1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Routines supporting the Power 7+ Nest Accelerators driver 4 * 5 * Copyright (C) 2011-2012 International Business Machines Inc. 6 * 7 * Author: Kent Yoder <yoder1@us.ibm.com> 8 */ 9 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/hash.h> 12 #include <crypto/aes.h> 13 #include <crypto/sha2.h> 14 #include <crypto/algapi.h> 15 #include <crypto/scatterwalk.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/types.h> 19 #include <linux/mm.h> 20 #include <linux/scatterlist.h> 21 #include <linux/device.h> 22 #include <linux/of.h> 23 #include <asm/hvcall.h> 24 #include <asm/vio.h> 25 26 #include "nx_csbcpb.h" 27 #include "nx.h" 28 29 30 /** 31 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure 32 * 33 * @nx_ctx: the crypto context handle 34 * @op: PFO operation struct to pass in 35 * @may_sleep: flag indicating the request can sleep 36 * 37 * Make the hcall, retrying while the hardware is busy. If we cannot yield 38 * the thread, limit the number of retries to 10 here. 39 */ 40 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, 41 struct vio_pfo_op *op, 42 u32 may_sleep) 43 { 44 int rc, retries = 10; 45 struct vio_dev *viodev = nx_driver.viodev; 46 47 atomic_inc(&(nx_ctx->stats->sync_ops)); 48 49 do { 50 rc = vio_h_cop_sync(viodev, op); 51 } while (rc == -EBUSY && !may_sleep && retries--); 52 53 if (rc) { 54 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " 55 "hcall rc: %ld\n", rc, op->hcall_err); 56 atomic_inc(&(nx_ctx->stats->errors)); 57 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); 58 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); 59 } 60 61 return rc; 62 } 63 64 /** 65 * nx_build_sg_list - build an NX scatter list describing a single buffer 66 * 67 * @sg_head: pointer to the first scatter list element to build 68 * @start_addr: pointer to the linear buffer 69 * @len: length of the data at @start_addr 70 * @sgmax: the largest number of scatter list elements we're allowed to create 71 * 72 * This function will start writing nx_sg elements at @sg_head and keep 73 * writing them until all of the data from @start_addr is described or 74 * until sgmax elements have been written. Scatter list elements will be 75 * created such that none of the elements describes a buffer that crosses a 4K 76 * boundary. 77 */ 78 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, 79 u8 *start_addr, 80 unsigned int *len, 81 u32 sgmax) 82 { 83 unsigned int sg_len = 0; 84 struct nx_sg *sg; 85 u64 sg_addr = (u64)start_addr; 86 u64 end_addr; 87 88 /* determine the start and end for this address range - slightly 89 * different if this is in VMALLOC_REGION */ 90 if (is_vmalloc_addr(start_addr)) 91 sg_addr = page_to_phys(vmalloc_to_page(start_addr)) 92 + offset_in_page(sg_addr); 93 else 94 sg_addr = __pa(sg_addr); 95 96 end_addr = sg_addr + *len; 97 98 /* each iteration will write one struct nx_sg element and add the 99 * length of data described by that element to sg_len. Once @len bytes 100 * have been described (or @sgmax elements have been written), the 101 * loop ends. min_t is used to ensure @end_addr falls on the same page 102 * as sg_addr, if not, we need to create another nx_sg element for the 103 * data on the next page. 104 * 105 * Also when using vmalloc'ed data, every time that a system page 106 * boundary is crossed the physical address needs to be re-calculated. 107 */ 108 for (sg = sg_head; sg_len < *len; sg++) { 109 u64 next_page; 110 111 sg->addr = sg_addr; 112 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), 113 end_addr); 114 115 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; 116 sg->len = min_t(u64, sg_addr, next_page) - sg->addr; 117 sg_len += sg->len; 118 119 if (sg_addr >= next_page && 120 is_vmalloc_addr(start_addr + sg_len)) { 121 sg_addr = page_to_phys(vmalloc_to_page( 122 start_addr + sg_len)); 123 end_addr = sg_addr + *len - sg_len; 124 } 125 126 if ((sg - sg_head) == sgmax) { 127 pr_err("nx: scatter/gather list overflow, pid: %d\n", 128 current->pid); 129 sg++; 130 break; 131 } 132 } 133 *len = sg_len; 134 135 /* return the moved sg_head pointer */ 136 return sg; 137 } 138 139 /** 140 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist 141 * 142 * @nx_dst: pointer to the first nx_sg element to write 143 * @sglen: max number of nx_sg entries we're allowed to write 144 * @sg_src: pointer to the source linux scatterlist to walk 145 * @start: number of bytes to fast-forward past at the beginning of @sg_src 146 * @src_len: number of bytes to walk in @sg_src 147 */ 148 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, 149 unsigned int sglen, 150 struct scatterlist *sg_src, 151 unsigned int start, 152 unsigned int *src_len) 153 { 154 struct scatter_walk walk; 155 struct nx_sg *nx_sg = nx_dst; 156 unsigned int n, offset = 0, len = *src_len; 157 char *dst; 158 159 /* we need to fast forward through @start bytes first */ 160 for (;;) { 161 scatterwalk_start(&walk, sg_src); 162 163 if (start < offset + sg_src->length) 164 break; 165 166 offset += sg_src->length; 167 sg_src = sg_next(sg_src); 168 } 169 170 /* start - offset is the number of bytes to advance in the scatterlist 171 * element we're currently looking at */ 172 scatterwalk_advance(&walk, start - offset); 173 174 while (len && (nx_sg - nx_dst) < sglen) { 175 n = scatterwalk_clamp(&walk, len); 176 if (!n) { 177 /* In cases where we have scatterlist chain sg_next 178 * handles with it properly */ 179 scatterwalk_start(&walk, sg_next(walk.sg)); 180 n = scatterwalk_clamp(&walk, len); 181 } 182 dst = scatterwalk_map(&walk); 183 184 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); 185 len -= n; 186 187 scatterwalk_unmap(dst); 188 scatterwalk_advance(&walk, n); 189 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); 190 } 191 /* update to_process */ 192 *src_len -= len; 193 194 /* return the moved destination pointer */ 195 return nx_sg; 196 } 197 198 /** 199 * trim_sg_list - ensures the bound in sg list. 200 * @sg: sg list head 201 * @end: sg lisg end 202 * @delta: is the amount we need to crop in order to bound the list. 203 * @nbytes: length of data in the scatterlists or data length - whichever 204 * is greater. 205 */ 206 static long int trim_sg_list(struct nx_sg *sg, 207 struct nx_sg *end, 208 unsigned int delta, 209 unsigned int *nbytes) 210 { 211 long int oplen; 212 long int data_back; 213 unsigned int is_delta = delta; 214 215 while (delta && end > sg) { 216 struct nx_sg *last = end - 1; 217 218 if (last->len > delta) { 219 last->len -= delta; 220 delta = 0; 221 } else { 222 end--; 223 delta -= last->len; 224 } 225 } 226 227 /* There are cases where we need to crop list in order to make it 228 * a block size multiple, but we also need to align data. In order to 229 * that we need to calculate how much we need to put back to be 230 * processed 231 */ 232 oplen = (sg - end) * sizeof(struct nx_sg); 233 if (is_delta) { 234 data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len; 235 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1)); 236 *nbytes -= data_back; 237 } 238 239 return oplen; 240 } 241 242 /** 243 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX 244 * scatterlists based on them. 245 * 246 * @nx_ctx: NX crypto context for the lists we're building 247 * @iv: iv data, if the algorithm requires it 248 * @dst: destination scatterlist 249 * @src: source scatterlist 250 * @nbytes: length of data described in the scatterlists 251 * @offset: number of bytes to fast-forward past at the beginning of 252 * scatterlists. 253 * @oiv: destination for the iv data, if the algorithm requires it 254 * 255 * This is common code shared by all the AES algorithms. It uses the crypto 256 * scatterlist walk routines to traverse input and output scatterlists, building 257 * corresponding NX scatterlists 258 */ 259 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, 260 const u8 *iv, 261 struct scatterlist *dst, 262 struct scatterlist *src, 263 unsigned int *nbytes, 264 unsigned int offset, 265 u8 *oiv) 266 { 267 unsigned int delta = 0; 268 unsigned int total = *nbytes; 269 struct nx_sg *nx_insg = nx_ctx->in_sg; 270 struct nx_sg *nx_outsg = nx_ctx->out_sg; 271 unsigned int max_sg_len; 272 273 max_sg_len = min_t(u64, nx_ctx->ap->sglen, 274 nx_driver.of.max_sg_len/sizeof(struct nx_sg)); 275 max_sg_len = min_t(u64, max_sg_len, 276 nx_ctx->ap->databytelen/NX_PAGE_SIZE); 277 278 if (oiv) 279 memcpy(oiv, iv, AES_BLOCK_SIZE); 280 281 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); 282 283 nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, 284 offset, nbytes); 285 nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, 286 offset, nbytes); 287 288 if (*nbytes < total) 289 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); 290 291 /* these lengths should be negative, which will indicate to phyp that 292 * the input and output parameters are scatterlists, not linear 293 * buffers */ 294 nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes); 295 nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes); 296 297 return 0; 298 } 299 300 /** 301 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct 302 * 303 * @nx_ctx: the nx context to initialize 304 * @function: the function code for the op 305 */ 306 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) 307 { 308 spin_lock_init(&nx_ctx->lock); 309 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); 310 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; 311 312 nx_ctx->op.flags = function; 313 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); 314 nx_ctx->op.in = __pa(nx_ctx->in_sg); 315 nx_ctx->op.out = __pa(nx_ctx->out_sg); 316 317 if (nx_ctx->csbcpb_aead) { 318 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; 319 320 nx_ctx->op_aead.flags = function; 321 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); 322 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); 323 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); 324 } 325 } 326 327 static void nx_of_update_status(struct device *dev, 328 struct property *p, 329 struct nx_of *props) 330 { 331 if (!strncmp(p->value, "okay", p->length)) { 332 props->status = NX_WAITING; 333 props->flags |= NX_OF_FLAG_STATUS_SET; 334 } else { 335 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, 336 (char *)p->value); 337 } 338 } 339 340 static void nx_of_update_sglen(struct device *dev, 341 struct property *p, 342 struct nx_of *props) 343 { 344 if (p->length != sizeof(props->max_sg_len)) { 345 dev_err(dev, "%s: unexpected format for " 346 "ibm,max-sg-len property\n", __func__); 347 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " 348 "long, expected %zd bytes\n", __func__, 349 p->length, sizeof(props->max_sg_len)); 350 return; 351 } 352 353 props->max_sg_len = *(u32 *)p->value; 354 props->flags |= NX_OF_FLAG_MAXSGLEN_SET; 355 } 356 357 static void nx_of_update_msc(struct device *dev, 358 struct property *p, 359 struct nx_of *props) 360 { 361 struct msc_triplet *trip; 362 struct max_sync_cop *msc; 363 unsigned int bytes_so_far, i, lenp; 364 365 msc = (struct max_sync_cop *)p->value; 366 lenp = p->length; 367 368 /* You can't tell if the data read in for this property is sane by its 369 * size alone. This is because there are sizes embedded in the data 370 * structure. The best we can do is check lengths as we parse and bail 371 * as soon as a length error is detected. */ 372 bytes_so_far = 0; 373 374 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { 375 bytes_so_far += sizeof(struct max_sync_cop); 376 377 trip = msc->trip; 378 379 for (i = 0; 380 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && 381 i < msc->triplets; 382 i++) { 383 if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) { 384 dev_err(dev, "unknown function code/mode " 385 "combo: %d/%d (ignored)\n", msc->fc, 386 msc->mode); 387 goto next_loop; 388 } 389 390 if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) { 391 dev_warn(dev, "bogus sglen/databytelen: " 392 "%u/%u (ignored)\n", trip->sglen, 393 trip->databytelen); 394 goto next_loop; 395 } 396 397 switch (trip->keybitlen) { 398 case 128: 399 case 160: 400 props->ap[msc->fc][msc->mode][0].databytelen = 401 trip->databytelen; 402 props->ap[msc->fc][msc->mode][0].sglen = 403 trip->sglen; 404 break; 405 case 192: 406 props->ap[msc->fc][msc->mode][1].databytelen = 407 trip->databytelen; 408 props->ap[msc->fc][msc->mode][1].sglen = 409 trip->sglen; 410 break; 411 case 256: 412 if (msc->fc == NX_FC_AES) { 413 props->ap[msc->fc][msc->mode][2]. 414 databytelen = trip->databytelen; 415 props->ap[msc->fc][msc->mode][2].sglen = 416 trip->sglen; 417 } else if (msc->fc == NX_FC_AES_HMAC || 418 msc->fc == NX_FC_SHA) { 419 props->ap[msc->fc][msc->mode][1]. 420 databytelen = trip->databytelen; 421 props->ap[msc->fc][msc->mode][1].sglen = 422 trip->sglen; 423 } else { 424 dev_warn(dev, "unknown function " 425 "code/key bit len combo" 426 ": (%u/256)\n", msc->fc); 427 } 428 break; 429 case 512: 430 props->ap[msc->fc][msc->mode][2].databytelen = 431 trip->databytelen; 432 props->ap[msc->fc][msc->mode][2].sglen = 433 trip->sglen; 434 break; 435 default: 436 dev_warn(dev, "unknown function code/key bit " 437 "len combo: (%u/%u)\n", msc->fc, 438 trip->keybitlen); 439 break; 440 } 441 next_loop: 442 bytes_so_far += sizeof(struct msc_triplet); 443 trip++; 444 } 445 446 msc = (struct max_sync_cop *)trip; 447 } 448 449 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; 450 } 451 452 /** 453 * nx_of_init - read openFirmware values from the device tree 454 * 455 * @dev: device handle 456 * @props: pointer to struct to hold the properties values 457 * 458 * Called once at driver probe time, this function will read out the 459 * openFirmware properties we use at runtime. If all the OF properties are 460 * acceptable, when we exit this function props->flags will indicate that 461 * we're ready to register our crypto algorithms. 462 */ 463 static void nx_of_init(struct device *dev, struct nx_of *props) 464 { 465 struct device_node *base_node = dev->of_node; 466 struct property *p; 467 468 p = of_find_property(base_node, "status", NULL); 469 if (!p) 470 dev_info(dev, "%s: property 'status' not found\n", __func__); 471 else 472 nx_of_update_status(dev, p, props); 473 474 p = of_find_property(base_node, "ibm,max-sg-len", NULL); 475 if (!p) 476 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", 477 __func__); 478 else 479 nx_of_update_sglen(dev, p, props); 480 481 p = of_find_property(base_node, "ibm,max-sync-cop", NULL); 482 if (!p) 483 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", 484 __func__); 485 else 486 nx_of_update_msc(dev, p, props); 487 } 488 489 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot) 490 { 491 struct alg_props *props = &nx_driver.of.ap[fc][mode][slot]; 492 493 if (!props->sglen || props->databytelen < NX_PAGE_SIZE) { 494 if (dev) 495 dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: " 496 "%u/%u (ignored)\n", fc, mode, slot, 497 props->sglen, props->databytelen); 498 return false; 499 } 500 501 return true; 502 } 503 504 static bool nx_check_props(struct device *dev, u32 fc, u32 mode) 505 { 506 int i; 507 508 for (i = 0; i < 3; i++) 509 if (!nx_check_prop(dev, fc, mode, i)) 510 return false; 511 512 return true; 513 } 514 515 static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode) 516 { 517 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 518 crypto_register_skcipher(alg) : 0; 519 } 520 521 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode) 522 { 523 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ? 524 crypto_register_aead(alg) : 0; 525 } 526 527 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot) 528 { 529 return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev, 530 fc, mode, slot) : 531 nx_check_props(&nx_driver.viodev->dev, fc, mode)) ? 532 crypto_register_shash(alg) : 0; 533 } 534 535 static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode) 536 { 537 if (nx_check_props(NULL, fc, mode)) 538 crypto_unregister_skcipher(alg); 539 } 540 541 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode) 542 { 543 if (nx_check_props(NULL, fc, mode)) 544 crypto_unregister_aead(alg); 545 } 546 547 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode, 548 int slot) 549 { 550 if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) : 551 nx_check_props(NULL, fc, mode)) 552 crypto_unregister_shash(alg); 553 } 554 555 /** 556 * nx_register_algs - register algorithms with the crypto API 557 * 558 * Called from nx_probe() 559 * 560 * If all OF properties are in an acceptable state, the driver flags will 561 * indicate that we're ready and we'll create our debugfs files and register 562 * out crypto algorithms. 563 */ 564 static int nx_register_algs(void) 565 { 566 int rc = -1; 567 568 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) 569 goto out; 570 571 memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); 572 573 NX_DEBUGFS_INIT(&nx_driver); 574 575 nx_driver.of.status = NX_OKAY; 576 577 rc = nx_register_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 578 if (rc) 579 goto out; 580 581 rc = nx_register_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 582 if (rc) 583 goto out_unreg_ecb; 584 585 rc = nx_register_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, 586 NX_MODE_AES_CTR); 587 if (rc) 588 goto out_unreg_cbc; 589 590 rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 591 if (rc) 592 goto out_unreg_ctr3686; 593 594 rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 595 if (rc) 596 goto out_unreg_gcm; 597 598 rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 599 if (rc) 600 goto out_unreg_gcm4106; 601 602 rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 603 if (rc) 604 goto out_unreg_ccm; 605 606 rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 607 NX_PROPS_SHA256); 608 if (rc) 609 goto out_unreg_ccm4309; 610 611 rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 612 NX_PROPS_SHA512); 613 if (rc) 614 goto out_unreg_s256; 615 616 rc = nx_register_shash(&nx_shash_aes_xcbc_alg, 617 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 618 if (rc) 619 goto out_unreg_s512; 620 621 goto out; 622 623 out_unreg_s512: 624 nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA, 625 NX_PROPS_SHA512); 626 out_unreg_s256: 627 nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA, 628 NX_PROPS_SHA256); 629 out_unreg_ccm4309: 630 nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 631 out_unreg_ccm: 632 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 633 out_unreg_gcm4106: 634 nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 635 out_unreg_gcm: 636 nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM); 637 out_unreg_ctr3686: 638 nx_unregister_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR); 639 out_unreg_cbc: 640 nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC); 641 out_unreg_ecb: 642 nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB); 643 out: 644 return rc; 645 } 646 647 /** 648 * nx_crypto_ctx_init - create and initialize a crypto api context 649 * 650 * @nx_ctx: the crypto api context 651 * @fc: function code for the context 652 * @mode: the function code specific mode for this context 653 */ 654 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) 655 { 656 if (nx_driver.of.status != NX_OKAY) { 657 pr_err("Attempt to initialize NX crypto context while device " 658 "is not available!\n"); 659 return -ENODEV; 660 } 661 662 /* we need an extra page for csbcpb_aead for these modes */ 663 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 664 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + 665 sizeof(struct nx_csbcpb); 666 else 667 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + 668 sizeof(struct nx_csbcpb); 669 670 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); 671 if (!nx_ctx->kmem) 672 return -ENOMEM; 673 674 /* the csbcpb and scatterlists must be 4K aligned pages */ 675 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, 676 (u64)NX_PAGE_SIZE)); 677 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); 678 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); 679 680 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 681 nx_ctx->csbcpb_aead = 682 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + 683 NX_PAGE_SIZE); 684 685 /* give each context a pointer to global stats and their OF 686 * properties */ 687 nx_ctx->stats = &nx_driver.stats; 688 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], 689 sizeof(struct alg_props) * 3); 690 691 return 0; 692 } 693 694 /* entry points from the crypto tfm initializers */ 695 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm) 696 { 697 crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx)); 698 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 699 NX_MODE_AES_CCM); 700 } 701 702 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm) 703 { 704 crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx)); 705 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES, 706 NX_MODE_AES_GCM); 707 } 708 709 int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm) 710 { 711 return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES, 712 NX_MODE_AES_CTR); 713 } 714 715 int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm) 716 { 717 return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES, 718 NX_MODE_AES_CBC); 719 } 720 721 int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm) 722 { 723 return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES, 724 NX_MODE_AES_ECB); 725 } 726 727 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) 728 { 729 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); 730 } 731 732 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) 733 { 734 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 735 NX_MODE_AES_XCBC_MAC); 736 } 737 738 /** 739 * nx_crypto_ctx_exit - destroy a crypto api context 740 * 741 * @tfm: the crypto transform pointer for the context 742 * 743 * As crypto API contexts are destroyed, this exit hook is called to free the 744 * memory associated with it. 745 */ 746 void nx_crypto_ctx_exit(struct crypto_tfm *tfm) 747 { 748 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 749 750 kfree_sensitive(nx_ctx->kmem); 751 nx_ctx->csbcpb = NULL; 752 nx_ctx->csbcpb_aead = NULL; 753 nx_ctx->in_sg = NULL; 754 nx_ctx->out_sg = NULL; 755 } 756 757 void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm) 758 { 759 nx_crypto_ctx_exit(crypto_skcipher_ctx(tfm)); 760 } 761 762 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm) 763 { 764 struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm); 765 766 kfree_sensitive(nx_ctx->kmem); 767 } 768 769 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) 770 { 771 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", 772 viodev->name, viodev->resource_id); 773 774 if (nx_driver.viodev) { 775 dev_err(&viodev->dev, "%s: Attempt to register more than one " 776 "instance of the hardware\n", __func__); 777 return -EINVAL; 778 } 779 780 nx_driver.viodev = viodev; 781 782 nx_of_init(&viodev->dev, &nx_driver.of); 783 784 return nx_register_algs(); 785 } 786 787 static void nx_remove(struct vio_dev *viodev) 788 { 789 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", 790 viodev->unit_address); 791 792 if (nx_driver.of.status == NX_OKAY) { 793 NX_DEBUGFS_FINI(&nx_driver); 794 795 nx_unregister_shash(&nx_shash_aes_xcbc_alg, 796 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1); 797 nx_unregister_shash(&nx_shash_sha512_alg, 798 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256); 799 nx_unregister_shash(&nx_shash_sha256_alg, 800 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512); 801 nx_unregister_aead(&nx_ccm4309_aes_alg, 802 NX_FC_AES, NX_MODE_AES_CCM); 803 nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM); 804 nx_unregister_aead(&nx_gcm4106_aes_alg, 805 NX_FC_AES, NX_MODE_AES_GCM); 806 nx_unregister_aead(&nx_gcm_aes_alg, 807 NX_FC_AES, NX_MODE_AES_GCM); 808 nx_unregister_skcipher(&nx_ctr3686_aes_alg, 809 NX_FC_AES, NX_MODE_AES_CTR); 810 nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, 811 NX_MODE_AES_CBC); 812 nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, 813 NX_MODE_AES_ECB); 814 } 815 } 816 817 818 /* module wide initialization/cleanup */ 819 static int __init nx_init(void) 820 { 821 return vio_register_driver(&nx_driver.viodriver); 822 } 823 824 static void __exit nx_fini(void) 825 { 826 vio_unregister_driver(&nx_driver.viodriver); 827 } 828 829 static const struct vio_device_id nx_crypto_driver_ids[] = { 830 { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, 831 { "", "" } 832 }; 833 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); 834 835 /* driver state structure */ 836 struct nx_crypto_driver nx_driver = { 837 .viodriver = { 838 .id_table = nx_crypto_driver_ids, 839 .probe = nx_probe, 840 .remove = nx_remove, 841 .name = NX_NAME, 842 }, 843 }; 844 845 module_init(nx_init); 846 module_exit(nx_fini); 847 848 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); 849 MODULE_DESCRIPTION(NX_STRING); 850 MODULE_LICENSE("GPL"); 851 MODULE_VERSION(NX_VERSION); 852