1 /** 2 * Routines supporting the Power 7+ Nest Accelerators driver 3 * 4 * Copyright (C) 2011-2012 International Business Machines Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 only. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * 19 * Author: Kent Yoder <yoder1@us.ibm.com> 20 */ 21 22 #include <crypto/internal/aead.h> 23 #include <crypto/internal/hash.h> 24 #include <crypto/aes.h> 25 #include <crypto/sha.h> 26 #include <crypto/algapi.h> 27 #include <crypto/scatterwalk.h> 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/types.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/device.h> 34 #include <linux/of.h> 35 #include <linux/types.h> 36 #include <asm/hvcall.h> 37 #include <asm/vio.h> 38 39 #include "nx_csbcpb.h" 40 #include "nx.h" 41 42 43 /** 44 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure 45 * 46 * @nx_ctx: the crypto context handle 47 * @op: PFO operation struct to pass in 48 * @may_sleep: flag indicating the request can sleep 49 * 50 * Make the hcall, retrying while the hardware is busy. If we cannot yield 51 * the thread, limit the number of retries to 10 here. 52 */ 53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, 54 struct vio_pfo_op *op, 55 u32 may_sleep) 56 { 57 int rc, retries = 10; 58 struct vio_dev *viodev = nx_driver.viodev; 59 60 atomic_inc(&(nx_ctx->stats->sync_ops)); 61 62 do { 63 rc = vio_h_cop_sync(viodev, op); 64 } while (rc == -EBUSY && !may_sleep && retries--); 65 66 if (rc) { 67 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " 68 "hcall rc: %ld\n", rc, op->hcall_err); 69 atomic_inc(&(nx_ctx->stats->errors)); 70 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); 71 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); 72 } 73 74 return rc; 75 } 76 77 /** 78 * nx_build_sg_list - build an NX scatter list describing a single buffer 79 * 80 * @sg_head: pointer to the first scatter list element to build 81 * @start_addr: pointer to the linear buffer 82 * @len: length of the data at @start_addr 83 * @sgmax: the largest number of scatter list elements we're allowed to create 84 * 85 * This function will start writing nx_sg elements at @sg_head and keep 86 * writing them until all of the data from @start_addr is described or 87 * until sgmax elements have been written. Scatter list elements will be 88 * created such that none of the elements describes a buffer that crosses a 4K 89 * boundary. 90 */ 91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, 92 u8 *start_addr, 93 unsigned int *len, 94 u32 sgmax) 95 { 96 unsigned int sg_len = 0; 97 struct nx_sg *sg; 98 u64 sg_addr = (u64)start_addr; 99 u64 end_addr; 100 101 /* determine the start and end for this address range - slightly 102 * different if this is in VMALLOC_REGION */ 103 if (is_vmalloc_addr(start_addr)) 104 sg_addr = page_to_phys(vmalloc_to_page(start_addr)) 105 + offset_in_page(sg_addr); 106 else 107 sg_addr = __pa(sg_addr); 108 109 end_addr = sg_addr + *len; 110 111 /* each iteration will write one struct nx_sg element and add the 112 * length of data described by that element to sg_len. Once @len bytes 113 * have been described (or @sgmax elements have been written), the 114 * loop ends. min_t is used to ensure @end_addr falls on the same page 115 * as sg_addr, if not, we need to create another nx_sg element for the 116 * data on the next page. 117 * 118 * Also when using vmalloc'ed data, every time that a system page 119 * boundary is crossed the physical address needs to be re-calculated. 120 */ 121 for (sg = sg_head; sg_len < *len; sg++) { 122 u64 next_page; 123 124 sg->addr = sg_addr; 125 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), 126 end_addr); 127 128 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; 129 sg->len = min_t(u64, sg_addr, next_page) - sg->addr; 130 sg_len += sg->len; 131 132 if (sg_addr >= next_page && 133 is_vmalloc_addr(start_addr + sg_len)) { 134 sg_addr = page_to_phys(vmalloc_to_page( 135 start_addr + sg_len)); 136 end_addr = sg_addr + *len - sg_len; 137 } 138 139 if ((sg - sg_head) == sgmax) { 140 pr_err("nx: scatter/gather list overflow, pid: %d\n", 141 current->pid); 142 sg++; 143 break; 144 } 145 } 146 *len = sg_len; 147 148 /* return the moved sg_head pointer */ 149 return sg; 150 } 151 152 /** 153 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist 154 * 155 * @nx_dst: pointer to the first nx_sg element to write 156 * @sglen: max number of nx_sg entries we're allowed to write 157 * @sg_src: pointer to the source linux scatterlist to walk 158 * @start: number of bytes to fast-forward past at the beginning of @sg_src 159 * @src_len: number of bytes to walk in @sg_src 160 */ 161 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, 162 unsigned int sglen, 163 struct scatterlist *sg_src, 164 unsigned int start, 165 unsigned int *src_len) 166 { 167 struct scatter_walk walk; 168 struct nx_sg *nx_sg = nx_dst; 169 unsigned int n, offset = 0, len = *src_len; 170 char *dst; 171 172 /* we need to fast forward through @start bytes first */ 173 for (;;) { 174 scatterwalk_start(&walk, sg_src); 175 176 if (start < offset + sg_src->length) 177 break; 178 179 offset += sg_src->length; 180 sg_src = sg_next(sg_src); 181 } 182 183 /* start - offset is the number of bytes to advance in the scatterlist 184 * element we're currently looking at */ 185 scatterwalk_advance(&walk, start - offset); 186 187 while (len && (nx_sg - nx_dst) < sglen) { 188 n = scatterwalk_clamp(&walk, len); 189 if (!n) { 190 /* In cases where we have scatterlist chain sg_next 191 * handles with it properly */ 192 scatterwalk_start(&walk, sg_next(walk.sg)); 193 n = scatterwalk_clamp(&walk, len); 194 } 195 dst = scatterwalk_map(&walk); 196 197 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); 198 len -= n; 199 200 scatterwalk_unmap(dst); 201 scatterwalk_advance(&walk, n); 202 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); 203 } 204 /* update to_process */ 205 *src_len -= len; 206 207 /* return the moved destination pointer */ 208 return nx_sg; 209 } 210 211 /** 212 * trim_sg_list - ensures the bound in sg list. 213 * @sg: sg list head 214 * @end: sg lisg end 215 * @delta: is the amount we need to crop in order to bound the list. 216 * 217 */ 218 static long int trim_sg_list(struct nx_sg *sg, 219 struct nx_sg *end, 220 unsigned int delta, 221 unsigned int *nbytes) 222 { 223 long int oplen; 224 long int data_back; 225 unsigned int is_delta = delta; 226 227 while (delta && end > sg) { 228 struct nx_sg *last = end - 1; 229 230 if (last->len > delta) { 231 last->len -= delta; 232 delta = 0; 233 } else { 234 end--; 235 delta -= last->len; 236 } 237 } 238 239 /* There are cases where we need to crop list in order to make it 240 * a block size multiple, but we also need to align data. In order to 241 * that we need to calculate how much we need to put back to be 242 * processed 243 */ 244 oplen = (sg - end) * sizeof(struct nx_sg); 245 if (is_delta) { 246 data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len; 247 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1)); 248 *nbytes -= data_back; 249 } 250 251 return oplen; 252 } 253 254 /** 255 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX 256 * scatterlists based on them. 257 * 258 * @nx_ctx: NX crypto context for the lists we're building 259 * @desc: the block cipher descriptor for the operation 260 * @dst: destination scatterlist 261 * @src: source scatterlist 262 * @nbytes: length of data described in the scatterlists 263 * @offset: number of bytes to fast-forward past at the beginning of 264 * scatterlists. 265 * @iv: destination for the iv data, if the algorithm requires it 266 * 267 * This is common code shared by all the AES algorithms. It uses the block 268 * cipher walk routines to traverse input and output scatterlists, building 269 * corresponding NX scatterlists 270 */ 271 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, 272 struct blkcipher_desc *desc, 273 struct scatterlist *dst, 274 struct scatterlist *src, 275 unsigned int *nbytes, 276 unsigned int offset, 277 u8 *iv) 278 { 279 unsigned int delta = 0; 280 unsigned int total = *nbytes; 281 struct nx_sg *nx_insg = nx_ctx->in_sg; 282 struct nx_sg *nx_outsg = nx_ctx->out_sg; 283 unsigned int max_sg_len; 284 285 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 286 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 287 max_sg_len = min_t(u64, max_sg_len, 288 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 289 290 if (iv) 291 memcpy(iv, desc->info, AES_BLOCK_SIZE); 292 293 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); 294 295 nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, 296 offset, nbytes); 297 nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, 298 offset, nbytes); 299 300 if (*nbytes < total) 301 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); 302 303 /* these lengths should be negative, which will indicate to phyp that 304 * the input and output parameters are scatterlists, not linear 305 * buffers */ 306 nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes); 307 nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes); 308 309 return 0; 310 } 311 312 /** 313 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct 314 * 315 * @nx_ctx: the nx context to initialize 316 * @function: the function code for the op 317 */ 318 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) 319 { 320 spin_lock_init(&nx_ctx->lock); 321 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); 322 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; 323 324 nx_ctx->op.flags = function; 325 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); 326 nx_ctx->op.in = __pa(nx_ctx->in_sg); 327 nx_ctx->op.out = __pa(nx_ctx->out_sg); 328 329 if (nx_ctx->csbcpb_aead) { 330 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; 331 332 nx_ctx->op_aead.flags = function; 333 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); 334 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); 335 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); 336 } 337 } 338 339 static void nx_of_update_status(struct device *dev, 340 struct property *p, 341 struct nx_of *props) 342 { 343 if (!strncmp(p->value, "okay", p->length)) { 344 props->status = NX_WAITING; 345 props->flags |= NX_OF_FLAG_STATUS_SET; 346 } else { 347 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, 348 (char *)p->value); 349 } 350 } 351 352 static void nx_of_update_sglen(struct device *dev, 353 struct property *p, 354 struct nx_of *props) 355 { 356 if (p->length != sizeof(props->max_sg_len)) { 357 dev_err(dev, "%s: unexpected format for " 358 "ibm,max-sg-len property\n", __func__); 359 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " 360 "long, expected %zd bytes\n", __func__, 361 p->length, sizeof(props->max_sg_len)); 362 return; 363 } 364 365 props->max_sg_len = *(u32 *)p->value; 366 props->flags |= NX_OF_FLAG_MAXSGLEN_SET; 367 } 368 369 static void nx_of_update_msc(struct device *dev, 370 struct property *p, 371 struct nx_of *props) 372 { 373 struct msc_triplet *trip; 374 struct max_sync_cop *msc; 375 unsigned int bytes_so_far, i, lenp; 376 377 msc = (struct max_sync_cop *)p->value; 378 lenp = p->length; 379 380 /* You can't tell if the data read in for this property is sane by its 381 * size alone. This is because there are sizes embedded in the data 382 * structure. The best we can do is check lengths as we parse and bail 383 * as soon as a length error is detected. */ 384 bytes_so_far = 0; 385 386 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { 387 bytes_so_far += sizeof(struct max_sync_cop); 388 389 trip = msc->trip; 390 391 for (i = 0; 392 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && 393 i < msc->triplets; 394 i++) { 395 if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) { 396 dev_err(dev, "unknown function code/mode " 397 "combo: %d/%d (ignored)\n", msc->fc, 398 msc->mode); 399 goto next_loop; 400 } 401 402 if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) { 403 dev_warn(dev, "bogus sglen/databytelen: " 404 "%u/%u (ignored)\n", trip->sglen, 405 trip->databytelen); 406 goto next_loop; 407 } 408 409 switch (trip->keybitlen) { 410 case 128: 411 case 160: 412 props->ap[msc->fc][msc->mode][0].databytelen = 413 trip->databytelen; 414 props->ap[msc->fc][msc->mode][0].sglen = 415 trip->sglen; 416 break; 417 case 192: 418 props->ap[msc->fc][msc->mode][1].databytelen = 419 trip->databytelen; 420 props->ap[msc->fc][msc->mode][1].sglen = 421 trip->sglen; 422 break; 423 case 256: 424 if (msc->fc == NX_FC_AES) { 425 props->ap[msc->fc][msc->mode][2]. 426 databytelen = trip->databytelen; 427 props->ap[msc->fc][msc->mode][2].sglen = 428 trip->sglen; 429 } else if (msc->fc == NX_FC_AES_HMAC || 430 msc->fc == NX_FC_SHA) { 431 props->ap[msc->fc][msc->mode][1]. 432 databytelen = trip->databytelen; 433 props->ap[msc->fc][msc->mode][1].sglen = 434 trip->sglen; 435 } else { 436 dev_warn(dev, "unknown function " 437 "code/key bit len combo" 438 ": (%u/256)\n", msc->fc); 439 } 440 break; 441 case 512: 442 props->ap[msc->fc][msc->mode][2].databytelen = 443 trip->databytelen; 444 props->ap[msc->fc][msc->mode][2].sglen = 445 trip->sglen; 446 break; 447 default: 448 dev_warn(dev, "unknown function code/key bit " 449 "len combo: (%u/%u)\n", msc->fc, 450 trip->keybitlen); 451 break; 452 } 453 next_loop: 454 bytes_so_far += sizeof(struct msc_triplet); 455 trip++; 456 } 457 458 msc = (struct max_sync_cop *)trip; 459 } 460 461 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; 462 } 463 464 /** 465 * nx_of_init - read openFirmware values from the device tree 466 * 467 * @dev: device handle 468 * @props: pointer to struct to hold the properties values 469 * 470 * Called once at driver probe time, this function will read out the 471 * openFirmware properties we use at runtime. If all the OF properties are 472 * acceptable, when we exit this function props->flags will indicate that 473 * we're ready to register our crypto algorithms. 474 */ 475 static void nx_of_init(struct device *dev, struct nx_of *props) 476 { 477 struct device_node *base_node = dev->of_node; 478 struct property *p; 479 480 p = of_find_property(base_node, "status", NULL); 481 if (!p) 482 dev_info(dev, "%s: property 'status' not found\n", __func__); 483 else 484 nx_of_update_status(dev, p, props); 485 486 p = of_find_property(base_node, "ibm,max-sg-len", NULL); 487 if (!p) 488 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", 489 __func__); 490 else 491 nx_of_update_sglen(dev, p, props); 492 493 p = of_find_property(base_node, "ibm,max-sync-cop", NULL); 494 if (!p) 495 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", 496 __func__); 497 else 498 nx_of_update_msc(dev, p, props); 499 } 500 501 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot) 502 { 503 struct alg_props *props = &nx_driver.of.ap[fc][mode][slot]; 504 505 if (!props->sglen || props->databytelen < NX_PAGE_SIZE) { 506 if (dev) 507 dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: " 508 "%u/%u (ignored)\n", fc, mode, slot, 509 props->sglen, props->databytelen); 510 return false; 511 } 512 513 return true; 514 } 515 516 static bool nx_check_props(struct device *dev, u32 fc, u32 mode) 517 { 518 int i; 519 520 for (i = 0; i < 3; i++) 521 if (!nx_check_prop(dev, fc, mode, i)) 522 return false; 523 524 return true; 525 } 526 527 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode) 528 { 529 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 530 crypto_register_alg(alg) : 0; 531 } 532 533 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode) 534 { 535 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 536 crypto_register_aead(alg) : 0; 537 } 538 539 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot) 540 { 541 return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev, 542 fc, mode, slot) : 543 nx_check_props(&nx_driver.viodev->dev, fc, mode)) ? 544 crypto_register_shash(alg) : 0; 545 } 546 547 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode) 548 { 549 if (nx_check_props(NULL, fc, mode)) 550 crypto_unregister_alg(alg); 551 } 552 553 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode) 554 { 555 if (nx_check_props(NULL, fc, mode)) 556 crypto_unregister_aead(alg); 557 } 558 559 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode, 560 int slot) 561 { 562 if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) : 563 nx_check_props(NULL, fc, mode)) 564 crypto_unregister_shash(alg); 565 } 566 567 /** 568 * nx_register_algs - register algorithms with the crypto API 569 * 570 * Called from nx_probe() 571 * 572 * If all OF properties are in an acceptable state, the driver flags will 573 * indicate that we're ready and we'll create our debugfs files and register 574 * out crypto algorithms. 575 */ 576 static int nx_register_algs(void) 577 { 578 int rc = -1; 579 580 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) 581 goto out; 582 583 memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); 584 585 rc = NX_DEBUGFS_INIT(&nx_driver); 586 if (rc) 587 goto out; 588 589 nx_driver.of.status = NX_OKAY; 590 591 rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 592 if (rc) 593 goto out; 594 595 rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 596 if (rc) 597 goto out_unreg_ecb; 598 599 rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); 600 if (rc) 601 goto out_unreg_cbc; 602 603 rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 604 if (rc) 605 goto out_unreg_ctr3686; 606 607 rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 608 if (rc) 609 goto out_unreg_gcm; 610 611 rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 612 if (rc) 613 goto out_unreg_gcm4106; 614 615 rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 616 if (rc) 617 goto out_unreg_ccm; 618 619 rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 620 NX_PROPS_SHA256); 621 if (rc) 622 goto out_unreg_ccm4309; 623 624 rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 625 NX_PROPS_SHA512); 626 if (rc) 627 goto out_unreg_s256; 628 629 rc = nx_register_shash(&nx_shash_aes_xcbc_alg, 630 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 631 if (rc) 632 goto out_unreg_s512; 633 634 goto out; 635 636 out_unreg_s512: 637 nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 638 NX_PROPS_SHA512); 639 out_unreg_s256: 640 nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 641 NX_PROPS_SHA256); 642 out_unreg_ccm4309: 643 nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 644 out_unreg_ccm: 645 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 646 out_unreg_gcm4106: 647 nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 648 out_unreg_gcm: 649 nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 650 out_unreg_ctr3686: 651 nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); 652 out_unreg_cbc: 653 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 654 out_unreg_ecb: 655 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 656 out: 657 return rc; 658 } 659 660 /** 661 * nx_crypto_ctx_init - create and initialize a crypto api context 662 * 663 * @nx_ctx: the crypto api context 664 * @fc: function code for the context 665 * @mode: the function code specific mode for this context 666 */ 667 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) 668 { 669 if (nx_driver.of.status != NX_OKAY) { 670 pr_err("Attempt to initialize NX crypto context while device " 671 "is not available!\n"); 672 return -ENODEV; 673 } 674 675 /* we need an extra page for csbcpb_aead for these modes */ 676 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 677 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + 678 sizeof(struct nx_csbcpb); 679 else 680 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + 681 sizeof(struct nx_csbcpb); 682 683 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); 684 if (!nx_ctx->kmem) 685 return -ENOMEM; 686 687 /* the csbcpb and scatterlists must be 4K aligned pages */ 688 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, 689 (u64)NX_PAGE_SIZE)); 690 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); 691 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); 692 693 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 694 nx_ctx->csbcpb_aead = 695 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + 696 NX_PAGE_SIZE); 697 698 /* give each context a pointer to global stats and their OF 699 * properties */ 700 nx_ctx->stats = &nx_driver.stats; 701 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], 702 sizeof(struct alg_props) * 3); 703 704 return 0; 705 } 706 707 /* entry points from the crypto tfm initializers */ 708 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm) 709 { 710 crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx)); 711 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 712 NX_MODE_AES_CCM); 713 } 714 715 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm) 716 { 717 crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx)); 718 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 719 NX_MODE_AES_GCM); 720 } 721 722 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) 723 { 724 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 725 NX_MODE_AES_CTR); 726 } 727 728 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) 729 { 730 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 731 NX_MODE_AES_CBC); 732 } 733 734 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) 735 { 736 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 737 NX_MODE_AES_ECB); 738 } 739 740 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) 741 { 742 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); 743 } 744 745 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) 746 { 747 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 748 NX_MODE_AES_XCBC_MAC); 749 } 750 751 /** 752 * nx_crypto_ctx_exit - destroy a crypto api context 753 * 754 * @tfm: the crypto transform pointer for the context 755 * 756 * As crypto API contexts are destroyed, this exit hook is called to free the 757 * memory associated with it. 758 */ 759 void nx_crypto_ctx_exit(struct crypto_tfm *tfm) 760 { 761 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 762 763 kzfree(nx_ctx->kmem); 764 nx_ctx->csbcpb = NULL; 765 nx_ctx->csbcpb_aead = NULL; 766 nx_ctx->in_sg = NULL; 767 nx_ctx->out_sg = NULL; 768 } 769 770 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm) 771 { 772 struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm); 773 774 kzfree(nx_ctx->kmem); 775 } 776 777 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) 778 { 779 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", 780 viodev->name, viodev->resource_id); 781 782 if (nx_driver.viodev) { 783 dev_err(&viodev->dev, "%s: Attempt to register more than one " 784 "instance of the hardware\n", __func__); 785 return -EINVAL; 786 } 787 788 nx_driver.viodev = viodev; 789 790 nx_of_init(&viodev->dev, &nx_driver.of); 791 792 return nx_register_algs(); 793 } 794 795 static int nx_remove(struct vio_dev *viodev) 796 { 797 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", 798 viodev->unit_address); 799 800 if (nx_driver.of.status == NX_OKAY) { 801 NX_DEBUGFS_FINI(&nx_driver); 802 803 nx_unregister_shash(&nx_shash_aes_xcbc_alg, 804 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 805 nx_unregister_shash(&nx_shash_sha512_alg, 806 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256); 807 nx_unregister_shash(&nx_shash_sha256_alg, 808 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512); 809 nx_unregister_aead(&nx_ccm4309_aes_alg, 810 NX_FC_AES, NX_MODE_AES_CCM); 811 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 812 nx_unregister_aead(&nx_gcm4106_aes_alg, 813 NX_FC_AES, NX_MODE_AES_GCM); 814 nx_unregister_aead(&nx_gcm_aes_alg, 815 NX_FC_AES, NX_MODE_AES_GCM); 816 nx_unregister_alg(&nx_ctr3686_aes_alg, 817 NX_FC_AES, NX_MODE_AES_CTR); 818 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 819 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 820 } 821 822 return 0; 823 } 824 825 826 /* module wide initialization/cleanup */ 827 static int __init nx_init(void) 828 { 829 return vio_register_driver(&nx_driver.viodriver); 830 } 831 832 static void __exit nx_fini(void) 833 { 834 vio_unregister_driver(&nx_driver.viodriver); 835 } 836 837 static struct vio_device_id nx_crypto_driver_ids[] = { 838 { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, 839 { "", "" } 840 }; 841 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); 842 843 /* driver state structure */ 844 struct nx_crypto_driver nx_driver = { 845 .viodriver = { 846 .id_table = nx_crypto_driver_ids, 847 .probe = nx_probe, 848 .remove = nx_remove, 849 .name = NX_NAME, 850 }, 851 }; 852 853 module_init(nx_init); 854 module_exit(nx_fini); 855 856 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); 857 MODULE_DESCRIPTION(NX_STRING); 858 MODULE_LICENSE("GPL"); 859 MODULE_VERSION(NX_VERSION); 860