1 /** 2 * Routines supporting the Power 7+ Nest Accelerators driver 3 * 4 * Copyright (C) 2011-2012 International Business Machines Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 only. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * 19 * Author: Kent Yoder <yoder1@us.ibm.com> 20 */ 21 22 #include <crypto/internal/aead.h> 23 #include <crypto/internal/hash.h> 24 #include <crypto/aes.h> 25 #include <crypto/sha.h> 26 #include <crypto/algapi.h> 27 #include <crypto/scatterwalk.h> 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/types.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/device.h> 34 #include <linux/of.h> 35 #include <asm/hvcall.h> 36 #include <asm/vio.h> 37 38 #include "nx_csbcpb.h" 39 #include "nx.h" 40 41 42 /** 43 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure 44 * 45 * @nx_ctx: the crypto context handle 46 * @op: PFO operation struct to pass in 47 * @may_sleep: flag indicating the request can sleep 48 * 49 * Make the hcall, retrying while the hardware is busy. If we cannot yield 50 * the thread, limit the number of retries to 10 here. 51 */ 52 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, 53 struct vio_pfo_op *op, 54 u32 may_sleep) 55 { 56 int rc, retries = 10; 57 struct vio_dev *viodev = nx_driver.viodev; 58 59 atomic_inc(&(nx_ctx->stats->sync_ops)); 60 61 do { 62 rc = vio_h_cop_sync(viodev, op); 63 } while (rc == -EBUSY && !may_sleep && retries--); 64 65 if (rc) { 66 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " 67 "hcall rc: %ld\n", rc, op->hcall_err); 68 atomic_inc(&(nx_ctx->stats->errors)); 69 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); 70 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); 71 } 72 73 return rc; 74 } 75 76 /** 77 * nx_build_sg_list - build an NX scatter list describing a single buffer 78 * 79 * @sg_head: pointer to the first scatter list element to build 80 * @start_addr: pointer to the linear buffer 81 * @len: length of the data at @start_addr 82 * @sgmax: the largest number of scatter list elements we're allowed to create 83 * 84 * This function will start writing nx_sg elements at @sg_head and keep 85 * writing them until all of the data from @start_addr is described or 86 * until sgmax elements have been written. Scatter list elements will be 87 * created such that none of the elements describes a buffer that crosses a 4K 88 * boundary. 89 */ 90 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, 91 u8 *start_addr, 92 unsigned int *len, 93 u32 sgmax) 94 { 95 unsigned int sg_len = 0; 96 struct nx_sg *sg; 97 u64 sg_addr = (u64)start_addr; 98 u64 end_addr; 99 100 /* determine the start and end for this address range - slightly 101 * different if this is in VMALLOC_REGION */ 102 if (is_vmalloc_addr(start_addr)) 103 sg_addr = page_to_phys(vmalloc_to_page(start_addr)) 104 + offset_in_page(sg_addr); 105 else 106 sg_addr = __pa(sg_addr); 107 108 end_addr = sg_addr + *len; 109 110 /* each iteration will write one struct nx_sg element and add the 111 * length of data described by that element to sg_len. Once @len bytes 112 * have been described (or @sgmax elements have been written), the 113 * loop ends. min_t is used to ensure @end_addr falls on the same page 114 * as sg_addr, if not, we need to create another nx_sg element for the 115 * data on the next page. 116 * 117 * Also when using vmalloc'ed data, every time that a system page 118 * boundary is crossed the physical address needs to be re-calculated. 119 */ 120 for (sg = sg_head; sg_len < *len; sg++) { 121 u64 next_page; 122 123 sg->addr = sg_addr; 124 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), 125 end_addr); 126 127 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; 128 sg->len = min_t(u64, sg_addr, next_page) - sg->addr; 129 sg_len += sg->len; 130 131 if (sg_addr >= next_page && 132 is_vmalloc_addr(start_addr + sg_len)) { 133 sg_addr = page_to_phys(vmalloc_to_page( 134 start_addr + sg_len)); 135 end_addr = sg_addr + *len - sg_len; 136 } 137 138 if ((sg - sg_head) == sgmax) { 139 pr_err("nx: scatter/gather list overflow, pid: %d\n", 140 current->pid); 141 sg++; 142 break; 143 } 144 } 145 *len = sg_len; 146 147 /* return the moved sg_head pointer */ 148 return sg; 149 } 150 151 /** 152 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist 153 * 154 * @nx_dst: pointer to the first nx_sg element to write 155 * @sglen: max number of nx_sg entries we're allowed to write 156 * @sg_src: pointer to the source linux scatterlist to walk 157 * @start: number of bytes to fast-forward past at the beginning of @sg_src 158 * @src_len: number of bytes to walk in @sg_src 159 */ 160 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, 161 unsigned int sglen, 162 struct scatterlist *sg_src, 163 unsigned int start, 164 unsigned int *src_len) 165 { 166 struct scatter_walk walk; 167 struct nx_sg *nx_sg = nx_dst; 168 unsigned int n, offset = 0, len = *src_len; 169 char *dst; 170 171 /* we need to fast forward through @start bytes first */ 172 for (;;) { 173 scatterwalk_start(&walk, sg_src); 174 175 if (start < offset + sg_src->length) 176 break; 177 178 offset += sg_src->length; 179 sg_src = sg_next(sg_src); 180 } 181 182 /* start - offset is the number of bytes to advance in the scatterlist 183 * element we're currently looking at */ 184 scatterwalk_advance(&walk, start - offset); 185 186 while (len && (nx_sg - nx_dst) < sglen) { 187 n = scatterwalk_clamp(&walk, len); 188 if (!n) { 189 /* In cases where we have scatterlist chain sg_next 190 * handles with it properly */ 191 scatterwalk_start(&walk, sg_next(walk.sg)); 192 n = scatterwalk_clamp(&walk, len); 193 } 194 dst = scatterwalk_map(&walk); 195 196 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); 197 len -= n; 198 199 scatterwalk_unmap(dst); 200 scatterwalk_advance(&walk, n); 201 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); 202 } 203 /* update to_process */ 204 *src_len -= len; 205 206 /* return the moved destination pointer */ 207 return nx_sg; 208 } 209 210 /** 211 * trim_sg_list - ensures the bound in sg list. 212 * @sg: sg list head 213 * @end: sg lisg end 214 * @delta: is the amount we need to crop in order to bound the list. 215 * 216 */ 217 static long int trim_sg_list(struct nx_sg *sg, 218 struct nx_sg *end, 219 unsigned int delta, 220 unsigned int *nbytes) 221 { 222 long int oplen; 223 long int data_back; 224 unsigned int is_delta = delta; 225 226 while (delta && end > sg) { 227 struct nx_sg *last = end - 1; 228 229 if (last->len > delta) { 230 last->len -= delta; 231 delta = 0; 232 } else { 233 end--; 234 delta -= last->len; 235 } 236 } 237 238 /* There are cases where we need to crop list in order to make it 239 * a block size multiple, but we also need to align data. In order to 240 * that we need to calculate how much we need to put back to be 241 * processed 242 */ 243 oplen = (sg - end) * sizeof(struct nx_sg); 244 if (is_delta) { 245 data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len; 246 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1)); 247 *nbytes -= data_back; 248 } 249 250 return oplen; 251 } 252 253 /** 254 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX 255 * scatterlists based on them. 256 * 257 * @nx_ctx: NX crypto context for the lists we're building 258 * @desc: the block cipher descriptor for the operation 259 * @dst: destination scatterlist 260 * @src: source scatterlist 261 * @nbytes: length of data described in the scatterlists 262 * @offset: number of bytes to fast-forward past at the beginning of 263 * scatterlists. 264 * @iv: destination for the iv data, if the algorithm requires it 265 * 266 * This is common code shared by all the AES algorithms. It uses the block 267 * cipher walk routines to traverse input and output scatterlists, building 268 * corresponding NX scatterlists 269 */ 270 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, 271 struct blkcipher_desc *desc, 272 struct scatterlist *dst, 273 struct scatterlist *src, 274 unsigned int *nbytes, 275 unsigned int offset, 276 u8 *iv) 277 { 278 unsigned int delta = 0; 279 unsigned int total = *nbytes; 280 struct nx_sg *nx_insg = nx_ctx->in_sg; 281 struct nx_sg *nx_outsg = nx_ctx->out_sg; 282 unsigned int max_sg_len; 283 284 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 285 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 286 max_sg_len = min_t(u64, max_sg_len, 287 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 288 289 if (iv) 290 memcpy(iv, desc->info, AES_BLOCK_SIZE); 291 292 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); 293 294 nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, 295 offset, nbytes); 296 nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, 297 offset, nbytes); 298 299 if (*nbytes < total) 300 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); 301 302 /* these lengths should be negative, which will indicate to phyp that 303 * the input and output parameters are scatterlists, not linear 304 * buffers */ 305 nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes); 306 nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes); 307 308 return 0; 309 } 310 311 /** 312 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct 313 * 314 * @nx_ctx: the nx context to initialize 315 * @function: the function code for the op 316 */ 317 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) 318 { 319 spin_lock_init(&nx_ctx->lock); 320 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); 321 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; 322 323 nx_ctx->op.flags = function; 324 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); 325 nx_ctx->op.in = __pa(nx_ctx->in_sg); 326 nx_ctx->op.out = __pa(nx_ctx->out_sg); 327 328 if (nx_ctx->csbcpb_aead) { 329 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; 330 331 nx_ctx->op_aead.flags = function; 332 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); 333 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); 334 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); 335 } 336 } 337 338 static void nx_of_update_status(struct device *dev, 339 struct property *p, 340 struct nx_of *props) 341 { 342 if (!strncmp(p->value, "okay", p->length)) { 343 props->status = NX_WAITING; 344 props->flags |= NX_OF_FLAG_STATUS_SET; 345 } else { 346 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, 347 (char *)p->value); 348 } 349 } 350 351 static void nx_of_update_sglen(struct device *dev, 352 struct property *p, 353 struct nx_of *props) 354 { 355 if (p->length != sizeof(props->max_sg_len)) { 356 dev_err(dev, "%s: unexpected format for " 357 "ibm,max-sg-len property\n", __func__); 358 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " 359 "long, expected %zd bytes\n", __func__, 360 p->length, sizeof(props->max_sg_len)); 361 return; 362 } 363 364 props->max_sg_len = *(u32 *)p->value; 365 props->flags |= NX_OF_FLAG_MAXSGLEN_SET; 366 } 367 368 static void nx_of_update_msc(struct device *dev, 369 struct property *p, 370 struct nx_of *props) 371 { 372 struct msc_triplet *trip; 373 struct max_sync_cop *msc; 374 unsigned int bytes_so_far, i, lenp; 375 376 msc = (struct max_sync_cop *)p->value; 377 lenp = p->length; 378 379 /* You can't tell if the data read in for this property is sane by its 380 * size alone. This is because there are sizes embedded in the data 381 * structure. The best we can do is check lengths as we parse and bail 382 * as soon as a length error is detected. */ 383 bytes_so_far = 0; 384 385 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { 386 bytes_so_far += sizeof(struct max_sync_cop); 387 388 trip = msc->trip; 389 390 for (i = 0; 391 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && 392 i < msc->triplets; 393 i++) { 394 if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) { 395 dev_err(dev, "unknown function code/mode " 396 "combo: %d/%d (ignored)\n", msc->fc, 397 msc->mode); 398 goto next_loop; 399 } 400 401 if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) { 402 dev_warn(dev, "bogus sglen/databytelen: " 403 "%u/%u (ignored)\n", trip->sglen, 404 trip->databytelen); 405 goto next_loop; 406 } 407 408 switch (trip->keybitlen) { 409 case 128: 410 case 160: 411 props->ap[msc->fc][msc->mode][0].databytelen = 412 trip->databytelen; 413 props->ap[msc->fc][msc->mode][0].sglen = 414 trip->sglen; 415 break; 416 case 192: 417 props->ap[msc->fc][msc->mode][1].databytelen = 418 trip->databytelen; 419 props->ap[msc->fc][msc->mode][1].sglen = 420 trip->sglen; 421 break; 422 case 256: 423 if (msc->fc == NX_FC_AES) { 424 props->ap[msc->fc][msc->mode][2]. 425 databytelen = trip->databytelen; 426 props->ap[msc->fc][msc->mode][2].sglen = 427 trip->sglen; 428 } else if (msc->fc == NX_FC_AES_HMAC || 429 msc->fc == NX_FC_SHA) { 430 props->ap[msc->fc][msc->mode][1]. 431 databytelen = trip->databytelen; 432 props->ap[msc->fc][msc->mode][1].sglen = 433 trip->sglen; 434 } else { 435 dev_warn(dev, "unknown function " 436 "code/key bit len combo" 437 ": (%u/256)\n", msc->fc); 438 } 439 break; 440 case 512: 441 props->ap[msc->fc][msc->mode][2].databytelen = 442 trip->databytelen; 443 props->ap[msc->fc][msc->mode][2].sglen = 444 trip->sglen; 445 break; 446 default: 447 dev_warn(dev, "unknown function code/key bit " 448 "len combo: (%u/%u)\n", msc->fc, 449 trip->keybitlen); 450 break; 451 } 452 next_loop: 453 bytes_so_far += sizeof(struct msc_triplet); 454 trip++; 455 } 456 457 msc = (struct max_sync_cop *)trip; 458 } 459 460 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; 461 } 462 463 /** 464 * nx_of_init - read openFirmware values from the device tree 465 * 466 * @dev: device handle 467 * @props: pointer to struct to hold the properties values 468 * 469 * Called once at driver probe time, this function will read out the 470 * openFirmware properties we use at runtime. If all the OF properties are 471 * acceptable, when we exit this function props->flags will indicate that 472 * we're ready to register our crypto algorithms. 473 */ 474 static void nx_of_init(struct device *dev, struct nx_of *props) 475 { 476 struct device_node *base_node = dev->of_node; 477 struct property *p; 478 479 p = of_find_property(base_node, "status", NULL); 480 if (!p) 481 dev_info(dev, "%s: property 'status' not found\n", __func__); 482 else 483 nx_of_update_status(dev, p, props); 484 485 p = of_find_property(base_node, "ibm,max-sg-len", NULL); 486 if (!p) 487 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", 488 __func__); 489 else 490 nx_of_update_sglen(dev, p, props); 491 492 p = of_find_property(base_node, "ibm,max-sync-cop", NULL); 493 if (!p) 494 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", 495 __func__); 496 else 497 nx_of_update_msc(dev, p, props); 498 } 499 500 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot) 501 { 502 struct alg_props *props = &nx_driver.of.ap[fc][mode][slot]; 503 504 if (!props->sglen || props->databytelen < NX_PAGE_SIZE) { 505 if (dev) 506 dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: " 507 "%u/%u (ignored)\n", fc, mode, slot, 508 props->sglen, props->databytelen); 509 return false; 510 } 511 512 return true; 513 } 514 515 static bool nx_check_props(struct device *dev, u32 fc, u32 mode) 516 { 517 int i; 518 519 for (i = 0; i < 3; i++) 520 if (!nx_check_prop(dev, fc, mode, i)) 521 return false; 522 523 return true; 524 } 525 526 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode) 527 { 528 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 529 crypto_register_alg(alg) : 0; 530 } 531 532 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode) 533 { 534 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 535 crypto_register_aead(alg) : 0; 536 } 537 538 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot) 539 { 540 return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev, 541 fc, mode, slot) : 542 nx_check_props(&nx_driver.viodev->dev, fc, mode)) ? 543 crypto_register_shash(alg) : 0; 544 } 545 546 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode) 547 { 548 if (nx_check_props(NULL, fc, mode)) 549 crypto_unregister_alg(alg); 550 } 551 552 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode) 553 { 554 if (nx_check_props(NULL, fc, mode)) 555 crypto_unregister_aead(alg); 556 } 557 558 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode, 559 int slot) 560 { 561 if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) : 562 nx_check_props(NULL, fc, mode)) 563 crypto_unregister_shash(alg); 564 } 565 566 /** 567 * nx_register_algs - register algorithms with the crypto API 568 * 569 * Called from nx_probe() 570 * 571 * If all OF properties are in an acceptable state, the driver flags will 572 * indicate that we're ready and we'll create our debugfs files and register 573 * out crypto algorithms. 574 */ 575 static int nx_register_algs(void) 576 { 577 int rc = -1; 578 579 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) 580 goto out; 581 582 memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); 583 584 rc = NX_DEBUGFS_INIT(&nx_driver); 585 if (rc) 586 goto out; 587 588 nx_driver.of.status = NX_OKAY; 589 590 rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 591 if (rc) 592 goto out; 593 594 rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 595 if (rc) 596 goto out_unreg_ecb; 597 598 rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); 599 if (rc) 600 goto out_unreg_cbc; 601 602 rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 603 if (rc) 604 goto out_unreg_ctr3686; 605 606 rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 607 if (rc) 608 goto out_unreg_gcm; 609 610 rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 611 if (rc) 612 goto out_unreg_gcm4106; 613 614 rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 615 if (rc) 616 goto out_unreg_ccm; 617 618 rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 619 NX_PROPS_SHA256); 620 if (rc) 621 goto out_unreg_ccm4309; 622 623 rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 624 NX_PROPS_SHA512); 625 if (rc) 626 goto out_unreg_s256; 627 628 rc = nx_register_shash(&nx_shash_aes_xcbc_alg, 629 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 630 if (rc) 631 goto out_unreg_s512; 632 633 goto out; 634 635 out_unreg_s512: 636 nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 637 NX_PROPS_SHA512); 638 out_unreg_s256: 639 nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 640 NX_PROPS_SHA256); 641 out_unreg_ccm4309: 642 nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 643 out_unreg_ccm: 644 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 645 out_unreg_gcm4106: 646 nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 647 out_unreg_gcm: 648 nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 649 out_unreg_ctr3686: 650 nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); 651 out_unreg_cbc: 652 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 653 out_unreg_ecb: 654 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 655 out: 656 return rc; 657 } 658 659 /** 660 * nx_crypto_ctx_init - create and initialize a crypto api context 661 * 662 * @nx_ctx: the crypto api context 663 * @fc: function code for the context 664 * @mode: the function code specific mode for this context 665 */ 666 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) 667 { 668 if (nx_driver.of.status != NX_OKAY) { 669 pr_err("Attempt to initialize NX crypto context while device " 670 "is not available!\n"); 671 return -ENODEV; 672 } 673 674 /* we need an extra page for csbcpb_aead for these modes */ 675 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 676 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + 677 sizeof(struct nx_csbcpb); 678 else 679 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + 680 sizeof(struct nx_csbcpb); 681 682 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); 683 if (!nx_ctx->kmem) 684 return -ENOMEM; 685 686 /* the csbcpb and scatterlists must be 4K aligned pages */ 687 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, 688 (u64)NX_PAGE_SIZE)); 689 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); 690 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); 691 692 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 693 nx_ctx->csbcpb_aead = 694 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + 695 NX_PAGE_SIZE); 696 697 /* give each context a pointer to global stats and their OF 698 * properties */ 699 nx_ctx->stats = &nx_driver.stats; 700 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], 701 sizeof(struct alg_props) * 3); 702 703 return 0; 704 } 705 706 /* entry points from the crypto tfm initializers */ 707 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm) 708 { 709 crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx)); 710 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 711 NX_MODE_AES_CCM); 712 } 713 714 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm) 715 { 716 crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx)); 717 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 718 NX_MODE_AES_GCM); 719 } 720 721 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) 722 { 723 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 724 NX_MODE_AES_CTR); 725 } 726 727 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) 728 { 729 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 730 NX_MODE_AES_CBC); 731 } 732 733 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) 734 { 735 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 736 NX_MODE_AES_ECB); 737 } 738 739 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) 740 { 741 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); 742 } 743 744 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) 745 { 746 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 747 NX_MODE_AES_XCBC_MAC); 748 } 749 750 /** 751 * nx_crypto_ctx_exit - destroy a crypto api context 752 * 753 * @tfm: the crypto transform pointer for the context 754 * 755 * As crypto API contexts are destroyed, this exit hook is called to free the 756 * memory associated with it. 757 */ 758 void nx_crypto_ctx_exit(struct crypto_tfm *tfm) 759 { 760 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 761 762 kzfree(nx_ctx->kmem); 763 nx_ctx->csbcpb = NULL; 764 nx_ctx->csbcpb_aead = NULL; 765 nx_ctx->in_sg = NULL; 766 nx_ctx->out_sg = NULL; 767 } 768 769 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm) 770 { 771 struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm); 772 773 kzfree(nx_ctx->kmem); 774 } 775 776 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) 777 { 778 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", 779 viodev->name, viodev->resource_id); 780 781 if (nx_driver.viodev) { 782 dev_err(&viodev->dev, "%s: Attempt to register more than one " 783 "instance of the hardware\n", __func__); 784 return -EINVAL; 785 } 786 787 nx_driver.viodev = viodev; 788 789 nx_of_init(&viodev->dev, &nx_driver.of); 790 791 return nx_register_algs(); 792 } 793 794 static int nx_remove(struct vio_dev *viodev) 795 { 796 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", 797 viodev->unit_address); 798 799 if (nx_driver.of.status == NX_OKAY) { 800 NX_DEBUGFS_FINI(&nx_driver); 801 802 nx_unregister_shash(&nx_shash_aes_xcbc_alg, 803 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 804 nx_unregister_shash(&nx_shash_sha512_alg, 805 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256); 806 nx_unregister_shash(&nx_shash_sha256_alg, 807 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512); 808 nx_unregister_aead(&nx_ccm4309_aes_alg, 809 NX_FC_AES, NX_MODE_AES_CCM); 810 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 811 nx_unregister_aead(&nx_gcm4106_aes_alg, 812 NX_FC_AES, NX_MODE_AES_GCM); 813 nx_unregister_aead(&nx_gcm_aes_alg, 814 NX_FC_AES, NX_MODE_AES_GCM); 815 nx_unregister_alg(&nx_ctr3686_aes_alg, 816 NX_FC_AES, NX_MODE_AES_CTR); 817 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 818 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 819 } 820 821 return 0; 822 } 823 824 825 /* module wide initialization/cleanup */ 826 static int __init nx_init(void) 827 { 828 return vio_register_driver(&nx_driver.viodriver); 829 } 830 831 static void __exit nx_fini(void) 832 { 833 vio_unregister_driver(&nx_driver.viodriver); 834 } 835 836 static struct vio_device_id nx_crypto_driver_ids[] = { 837 { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, 838 { "", "" } 839 }; 840 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); 841 842 /* driver state structure */ 843 struct nx_crypto_driver nx_driver = { 844 .viodriver = { 845 .id_table = nx_crypto_driver_ids, 846 .probe = nx_probe, 847 .remove = nx_remove, 848 .name = NX_NAME, 849 }, 850 }; 851 852 module_init(nx_init); 853 module_exit(nx_fini); 854 855 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); 856 MODULE_DESCRIPTION(NX_STRING); 857 MODULE_LICENSE("GPL"); 858 MODULE_VERSION(NX_VERSION); 859