xref: /openbmc/linux/drivers/crypto/nx/nx-sha512.c (revision 958ef1e3)
1 /**
2  * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/module.h>
25 #include <asm/vio.h>
26 
27 #include "nx_csbcpb.h"
28 #include "nx.h"
29 
30 
31 static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
32 {
33 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
34 	int err;
35 
36 	err = nx_crypto_ctx_sha_init(tfm);
37 	if (err)
38 		return err;
39 
40 	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
41 
42 	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
43 
44 	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
45 
46 	return 0;
47 }
48 
49 static int nx_sha512_init(struct shash_desc *desc)
50 {
51 	struct sha512_state *sctx = shash_desc_ctx(desc);
52 
53 	memset(sctx, 0, sizeof *sctx);
54 
55 	sctx->state[0] = __cpu_to_be64(SHA512_H0);
56 	sctx->state[1] = __cpu_to_be64(SHA512_H1);
57 	sctx->state[2] = __cpu_to_be64(SHA512_H2);
58 	sctx->state[3] = __cpu_to_be64(SHA512_H3);
59 	sctx->state[4] = __cpu_to_be64(SHA512_H4);
60 	sctx->state[5] = __cpu_to_be64(SHA512_H5);
61 	sctx->state[6] = __cpu_to_be64(SHA512_H6);
62 	sctx->state[7] = __cpu_to_be64(SHA512_H7);
63 	sctx->count[0] = 0;
64 
65 	return 0;
66 }
67 
68 static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
69 			    unsigned int len)
70 {
71 	struct sha512_state *sctx = shash_desc_ctx(desc);
72 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
74 	struct nx_sg *out_sg;
75 	u64 to_process, leftover = 0, total;
76 	unsigned long irq_flags;
77 	int rc = 0;
78 	int data_len;
79 	u32 max_sg_len;
80 	u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
81 
82 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
83 
84 	/* 2 cases for total data len:
85 	 *  1: < SHA512_BLOCK_SIZE: copy into state, return 0
86 	 *  2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
87 	 */
88 	total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
89 	if (total < SHA512_BLOCK_SIZE) {
90 		memcpy(sctx->buf + buf_len, data, len);
91 		sctx->count[0] += len;
92 		goto out;
93 	}
94 
95 	memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
96 	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
97 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
98 
99 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
100 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
101 	max_sg_len = min_t(u64, max_sg_len,
102 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
103 
104 	data_len = SHA512_DIGEST_SIZE;
105 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
106 				  &data_len, max_sg_len);
107 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
108 
109 	if (data_len != SHA512_DIGEST_SIZE) {
110 		rc = -EINVAL;
111 		goto out;
112 	}
113 
114 	do {
115 		int used_sgs = 0;
116 		struct nx_sg *in_sg = nx_ctx->in_sg;
117 
118 		if (buf_len) {
119 			data_len = buf_len;
120 			in_sg = nx_build_sg_list(in_sg,
121 						 (u8 *) sctx->buf,
122 						 &data_len, max_sg_len);
123 
124 			if (data_len != buf_len) {
125 				rc = -EINVAL;
126 				goto out;
127 			}
128 			used_sgs = in_sg - nx_ctx->in_sg;
129 		}
130 
131 		/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
132 		 * processed in this iteration. This value is restricted
133 		 * by sg list limits and number of sgs we already used
134 		 * for leftover data. (see above)
135 		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
136 		 * but because data may not be aligned, we need to account
137 		 * for that too. */
138 		to_process = min_t(u64, total,
139 			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
140 		to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
141 
142 		data_len = to_process - buf_len;
143 		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
144 					 &data_len, max_sg_len);
145 
146 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
147 
148 		if (data_len != (to_process - buf_len)) {
149 			rc = -EINVAL;
150 			goto out;
151 		}
152 
153 		to_process = data_len + buf_len;
154 		leftover = total - to_process;
155 
156 		/*
157 		 * we've hit the nx chip previously and we're updating
158 		 * again, so copy over the partial digest.
159 		 */
160 		memcpy(csbcpb->cpb.sha512.input_partial_digest,
161 			       csbcpb->cpb.sha512.message_digest,
162 			       SHA512_DIGEST_SIZE);
163 
164 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
165 			rc = -EINVAL;
166 			goto out;
167 		}
168 
169 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
170 				   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
171 		if (rc)
172 			goto out;
173 
174 		atomic_inc(&(nx_ctx->stats->sha512_ops));
175 
176 		total -= to_process;
177 		data += to_process - buf_len;
178 		buf_len = 0;
179 
180 	} while (leftover >= SHA512_BLOCK_SIZE);
181 
182 	/* copy the leftover back into the state struct */
183 	if (leftover)
184 		memcpy(sctx->buf, data, leftover);
185 	sctx->count[0] += len;
186 	memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
187 out:
188 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
189 	return rc;
190 }
191 
192 static int nx_sha512_final(struct shash_desc *desc, u8 *out)
193 {
194 	struct sha512_state *sctx = shash_desc_ctx(desc);
195 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
196 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
197 	struct nx_sg *in_sg, *out_sg;
198 	u32 max_sg_len;
199 	u64 count0;
200 	unsigned long irq_flags;
201 	int rc = 0;
202 	int len;
203 
204 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
205 
206 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
207 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
208 	max_sg_len = min_t(u64, max_sg_len,
209 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
210 
211 	/* final is represented by continuing the operation and indicating that
212 	 * this is not an intermediate operation */
213 	if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
214 		/* we've hit the nx chip previously, now we're finalizing,
215 		 * so copy over the partial digest */
216 		memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
217 							SHA512_DIGEST_SIZE);
218 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
219 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
220 	} else {
221 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
222 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
223 	}
224 
225 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
226 
227 	count0 = sctx->count[0] * 8;
228 
229 	csbcpb->cpb.sha512.message_bit_length_lo = count0;
230 
231 	len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
232 	in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
233 				 max_sg_len);
234 
235 	if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
236 		rc = -EINVAL;
237 		goto out;
238 	}
239 
240 	len = SHA512_DIGEST_SIZE;
241 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
242 				 max_sg_len);
243 
244 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
245 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
246 
247 	if (!nx_ctx->op.outlen) {
248 		rc = -EINVAL;
249 		goto out;
250 	}
251 
252 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
253 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
254 	if (rc)
255 		goto out;
256 
257 	atomic_inc(&(nx_ctx->stats->sha512_ops));
258 	atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
259 
260 	memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
261 out:
262 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
263 	return rc;
264 }
265 
266 static int nx_sha512_export(struct shash_desc *desc, void *out)
267 {
268 	struct sha512_state *sctx = shash_desc_ctx(desc);
269 
270 	memcpy(out, sctx, sizeof(*sctx));
271 
272 	return 0;
273 }
274 
275 static int nx_sha512_import(struct shash_desc *desc, const void *in)
276 {
277 	struct sha512_state *sctx = shash_desc_ctx(desc);
278 
279 	memcpy(sctx, in, sizeof(*sctx));
280 
281 	return 0;
282 }
283 
284 struct shash_alg nx_shash_sha512_alg = {
285 	.digestsize = SHA512_DIGEST_SIZE,
286 	.init       = nx_sha512_init,
287 	.update     = nx_sha512_update,
288 	.final      = nx_sha512_final,
289 	.export     = nx_sha512_export,
290 	.import     = nx_sha512_import,
291 	.descsize   = sizeof(struct sha512_state),
292 	.statesize  = sizeof(struct sha512_state),
293 	.base       = {
294 		.cra_name        = "sha512",
295 		.cra_driver_name = "sha512-nx",
296 		.cra_priority    = 300,
297 		.cra_blocksize   = SHA512_BLOCK_SIZE,
298 		.cra_module      = THIS_MODULE,
299 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
300 		.cra_init        = nx_crypto_ctx_sha512_init,
301 		.cra_exit        = nx_crypto_ctx_exit,
302 	}
303 };
304