1 /** 2 * Routines supporting the Power 7+ Nest Accelerators driver 3 * 4 * Copyright (C) 2011-2012 International Business Machines Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 only. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * 19 * Author: Kent Yoder <yoder1@us.ibm.com> 20 */ 21 22 #include <crypto/internal/hash.h> 23 #include <crypto/hash.h> 24 #include <crypto/aes.h> 25 #include <crypto/sha.h> 26 #include <crypto/algapi.h> 27 #include <crypto/scatterwalk.h> 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/types.h> 31 #include <linux/mm.h> 32 #include <linux/crypto.h> 33 #include <linux/scatterlist.h> 34 #include <linux/device.h> 35 #include <linux/of.h> 36 #include <asm/hvcall.h> 37 #include <asm/vio.h> 38 39 #include "nx_csbcpb.h" 40 #include "nx.h" 41 42 43 /** 44 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure 45 * 46 * @nx_ctx: the crypto context handle 47 * @op: PFO operation struct to pass in 48 * @may_sleep: flag indicating the request can sleep 49 * 50 * Make the hcall, retrying while the hardware is busy. If we cannot yield 51 * the thread, limit the number of retries to 10 here. 52 */ 53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, 54 struct vio_pfo_op *op, 55 u32 may_sleep) 56 { 57 int rc, retries = 10; 58 struct vio_dev *viodev = nx_driver.viodev; 59 60 atomic_inc(&(nx_ctx->stats->sync_ops)); 61 62 do { 63 rc = vio_h_cop_sync(viodev, op); 64 } while (rc == -EBUSY && !may_sleep && retries--); 65 66 if (rc) { 67 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " 68 "hcall rc: %ld\n", rc, op->hcall_err); 69 atomic_inc(&(nx_ctx->stats->errors)); 70 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); 71 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); 72 } 73 74 return rc; 75 } 76 77 /** 78 * nx_build_sg_list - build an NX scatter list describing a single buffer 79 * 80 * @sg_head: pointer to the first scatter list element to build 81 * @start_addr: pointer to the linear buffer 82 * @len: length of the data at @start_addr 83 * @sgmax: the largest number of scatter list elements we're allowed to create 84 * 85 * This function will start writing nx_sg elements at @sg_head and keep 86 * writing them until all of the data from @start_addr is described or 87 * until sgmax elements have been written. Scatter list elements will be 88 * created such that none of the elements describes a buffer that crosses a 4K 89 * boundary. 90 */ 91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, 92 u8 *start_addr, 93 unsigned int *len, 94 u32 sgmax) 95 { 96 unsigned int sg_len = 0; 97 struct nx_sg *sg; 98 u64 sg_addr = (u64)start_addr; 99 u64 end_addr; 100 101 /* determine the start and end for this address range - slightly 102 * different if this is in VMALLOC_REGION */ 103 if (is_vmalloc_addr(start_addr)) 104 sg_addr = page_to_phys(vmalloc_to_page(start_addr)) 105 + offset_in_page(sg_addr); 106 else 107 sg_addr = __pa(sg_addr); 108 109 end_addr = sg_addr + *len; 110 111 /* each iteration will write one struct nx_sg element and add the 112 * length of data described by that element to sg_len. Once @len bytes 113 * have been described (or @sgmax elements have been written), the 114 * loop ends. min_t is used to ensure @end_addr falls on the same page 115 * as sg_addr, if not, we need to create another nx_sg element for the 116 * data on the next page. 117 * 118 * Also when using vmalloc'ed data, every time that a system page 119 * boundary is crossed the physical address needs to be re-calculated. 120 */ 121 for (sg = sg_head; sg_len < *len; sg++) { 122 u64 next_page; 123 124 sg->addr = sg_addr; 125 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), 126 end_addr); 127 128 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; 129 sg->len = min_t(u64, sg_addr, next_page) - sg->addr; 130 sg_len += sg->len; 131 132 if (sg_addr >= next_page && 133 is_vmalloc_addr(start_addr + sg_len)) { 134 sg_addr = page_to_phys(vmalloc_to_page( 135 start_addr + sg_len)); 136 end_addr = sg_addr + *len - sg_len; 137 } 138 139 if ((sg - sg_head) == sgmax) { 140 pr_err("nx: scatter/gather list overflow, pid: %d\n", 141 current->pid); 142 sg++; 143 break; 144 } 145 } 146 *len = sg_len; 147 148 /* return the moved sg_head pointer */ 149 return sg; 150 } 151 152 /** 153 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist 154 * 155 * @nx_dst: pointer to the first nx_sg element to write 156 * @sglen: max number of nx_sg entries we're allowed to write 157 * @sg_src: pointer to the source linux scatterlist to walk 158 * @start: number of bytes to fast-forward past at the beginning of @sg_src 159 * @src_len: number of bytes to walk in @sg_src 160 */ 161 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, 162 unsigned int sglen, 163 struct scatterlist *sg_src, 164 unsigned int start, 165 unsigned int *src_len) 166 { 167 struct scatter_walk walk; 168 struct nx_sg *nx_sg = nx_dst; 169 unsigned int n, offset = 0, len = *src_len; 170 char *dst; 171 172 /* we need to fast forward through @start bytes first */ 173 for (;;) { 174 scatterwalk_start(&walk, sg_src); 175 176 if (start < offset + sg_src->length) 177 break; 178 179 offset += sg_src->length; 180 sg_src = scatterwalk_sg_next(sg_src); 181 } 182 183 /* start - offset is the number of bytes to advance in the scatterlist 184 * element we're currently looking at */ 185 scatterwalk_advance(&walk, start - offset); 186 187 while (len && (nx_sg - nx_dst) < sglen) { 188 n = scatterwalk_clamp(&walk, len); 189 if (!n) { 190 /* In cases where we have scatterlist chain scatterwalk_sg_next 191 * handles with it properly */ 192 scatterwalk_start(&walk, scatterwalk_sg_next(walk.sg)); 193 n = scatterwalk_clamp(&walk, len); 194 } 195 dst = scatterwalk_map(&walk); 196 197 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); 198 len -= n; 199 200 scatterwalk_unmap(dst); 201 scatterwalk_advance(&walk, n); 202 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); 203 } 204 /* update to_process */ 205 *src_len -= len; 206 207 /* return the moved destination pointer */ 208 return nx_sg; 209 } 210 211 /** 212 * trim_sg_list - ensures the bound in sg list. 213 * @sg: sg list head 214 * @end: sg lisg end 215 * @delta: is the amount we need to crop in order to bound the list. 216 * 217 */ 218 static long int trim_sg_list(struct nx_sg *sg, struct nx_sg *end, unsigned int delta) 219 { 220 while (delta && end > sg) { 221 struct nx_sg *last = end - 1; 222 223 if (last->len > delta) { 224 last->len -= delta; 225 delta = 0; 226 } else { 227 end--; 228 delta -= last->len; 229 } 230 } 231 return (sg - end) * sizeof(struct nx_sg); 232 } 233 234 /** 235 * nx_sha_build_sg_list - walk and build sg list to sha modes 236 * using right bounds and limits. 237 * @nx_ctx: NX crypto context for the lists we're building 238 * @nx_sg: current sg list in or out list 239 * @op_len: current op_len to be used in order to build a sg list 240 * @nbytes: number or bytes to be processed 241 * @offset: buf offset 242 * @mode: SHA256 or SHA512 243 */ 244 int nx_sha_build_sg_list(struct nx_crypto_ctx *nx_ctx, 245 struct nx_sg *nx_in_outsg, 246 s64 *op_len, 247 unsigned int *nbytes, 248 u8 *offset, 249 u32 mode) 250 { 251 unsigned int delta = 0; 252 unsigned int total = *nbytes; 253 struct nx_sg *nx_insg = nx_in_outsg; 254 unsigned int max_sg_len; 255 256 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 257 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 258 max_sg_len = min_t(u64, max_sg_len, 259 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 260 261 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); 262 nx_insg = nx_build_sg_list(nx_insg, offset, nbytes, max_sg_len); 263 264 switch (mode) { 265 case NX_DS_SHA256: 266 if (*nbytes < total) 267 delta = *nbytes - (*nbytes & ~(SHA256_BLOCK_SIZE - 1)); 268 break; 269 case NX_DS_SHA512: 270 if (*nbytes < total) 271 delta = *nbytes - (*nbytes & ~(SHA512_BLOCK_SIZE - 1)); 272 break; 273 default: 274 return -EINVAL; 275 } 276 *op_len = trim_sg_list(nx_in_outsg, nx_insg, delta); 277 278 return 0; 279 } 280 281 /** 282 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX 283 * scatterlists based on them. 284 * 285 * @nx_ctx: NX crypto context for the lists we're building 286 * @desc: the block cipher descriptor for the operation 287 * @dst: destination scatterlist 288 * @src: source scatterlist 289 * @nbytes: length of data described in the scatterlists 290 * @offset: number of bytes to fast-forward past at the beginning of 291 * scatterlists. 292 * @iv: destination for the iv data, if the algorithm requires it 293 * 294 * This is common code shared by all the AES algorithms. It uses the block 295 * cipher walk routines to traverse input and output scatterlists, building 296 * corresponding NX scatterlists 297 */ 298 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, 299 struct blkcipher_desc *desc, 300 struct scatterlist *dst, 301 struct scatterlist *src, 302 unsigned int *nbytes, 303 unsigned int offset, 304 u8 *iv) 305 { 306 unsigned int delta = 0; 307 unsigned int total = *nbytes; 308 struct nx_sg *nx_insg = nx_ctx->in_sg; 309 struct nx_sg *nx_outsg = nx_ctx->out_sg; 310 unsigned int max_sg_len; 311 312 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 313 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 314 max_sg_len = min_t(u64, max_sg_len, 315 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 316 317 if (iv) 318 memcpy(iv, desc->info, AES_BLOCK_SIZE); 319 320 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); 321 322 nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, 323 offset, nbytes); 324 nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, 325 offset, nbytes); 326 327 if (*nbytes < total) 328 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); 329 330 /* these lengths should be negative, which will indicate to phyp that 331 * the input and output parameters are scatterlists, not linear 332 * buffers */ 333 nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta); 334 nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta); 335 336 return 0; 337 } 338 339 /** 340 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct 341 * 342 * @nx_ctx: the nx context to initialize 343 * @function: the function code for the op 344 */ 345 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) 346 { 347 spin_lock_init(&nx_ctx->lock); 348 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); 349 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; 350 351 nx_ctx->op.flags = function; 352 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); 353 nx_ctx->op.in = __pa(nx_ctx->in_sg); 354 nx_ctx->op.out = __pa(nx_ctx->out_sg); 355 356 if (nx_ctx->csbcpb_aead) { 357 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; 358 359 nx_ctx->op_aead.flags = function; 360 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); 361 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); 362 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); 363 } 364 } 365 366 static void nx_of_update_status(struct device *dev, 367 struct property *p, 368 struct nx_of *props) 369 { 370 if (!strncmp(p->value, "okay", p->length)) { 371 props->status = NX_WAITING; 372 props->flags |= NX_OF_FLAG_STATUS_SET; 373 } else { 374 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, 375 (char *)p->value); 376 } 377 } 378 379 static void nx_of_update_sglen(struct device *dev, 380 struct property *p, 381 struct nx_of *props) 382 { 383 if (p->length != sizeof(props->max_sg_len)) { 384 dev_err(dev, "%s: unexpected format for " 385 "ibm,max-sg-len property\n", __func__); 386 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " 387 "long, expected %zd bytes\n", __func__, 388 p->length, sizeof(props->max_sg_len)); 389 return; 390 } 391 392 props->max_sg_len = *(u32 *)p->value; 393 props->flags |= NX_OF_FLAG_MAXSGLEN_SET; 394 } 395 396 static void nx_of_update_msc(struct device *dev, 397 struct property *p, 398 struct nx_of *props) 399 { 400 struct msc_triplet *trip; 401 struct max_sync_cop *msc; 402 unsigned int bytes_so_far, i, lenp; 403 404 msc = (struct max_sync_cop *)p->value; 405 lenp = p->length; 406 407 /* You can't tell if the data read in for this property is sane by its 408 * size alone. This is because there are sizes embedded in the data 409 * structure. The best we can do is check lengths as we parse and bail 410 * as soon as a length error is detected. */ 411 bytes_so_far = 0; 412 413 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { 414 bytes_so_far += sizeof(struct max_sync_cop); 415 416 trip = msc->trip; 417 418 for (i = 0; 419 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && 420 i < msc->triplets; 421 i++) { 422 if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) { 423 dev_err(dev, "unknown function code/mode " 424 "combo: %d/%d (ignored)\n", msc->fc, 425 msc->mode); 426 goto next_loop; 427 } 428 429 switch (trip->keybitlen) { 430 case 128: 431 case 160: 432 props->ap[msc->fc][msc->mode][0].databytelen = 433 trip->databytelen; 434 props->ap[msc->fc][msc->mode][0].sglen = 435 trip->sglen; 436 break; 437 case 192: 438 props->ap[msc->fc][msc->mode][1].databytelen = 439 trip->databytelen; 440 props->ap[msc->fc][msc->mode][1].sglen = 441 trip->sglen; 442 break; 443 case 256: 444 if (msc->fc == NX_FC_AES) { 445 props->ap[msc->fc][msc->mode][2]. 446 databytelen = trip->databytelen; 447 props->ap[msc->fc][msc->mode][2].sglen = 448 trip->sglen; 449 } else if (msc->fc == NX_FC_AES_HMAC || 450 msc->fc == NX_FC_SHA) { 451 props->ap[msc->fc][msc->mode][1]. 452 databytelen = trip->databytelen; 453 props->ap[msc->fc][msc->mode][1].sglen = 454 trip->sglen; 455 } else { 456 dev_warn(dev, "unknown function " 457 "code/key bit len combo" 458 ": (%u/256)\n", msc->fc); 459 } 460 break; 461 case 512: 462 props->ap[msc->fc][msc->mode][2].databytelen = 463 trip->databytelen; 464 props->ap[msc->fc][msc->mode][2].sglen = 465 trip->sglen; 466 break; 467 default: 468 dev_warn(dev, "unknown function code/key bit " 469 "len combo: (%u/%u)\n", msc->fc, 470 trip->keybitlen); 471 break; 472 } 473 next_loop: 474 bytes_so_far += sizeof(struct msc_triplet); 475 trip++; 476 } 477 478 msc = (struct max_sync_cop *)trip; 479 } 480 481 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; 482 } 483 484 /** 485 * nx_of_init - read openFirmware values from the device tree 486 * 487 * @dev: device handle 488 * @props: pointer to struct to hold the properties values 489 * 490 * Called once at driver probe time, this function will read out the 491 * openFirmware properties we use at runtime. If all the OF properties are 492 * acceptable, when we exit this function props->flags will indicate that 493 * we're ready to register our crypto algorithms. 494 */ 495 static void nx_of_init(struct device *dev, struct nx_of *props) 496 { 497 struct device_node *base_node = dev->of_node; 498 struct property *p; 499 500 p = of_find_property(base_node, "status", NULL); 501 if (!p) 502 dev_info(dev, "%s: property 'status' not found\n", __func__); 503 else 504 nx_of_update_status(dev, p, props); 505 506 p = of_find_property(base_node, "ibm,max-sg-len", NULL); 507 if (!p) 508 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", 509 __func__); 510 else 511 nx_of_update_sglen(dev, p, props); 512 513 p = of_find_property(base_node, "ibm,max-sync-cop", NULL); 514 if (!p) 515 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", 516 __func__); 517 else 518 nx_of_update_msc(dev, p, props); 519 } 520 521 /** 522 * nx_register_algs - register algorithms with the crypto API 523 * 524 * Called from nx_probe() 525 * 526 * If all OF properties are in an acceptable state, the driver flags will 527 * indicate that we're ready and we'll create our debugfs files and register 528 * out crypto algorithms. 529 */ 530 static int nx_register_algs(void) 531 { 532 int rc = -1; 533 534 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) 535 goto out; 536 537 memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); 538 539 rc = NX_DEBUGFS_INIT(&nx_driver); 540 if (rc) 541 goto out; 542 543 nx_driver.of.status = NX_OKAY; 544 545 rc = crypto_register_alg(&nx_ecb_aes_alg); 546 if (rc) 547 goto out; 548 549 rc = crypto_register_alg(&nx_cbc_aes_alg); 550 if (rc) 551 goto out_unreg_ecb; 552 553 rc = crypto_register_alg(&nx_ctr_aes_alg); 554 if (rc) 555 goto out_unreg_cbc; 556 557 rc = crypto_register_alg(&nx_ctr3686_aes_alg); 558 if (rc) 559 goto out_unreg_ctr; 560 561 rc = crypto_register_alg(&nx_gcm_aes_alg); 562 if (rc) 563 goto out_unreg_ctr3686; 564 565 rc = crypto_register_alg(&nx_gcm4106_aes_alg); 566 if (rc) 567 goto out_unreg_gcm; 568 569 rc = crypto_register_alg(&nx_ccm_aes_alg); 570 if (rc) 571 goto out_unreg_gcm4106; 572 573 rc = crypto_register_alg(&nx_ccm4309_aes_alg); 574 if (rc) 575 goto out_unreg_ccm; 576 577 rc = crypto_register_shash(&nx_shash_sha256_alg); 578 if (rc) 579 goto out_unreg_ccm4309; 580 581 rc = crypto_register_shash(&nx_shash_sha512_alg); 582 if (rc) 583 goto out_unreg_s256; 584 585 rc = crypto_register_shash(&nx_shash_aes_xcbc_alg); 586 if (rc) 587 goto out_unreg_s512; 588 589 goto out; 590 591 out_unreg_s512: 592 crypto_unregister_shash(&nx_shash_sha512_alg); 593 out_unreg_s256: 594 crypto_unregister_shash(&nx_shash_sha256_alg); 595 out_unreg_ccm4309: 596 crypto_unregister_alg(&nx_ccm4309_aes_alg); 597 out_unreg_ccm: 598 crypto_unregister_alg(&nx_ccm_aes_alg); 599 out_unreg_gcm4106: 600 crypto_unregister_alg(&nx_gcm4106_aes_alg); 601 out_unreg_gcm: 602 crypto_unregister_alg(&nx_gcm_aes_alg); 603 out_unreg_ctr3686: 604 crypto_unregister_alg(&nx_ctr3686_aes_alg); 605 out_unreg_ctr: 606 crypto_unregister_alg(&nx_ctr_aes_alg); 607 out_unreg_cbc: 608 crypto_unregister_alg(&nx_cbc_aes_alg); 609 out_unreg_ecb: 610 crypto_unregister_alg(&nx_ecb_aes_alg); 611 out: 612 return rc; 613 } 614 615 /** 616 * nx_crypto_ctx_init - create and initialize a crypto api context 617 * 618 * @nx_ctx: the crypto api context 619 * @fc: function code for the context 620 * @mode: the function code specific mode for this context 621 */ 622 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) 623 { 624 if (nx_driver.of.status != NX_OKAY) { 625 pr_err("Attempt to initialize NX crypto context while device " 626 "is not available!\n"); 627 return -ENODEV; 628 } 629 630 /* we need an extra page for csbcpb_aead for these modes */ 631 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 632 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + 633 sizeof(struct nx_csbcpb); 634 else 635 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + 636 sizeof(struct nx_csbcpb); 637 638 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); 639 if (!nx_ctx->kmem) 640 return -ENOMEM; 641 642 /* the csbcpb and scatterlists must be 4K aligned pages */ 643 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, 644 (u64)NX_PAGE_SIZE)); 645 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); 646 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); 647 648 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 649 nx_ctx->csbcpb_aead = 650 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + 651 NX_PAGE_SIZE); 652 653 /* give each context a pointer to global stats and their OF 654 * properties */ 655 nx_ctx->stats = &nx_driver.stats; 656 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], 657 sizeof(struct alg_props) * 3); 658 659 return 0; 660 } 661 662 /* entry points from the crypto tfm initializers */ 663 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm) 664 { 665 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 666 NX_MODE_AES_CCM); 667 } 668 669 int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm) 670 { 671 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 672 NX_MODE_AES_GCM); 673 } 674 675 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) 676 { 677 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 678 NX_MODE_AES_CTR); 679 } 680 681 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) 682 { 683 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 684 NX_MODE_AES_CBC); 685 } 686 687 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) 688 { 689 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 690 NX_MODE_AES_ECB); 691 } 692 693 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) 694 { 695 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); 696 } 697 698 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) 699 { 700 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 701 NX_MODE_AES_XCBC_MAC); 702 } 703 704 /** 705 * nx_crypto_ctx_exit - destroy a crypto api context 706 * 707 * @tfm: the crypto transform pointer for the context 708 * 709 * As crypto API contexts are destroyed, this exit hook is called to free the 710 * memory associated with it. 711 */ 712 void nx_crypto_ctx_exit(struct crypto_tfm *tfm) 713 { 714 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 715 716 kzfree(nx_ctx->kmem); 717 nx_ctx->csbcpb = NULL; 718 nx_ctx->csbcpb_aead = NULL; 719 nx_ctx->in_sg = NULL; 720 nx_ctx->out_sg = NULL; 721 } 722 723 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) 724 { 725 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", 726 viodev->name, viodev->resource_id); 727 728 if (nx_driver.viodev) { 729 dev_err(&viodev->dev, "%s: Attempt to register more than one " 730 "instance of the hardware\n", __func__); 731 return -EINVAL; 732 } 733 734 nx_driver.viodev = viodev; 735 736 nx_of_init(&viodev->dev, &nx_driver.of); 737 738 return nx_register_algs(); 739 } 740 741 static int nx_remove(struct vio_dev *viodev) 742 { 743 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", 744 viodev->unit_address); 745 746 if (nx_driver.of.status == NX_OKAY) { 747 NX_DEBUGFS_FINI(&nx_driver); 748 749 crypto_unregister_alg(&nx_ccm_aes_alg); 750 crypto_unregister_alg(&nx_ccm4309_aes_alg); 751 crypto_unregister_alg(&nx_gcm_aes_alg); 752 crypto_unregister_alg(&nx_gcm4106_aes_alg); 753 crypto_unregister_alg(&nx_ctr_aes_alg); 754 crypto_unregister_alg(&nx_ctr3686_aes_alg); 755 crypto_unregister_alg(&nx_cbc_aes_alg); 756 crypto_unregister_alg(&nx_ecb_aes_alg); 757 crypto_unregister_shash(&nx_shash_sha256_alg); 758 crypto_unregister_shash(&nx_shash_sha512_alg); 759 crypto_unregister_shash(&nx_shash_aes_xcbc_alg); 760 } 761 762 return 0; 763 } 764 765 766 /* module wide initialization/cleanup */ 767 static int __init nx_init(void) 768 { 769 return vio_register_driver(&nx_driver.viodriver); 770 } 771 772 static void __exit nx_fini(void) 773 { 774 vio_unregister_driver(&nx_driver.viodriver); 775 } 776 777 static struct vio_device_id nx_crypto_driver_ids[] = { 778 { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, 779 { "", "" } 780 }; 781 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); 782 783 /* driver state structure */ 784 struct nx_crypto_driver nx_driver = { 785 .viodriver = { 786 .id_table = nx_crypto_driver_ids, 787 .probe = nx_probe, 788 .remove = nx_remove, 789 .name = NX_NAME, 790 }, 791 }; 792 793 module_init(nx_init); 794 module_exit(nx_fini); 795 796 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); 797 MODULE_DESCRIPTION(NX_STRING); 798 MODULE_LICENSE("GPL"); 799 MODULE_VERSION(NX_VERSION); 800