xref: /openbmc/linux/drivers/crypto/nx/nx.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * Routines supporting the Power 7+ Nest Accelerators driver
4  *
5  * Copyright (C) 2011-2012 International Business Machines Inc.
6  *
7  * Author: Kent Yoder <yoder1@us.ibm.com>
8  */
9 
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/hash.h>
12 #include <crypto/aes.h>
13 #include <crypto/sha.h>
14 #include <crypto/algapi.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/types.h>
19 #include <linux/mm.h>
20 #include <linux/scatterlist.h>
21 #include <linux/device.h>
22 #include <linux/of.h>
23 #include <asm/hvcall.h>
24 #include <asm/vio.h>
25 
26 #include "nx_csbcpb.h"
27 #include "nx.h"
28 
29 
30 /**
31  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
32  *
33  * @nx_ctx: the crypto context handle
34  * @op: PFO operation struct to pass in
35  * @may_sleep: flag indicating the request can sleep
36  *
37  * Make the hcall, retrying while the hardware is busy. If we cannot yield
38  * the thread, limit the number of retries to 10 here.
39  */
40 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
41 		  struct vio_pfo_op    *op,
42 		  u32                   may_sleep)
43 {
44 	int rc, retries = 10;
45 	struct vio_dev *viodev = nx_driver.viodev;
46 
47 	atomic_inc(&(nx_ctx->stats->sync_ops));
48 
49 	do {
50 		rc = vio_h_cop_sync(viodev, op);
51 	} while (rc == -EBUSY && !may_sleep && retries--);
52 
53 	if (rc) {
54 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
55 			"hcall rc: %ld\n", rc, op->hcall_err);
56 		atomic_inc(&(nx_ctx->stats->errors));
57 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
58 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
59 	}
60 
61 	return rc;
62 }
63 
64 /**
65  * nx_build_sg_list - build an NX scatter list describing a single  buffer
66  *
67  * @sg_head: pointer to the first scatter list element to build
68  * @start_addr: pointer to the linear buffer
69  * @len: length of the data at @start_addr
70  * @sgmax: the largest number of scatter list elements we're allowed to create
71  *
72  * This function will start writing nx_sg elements at @sg_head and keep
73  * writing them until all of the data from @start_addr is described or
74  * until sgmax elements have been written. Scatter list elements will be
75  * created such that none of the elements describes a buffer that crosses a 4K
76  * boundary.
77  */
78 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
79 			       u8           *start_addr,
80 			       unsigned int *len,
81 			       u32           sgmax)
82 {
83 	unsigned int sg_len = 0;
84 	struct nx_sg *sg;
85 	u64 sg_addr = (u64)start_addr;
86 	u64 end_addr;
87 
88 	/* determine the start and end for this address range - slightly
89 	 * different if this is in VMALLOC_REGION */
90 	if (is_vmalloc_addr(start_addr))
91 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
92 			  + offset_in_page(sg_addr);
93 	else
94 		sg_addr = __pa(sg_addr);
95 
96 	end_addr = sg_addr + *len;
97 
98 	/* each iteration will write one struct nx_sg element and add the
99 	 * length of data described by that element to sg_len. Once @len bytes
100 	 * have been described (or @sgmax elements have been written), the
101 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
102 	 * as sg_addr, if not, we need to create another nx_sg element for the
103 	 * data on the next page.
104 	 *
105 	 * Also when using vmalloc'ed data, every time that a system page
106 	 * boundary is crossed the physical address needs to be re-calculated.
107 	 */
108 	for (sg = sg_head; sg_len < *len; sg++) {
109 		u64 next_page;
110 
111 		sg->addr = sg_addr;
112 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113 				end_addr);
114 
115 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117 		sg_len += sg->len;
118 
119 		if (sg_addr >= next_page &&
120 				is_vmalloc_addr(start_addr + sg_len)) {
121 			sg_addr = page_to_phys(vmalloc_to_page(
122 						start_addr + sg_len));
123 			end_addr = sg_addr + *len - sg_len;
124 		}
125 
126 		if ((sg - sg_head) == sgmax) {
127 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
128 			       current->pid);
129 			sg++;
130 			break;
131 		}
132 	}
133 	*len = sg_len;
134 
135 	/* return the moved sg_head pointer */
136 	return sg;
137 }
138 
139 /**
140  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141  *
142  * @nx_dst: pointer to the first nx_sg element to write
143  * @sglen: max number of nx_sg entries we're allowed to write
144  * @sg_src: pointer to the source linux scatterlist to walk
145  * @start: number of bytes to fast-forward past at the beginning of @sg_src
146  * @src_len: number of bytes to walk in @sg_src
147  */
148 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
149 				unsigned int        sglen,
150 				struct scatterlist *sg_src,
151 				unsigned int        start,
152 				unsigned int       *src_len)
153 {
154 	struct scatter_walk walk;
155 	struct nx_sg *nx_sg = nx_dst;
156 	unsigned int n, offset = 0, len = *src_len;
157 	char *dst;
158 
159 	/* we need to fast forward through @start bytes first */
160 	for (;;) {
161 		scatterwalk_start(&walk, sg_src);
162 
163 		if (start < offset + sg_src->length)
164 			break;
165 
166 		offset += sg_src->length;
167 		sg_src = sg_next(sg_src);
168 	}
169 
170 	/* start - offset is the number of bytes to advance in the scatterlist
171 	 * element we're currently looking at */
172 	scatterwalk_advance(&walk, start - offset);
173 
174 	while (len && (nx_sg - nx_dst) < sglen) {
175 		n = scatterwalk_clamp(&walk, len);
176 		if (!n) {
177 			/* In cases where we have scatterlist chain sg_next
178 			 * handles with it properly */
179 			scatterwalk_start(&walk, sg_next(walk.sg));
180 			n = scatterwalk_clamp(&walk, len);
181 		}
182 		dst = scatterwalk_map(&walk);
183 
184 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
185 		len -= n;
186 
187 		scatterwalk_unmap(dst);
188 		scatterwalk_advance(&walk, n);
189 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
190 	}
191 	/* update to_process */
192 	*src_len -= len;
193 
194 	/* return the moved destination pointer */
195 	return nx_sg;
196 }
197 
198 /**
199  * trim_sg_list - ensures the bound in sg list.
200  * @sg: sg list head
201  * @end: sg lisg end
202  * @delta:  is the amount we need to crop in order to bound the list.
203  *
204  */
205 static long int trim_sg_list(struct nx_sg *sg,
206 			     struct nx_sg *end,
207 			     unsigned int delta,
208 			     unsigned int *nbytes)
209 {
210 	long int oplen;
211 	long int data_back;
212 	unsigned int is_delta = delta;
213 
214 	while (delta && end > sg) {
215 		struct nx_sg *last = end - 1;
216 
217 		if (last->len > delta) {
218 			last->len -= delta;
219 			delta = 0;
220 		} else {
221 			end--;
222 			delta -= last->len;
223 		}
224 	}
225 
226 	/* There are cases where we need to crop list in order to make it
227 	 * a block size multiple, but we also need to align data. In order to
228 	 * that we need to calculate how much we need to put back to be
229 	 * processed
230 	 */
231 	oplen = (sg - end) * sizeof(struct nx_sg);
232 	if (is_delta) {
233 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
234 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
235 		*nbytes -= data_back;
236 	}
237 
238 	return oplen;
239 }
240 
241 /**
242  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
243  *                     scatterlists based on them.
244  *
245  * @nx_ctx: NX crypto context for the lists we're building
246  * @desc: the block cipher descriptor for the operation
247  * @dst: destination scatterlist
248  * @src: source scatterlist
249  * @nbytes: length of data described in the scatterlists
250  * @offset: number of bytes to fast-forward past at the beginning of
251  *          scatterlists.
252  * @iv: destination for the iv data, if the algorithm requires it
253  *
254  * This is common code shared by all the AES algorithms. It uses the block
255  * cipher walk routines to traverse input and output scatterlists, building
256  * corresponding NX scatterlists
257  */
258 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
259 		      struct blkcipher_desc *desc,
260 		      struct scatterlist    *dst,
261 		      struct scatterlist    *src,
262 		      unsigned int          *nbytes,
263 		      unsigned int           offset,
264 		      u8                    *iv)
265 {
266 	unsigned int delta = 0;
267 	unsigned int total = *nbytes;
268 	struct nx_sg *nx_insg = nx_ctx->in_sg;
269 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
270 	unsigned int max_sg_len;
271 
272 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
273 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
274 	max_sg_len = min_t(u64, max_sg_len,
275 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
276 
277 	if (iv)
278 		memcpy(iv, desc->info, AES_BLOCK_SIZE);
279 
280 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
281 
282 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
283 					offset, nbytes);
284 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
285 					offset, nbytes);
286 
287 	if (*nbytes < total)
288 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
289 
290 	/* these lengths should be negative, which will indicate to phyp that
291 	 * the input and output parameters are scatterlists, not linear
292 	 * buffers */
293 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
294 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
295 
296 	return 0;
297 }
298 
299 /**
300  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
301  *
302  * @nx_ctx: the nx context to initialize
303  * @function: the function code for the op
304  */
305 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
306 {
307 	spin_lock_init(&nx_ctx->lock);
308 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
309 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
310 
311 	nx_ctx->op.flags = function;
312 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
313 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
314 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
315 
316 	if (nx_ctx->csbcpb_aead) {
317 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
318 
319 		nx_ctx->op_aead.flags = function;
320 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
321 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
322 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
323 	}
324 }
325 
326 static void nx_of_update_status(struct device   *dev,
327 			       struct property *p,
328 			       struct nx_of    *props)
329 {
330 	if (!strncmp(p->value, "okay", p->length)) {
331 		props->status = NX_WAITING;
332 		props->flags |= NX_OF_FLAG_STATUS_SET;
333 	} else {
334 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
335 			 (char *)p->value);
336 	}
337 }
338 
339 static void nx_of_update_sglen(struct device   *dev,
340 			       struct property *p,
341 			       struct nx_of    *props)
342 {
343 	if (p->length != sizeof(props->max_sg_len)) {
344 		dev_err(dev, "%s: unexpected format for "
345 			"ibm,max-sg-len property\n", __func__);
346 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
347 			"long, expected %zd bytes\n", __func__,
348 			p->length, sizeof(props->max_sg_len));
349 		return;
350 	}
351 
352 	props->max_sg_len = *(u32 *)p->value;
353 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
354 }
355 
356 static void nx_of_update_msc(struct device   *dev,
357 			     struct property *p,
358 			     struct nx_of    *props)
359 {
360 	struct msc_triplet *trip;
361 	struct max_sync_cop *msc;
362 	unsigned int bytes_so_far, i, lenp;
363 
364 	msc = (struct max_sync_cop *)p->value;
365 	lenp = p->length;
366 
367 	/* You can't tell if the data read in for this property is sane by its
368 	 * size alone. This is because there are sizes embedded in the data
369 	 * structure. The best we can do is check lengths as we parse and bail
370 	 * as soon as a length error is detected. */
371 	bytes_so_far = 0;
372 
373 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
374 		bytes_so_far += sizeof(struct max_sync_cop);
375 
376 		trip = msc->trip;
377 
378 		for (i = 0;
379 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
380 		     i < msc->triplets;
381 		     i++) {
382 			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
383 				dev_err(dev, "unknown function code/mode "
384 					"combo: %d/%d (ignored)\n", msc->fc,
385 					msc->mode);
386 				goto next_loop;
387 			}
388 
389 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
390 				dev_warn(dev, "bogus sglen/databytelen: "
391 					 "%u/%u (ignored)\n", trip->sglen,
392 					 trip->databytelen);
393 				goto next_loop;
394 			}
395 
396 			switch (trip->keybitlen) {
397 			case 128:
398 			case 160:
399 				props->ap[msc->fc][msc->mode][0].databytelen =
400 					trip->databytelen;
401 				props->ap[msc->fc][msc->mode][0].sglen =
402 					trip->sglen;
403 				break;
404 			case 192:
405 				props->ap[msc->fc][msc->mode][1].databytelen =
406 					trip->databytelen;
407 				props->ap[msc->fc][msc->mode][1].sglen =
408 					trip->sglen;
409 				break;
410 			case 256:
411 				if (msc->fc == NX_FC_AES) {
412 					props->ap[msc->fc][msc->mode][2].
413 						databytelen = trip->databytelen;
414 					props->ap[msc->fc][msc->mode][2].sglen =
415 						trip->sglen;
416 				} else if (msc->fc == NX_FC_AES_HMAC ||
417 					   msc->fc == NX_FC_SHA) {
418 					props->ap[msc->fc][msc->mode][1].
419 						databytelen = trip->databytelen;
420 					props->ap[msc->fc][msc->mode][1].sglen =
421 						trip->sglen;
422 				} else {
423 					dev_warn(dev, "unknown function "
424 						"code/key bit len combo"
425 						": (%u/256)\n", msc->fc);
426 				}
427 				break;
428 			case 512:
429 				props->ap[msc->fc][msc->mode][2].databytelen =
430 					trip->databytelen;
431 				props->ap[msc->fc][msc->mode][2].sglen =
432 					trip->sglen;
433 				break;
434 			default:
435 				dev_warn(dev, "unknown function code/key bit "
436 					 "len combo: (%u/%u)\n", msc->fc,
437 					 trip->keybitlen);
438 				break;
439 			}
440 next_loop:
441 			bytes_so_far += sizeof(struct msc_triplet);
442 			trip++;
443 		}
444 
445 		msc = (struct max_sync_cop *)trip;
446 	}
447 
448 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
449 }
450 
451 /**
452  * nx_of_init - read openFirmware values from the device tree
453  *
454  * @dev: device handle
455  * @props: pointer to struct to hold the properties values
456  *
457  * Called once at driver probe time, this function will read out the
458  * openFirmware properties we use at runtime. If all the OF properties are
459  * acceptable, when we exit this function props->flags will indicate that
460  * we're ready to register our crypto algorithms.
461  */
462 static void nx_of_init(struct device *dev, struct nx_of *props)
463 {
464 	struct device_node *base_node = dev->of_node;
465 	struct property *p;
466 
467 	p = of_find_property(base_node, "status", NULL);
468 	if (!p)
469 		dev_info(dev, "%s: property 'status' not found\n", __func__);
470 	else
471 		nx_of_update_status(dev, p, props);
472 
473 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
474 	if (!p)
475 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
476 			 __func__);
477 	else
478 		nx_of_update_sglen(dev, p, props);
479 
480 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
481 	if (!p)
482 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
483 			 __func__);
484 	else
485 		nx_of_update_msc(dev, p, props);
486 }
487 
488 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
489 {
490 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
491 
492 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
493 		if (dev)
494 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
495 				 "%u/%u (ignored)\n", fc, mode, slot,
496 				 props->sglen, props->databytelen);
497 		return false;
498 	}
499 
500 	return true;
501 }
502 
503 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
504 {
505 	int i;
506 
507 	for (i = 0; i < 3; i++)
508 		if (!nx_check_prop(dev, fc, mode, i))
509 			return false;
510 
511 	return true;
512 }
513 
514 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
515 {
516 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
517 	       crypto_register_alg(alg) : 0;
518 }
519 
520 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
521 {
522 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
523 	       crypto_register_aead(alg) : 0;
524 }
525 
526 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
527 {
528 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
529 					  fc, mode, slot) :
530 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
531 	       crypto_register_shash(alg) : 0;
532 }
533 
534 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
535 {
536 	if (nx_check_props(NULL, fc, mode))
537 		crypto_unregister_alg(alg);
538 }
539 
540 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
541 {
542 	if (nx_check_props(NULL, fc, mode))
543 		crypto_unregister_aead(alg);
544 }
545 
546 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
547 				int slot)
548 {
549 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
550 			nx_check_props(NULL, fc, mode))
551 		crypto_unregister_shash(alg);
552 }
553 
554 /**
555  * nx_register_algs - register algorithms with the crypto API
556  *
557  * Called from nx_probe()
558  *
559  * If all OF properties are in an acceptable state, the driver flags will
560  * indicate that we're ready and we'll create our debugfs files and register
561  * out crypto algorithms.
562  */
563 static int nx_register_algs(void)
564 {
565 	int rc = -1;
566 
567 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
568 		goto out;
569 
570 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
571 
572 	NX_DEBUGFS_INIT(&nx_driver);
573 
574 	nx_driver.of.status = NX_OKAY;
575 
576 	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
577 	if (rc)
578 		goto out;
579 
580 	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
581 	if (rc)
582 		goto out_unreg_ecb;
583 
584 	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
585 	if (rc)
586 		goto out_unreg_cbc;
587 
588 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
589 	if (rc)
590 		goto out_unreg_ctr3686;
591 
592 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
593 	if (rc)
594 		goto out_unreg_gcm;
595 
596 	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
597 	if (rc)
598 		goto out_unreg_gcm4106;
599 
600 	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
601 	if (rc)
602 		goto out_unreg_ccm;
603 
604 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
605 			       NX_PROPS_SHA256);
606 	if (rc)
607 		goto out_unreg_ccm4309;
608 
609 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
610 			       NX_PROPS_SHA512);
611 	if (rc)
612 		goto out_unreg_s256;
613 
614 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
615 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
616 	if (rc)
617 		goto out_unreg_s512;
618 
619 	goto out;
620 
621 out_unreg_s512:
622 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
623 			    NX_PROPS_SHA512);
624 out_unreg_s256:
625 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
626 			    NX_PROPS_SHA256);
627 out_unreg_ccm4309:
628 	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
629 out_unreg_ccm:
630 	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631 out_unreg_gcm4106:
632 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
633 out_unreg_gcm:
634 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635 out_unreg_ctr3686:
636 	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
637 out_unreg_cbc:
638 	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
639 out_unreg_ecb:
640 	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
641 out:
642 	return rc;
643 }
644 
645 /**
646  * nx_crypto_ctx_init - create and initialize a crypto api context
647  *
648  * @nx_ctx: the crypto api context
649  * @fc: function code for the context
650  * @mode: the function code specific mode for this context
651  */
652 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
653 {
654 	if (nx_driver.of.status != NX_OKAY) {
655 		pr_err("Attempt to initialize NX crypto context while device "
656 		       "is not available!\n");
657 		return -ENODEV;
658 	}
659 
660 	/* we need an extra page for csbcpb_aead for these modes */
661 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
662 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
663 				   sizeof(struct nx_csbcpb);
664 	else
665 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
666 				   sizeof(struct nx_csbcpb);
667 
668 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
669 	if (!nx_ctx->kmem)
670 		return -ENOMEM;
671 
672 	/* the csbcpb and scatterlists must be 4K aligned pages */
673 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
674 						       (u64)NX_PAGE_SIZE));
675 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
676 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
677 
678 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
679 		nx_ctx->csbcpb_aead =
680 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
681 					     NX_PAGE_SIZE);
682 
683 	/* give each context a pointer to global stats and their OF
684 	 * properties */
685 	nx_ctx->stats = &nx_driver.stats;
686 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
687 	       sizeof(struct alg_props) * 3);
688 
689 	return 0;
690 }
691 
692 /* entry points from the crypto tfm initializers */
693 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
694 {
695 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
696 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
697 				  NX_MODE_AES_CCM);
698 }
699 
700 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
701 {
702 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
703 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
704 				  NX_MODE_AES_GCM);
705 }
706 
707 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
708 {
709 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
710 				  NX_MODE_AES_CTR);
711 }
712 
713 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
714 {
715 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
716 				  NX_MODE_AES_CBC);
717 }
718 
719 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
720 {
721 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
722 				  NX_MODE_AES_ECB);
723 }
724 
725 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
726 {
727 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
728 }
729 
730 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
731 {
732 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
733 				  NX_MODE_AES_XCBC_MAC);
734 }
735 
736 /**
737  * nx_crypto_ctx_exit - destroy a crypto api context
738  *
739  * @tfm: the crypto transform pointer for the context
740  *
741  * As crypto API contexts are destroyed, this exit hook is called to free the
742  * memory associated with it.
743  */
744 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
745 {
746 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
747 
748 	kzfree(nx_ctx->kmem);
749 	nx_ctx->csbcpb = NULL;
750 	nx_ctx->csbcpb_aead = NULL;
751 	nx_ctx->in_sg = NULL;
752 	nx_ctx->out_sg = NULL;
753 }
754 
755 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
756 {
757 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
758 
759 	kzfree(nx_ctx->kmem);
760 }
761 
762 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
763 {
764 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
765 		viodev->name, viodev->resource_id);
766 
767 	if (nx_driver.viodev) {
768 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
769 			"instance of the hardware\n", __func__);
770 		return -EINVAL;
771 	}
772 
773 	nx_driver.viodev = viodev;
774 
775 	nx_of_init(&viodev->dev, &nx_driver.of);
776 
777 	return nx_register_algs();
778 }
779 
780 static int nx_remove(struct vio_dev *viodev)
781 {
782 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
783 		viodev->unit_address);
784 
785 	if (nx_driver.of.status == NX_OKAY) {
786 		NX_DEBUGFS_FINI(&nx_driver);
787 
788 		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
789 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
790 		nx_unregister_shash(&nx_shash_sha512_alg,
791 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
792 		nx_unregister_shash(&nx_shash_sha256_alg,
793 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
794 		nx_unregister_aead(&nx_ccm4309_aes_alg,
795 				   NX_FC_AES, NX_MODE_AES_CCM);
796 		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
797 		nx_unregister_aead(&nx_gcm4106_aes_alg,
798 				   NX_FC_AES, NX_MODE_AES_GCM);
799 		nx_unregister_aead(&nx_gcm_aes_alg,
800 				   NX_FC_AES, NX_MODE_AES_GCM);
801 		nx_unregister_alg(&nx_ctr3686_aes_alg,
802 				  NX_FC_AES, NX_MODE_AES_CTR);
803 		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
804 		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
805 	}
806 
807 	return 0;
808 }
809 
810 
811 /* module wide initialization/cleanup */
812 static int __init nx_init(void)
813 {
814 	return vio_register_driver(&nx_driver.viodriver);
815 }
816 
817 static void __exit nx_fini(void)
818 {
819 	vio_unregister_driver(&nx_driver.viodriver);
820 }
821 
822 static const struct vio_device_id nx_crypto_driver_ids[] = {
823 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
824 	{ "", "" }
825 };
826 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
827 
828 /* driver state structure */
829 struct nx_crypto_driver nx_driver = {
830 	.viodriver = {
831 		.id_table = nx_crypto_driver_ids,
832 		.probe = nx_probe,
833 		.remove = nx_remove,
834 		.name  = NX_NAME,
835 	},
836 };
837 
838 module_init(nx_init);
839 module_exit(nx_fini);
840 
841 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
842 MODULE_DESCRIPTION(NX_STRING);
843 MODULE_LICENSE("GPL");
844 MODULE_VERSION(NX_VERSION);
845