
560 
561 	rc = crypto_register_alg(&nx_gcm_aes_alg);
562 	if (rc)
563 		goto out_unreg_ctr3686;
564 
565 	rc = crypto_register_alg(&nx_gcm4106_aes_alg);
566 	if (rc)
567 		goto out_unreg_gcm;
568 
569 	rc = crypto_register_alg(&nx_ccm_aes_alg);
570 	if (rc)
571 		goto out_unreg_gcm4106;
572 
573 	rc = crypto_register_alg(&nx_ccm4309_aes_alg);
574 	if (rc)
575 		goto out_unreg_ccm;
576 
577 	rc = crypto_register_shash(&nx_shash_sha256_alg);
578 	if (rc)
579 		goto out_unreg_ccm4309;
580 
581 	rc = crypto_register_shash(&nx_shash_sha512_alg);
582 	if (rc)
583 		goto out_unreg_s256;
584 
585 	rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
586 	if (rc)
587 		goto out_unreg_s512;
588 
589 	goto out;
590 
591 out_unreg_s512:
592 	crypto_unregister_shash(&nx_shash_sha512_alg);
593 out_unreg_s256:
594 	crypto_unregister_shash(&nx_shash_sha256_alg);
595 out_unreg_ccm4309:
596 	crypto_unregister_alg(&nx_ccm4309_aes_alg);
597 out_unreg_ccm:
598 	crypto_unregister_alg(&nx_ccm_aes_alg);
599 out_unreg_gcm4106:
600 	crypto_unregister_alg(&nx_gcm4106_aes_alg);
601 out_unreg_gcm:
602 	crypto_unregister_alg(&nx_gcm_aes_alg);
603 out_unreg_ctr3686:
604 	crypto_unregister_alg(&nx_ctr3686_aes_alg);
605 out_unreg_ctr:
606 	crypto_unregister_alg(&nx_ctr_aes_alg);
607 out_unreg_cbc:
608 	crypto_unregister_alg(&nx_cbc_aes_alg);
609 out_unreg_ecb:
610 	crypto_unregister_alg(&nx_ecb_aes_alg);
611 out:
612 	return rc;
613 }
614 
615 /**
616  * nx_crypto_ctx_init - create and initialize a crypto api context
617  *
618  * @nx_ctx: the crypto api context
619  * @fc: function code for the context
620  * @mode: the function code specific mode for this context
621  */
622 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
623 {
624 	if (nx_driver.of.status != NX_OKAY) {
625 		pr_err("Attempt to initialize NX crypto context while device "
626 		       "is not available!\n");
627 		return -ENODEV;
628 	}
629 
630 	/* we need an extra page for csbcpb_aead for these modes */
631 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
632 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
633 				   sizeof(struct nx_csbcpb);
634 	else
635 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
636 				   sizeof(struct nx_csbcpb);
637 
638 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
639 	if (!nx_ctx->kmem)
640 		return -ENOMEM;
641 
642 	/* the csbcpb and scatterlists must be 4K aligned pages */
643 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
644 						       (u64)NX_PAGE_SIZE));
645 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
646 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
647 
648 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
649 		nx_ctx->csbcpb_aead =
650 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
651 					     NX_PAGE_SIZE);
652 
653 	/* give each context a pointer to global stats and their OF
654 	 * properties */
655 	nx_ctx->stats = &nx_driver.stats;
656 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
657 	       sizeof(struct alg_props) * 3);
658 
659 	return 0;
660 }
661 
662 /* entry points from the crypto tfm initializers */
663 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
664 {
665 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
666 				  NX_MODE_AES_CCM);
667 }
668 
669 int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
670 {
671 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
672 				  NX_MODE_AES_GCM);
673 }
674 
675 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
676 {
677 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
678 				  NX_MODE_AES_CTR);
679 }
680 
681 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
682 {
683 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
684 				  NX_MODE_AES_CBC);
685 }
686 
687 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
688 {
689 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
690 				  NX_MODE_AES_ECB);
691 }
692 
693 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
694 {
695 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
696 }
697 
698 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
699 {
700 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
701 				  NX_MODE_AES_XCBC_MAC);
702 }
703 
704 /**
705  * nx_crypto_ctx_exit - destroy a crypto api context
706  *
707  * @tfm: the crypto transform pointer for the context
708  *
709  * As crypto API contexts are destroyed, this exit hook is called to free the
710  * memory associated with it.
711  */
712 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
713 {
714 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
715 
716 	kzfree(nx_ctx->kmem);
717 	nx_ctx->csbcpb = NULL;
718 	nx_ctx->csbcpb_aead = NULL;
719 	nx_ctx->in_sg = NULL;
720 	nx_ctx->out_sg = NULL;
721 }
722 
723 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
724 {
725 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
726 		viodev->name, viodev->resource_id);
727 
728 	if (nx_driver.viodev) {
729 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
730 			"instance of the hardware\n", __func__);
731 		return -EINVAL;
732 	}
733 
734 	nx_driver.viodev = viodev;
735 
736 	nx_of_init(&viodev->dev, &nx_driver.of);
737 
738 	return nx_register_algs();
739 }
740 
741 static int nx_remove(struct vio_dev *viodev)
742 {
743 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
744 		viodev->unit_address);
745 
746 	if (nx_driver.of.status == NX_OKAY) {
747 		NX_DEBUGFS_FINI(&nx_driver);
748 
749 		crypto_unregister_alg(&nx_ccm_aes_alg);
750 		crypto_unregister_alg(&nx_ccm4309_aes_alg);
751 		crypto_unregister_alg(&nx_gcm_aes_alg);
752 		crypto_unregister_alg(&nx_gcm4106_aes_alg);
753 		crypto_unregister_alg(&nx_ctr_aes_alg);
754 		crypto_unregister_alg(&nx_ctr3686_aes_alg);
755 		crypto_unregister_alg(&nx_cbc_aes_alg);
756 		crypto_unregister_alg(&nx_ecb_aes_alg);
757 		crypto_unregister_shash(&nx_shash_sha256_alg);
758 		crypto_unregister_shash(&nx_shash_sha512_alg);
759 		crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
760 	}
761 
762 	return 0;
763 }
764 
765 
766 /* module wide initialization/cleanup */
767 static int __init nx_init(void)
768 {
769 	return vio_register_driver(&nx_driver.viodriver);
770 }
771 
772 static void __exit nx_fini(void)
773 {
774 	vio_unregister_driver(&nx_driver.viodriver);
775 }
776 
777 static struct vio_device_id nx_crypto_driver_ids[] = {
778 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
779 	{ "", "" }
780 };
781 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
782 
783 /* driver state structure */
784 struct nx_crypto_driver nx_driver = {
785 	.viodriver = {
786 		.id_table = nx_crypto_driver_ids,
787 		.probe = nx_probe,
788 		.remove = nx_remove,
789 		.name  = NX_NAME,
790 	},
791 };
792 
793 module_init(nx_init);
794 module_exit(nx_fini);
795 
796 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
797 MODULE_DESCRIPTION(NX_STRING);
798 MODULE_LICENSE("GPL");
799 MODULE_VERSION(NX_VERSION);
800