xref: /openbmc/linux/drivers/crypto/nx/nx-sha256.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /**
2  * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/module.h>
25 #include <asm/vio.h>
26 #include <asm/byteorder.h>
27 
28 #include "nx_csbcpb.h"
29 #include "nx.h"
30 
31 
32 static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
33 {
34 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
35 	int err;
36 
37 	err = nx_crypto_ctx_sha_init(tfm);
38 	if (err)
39 		return err;
40 
41 	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
42 
43 	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
44 
45 	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
46 
47 	return 0;
48 }
49 
50 static int nx_sha256_init(struct shash_desc *desc) {
51 	struct sha256_state *sctx = shash_desc_ctx(desc);
52 
53 	memset(sctx, 0, sizeof *sctx);
54 
55 	sctx->state[0] = __cpu_to_be32(SHA256_H0);
56 	sctx->state[1] = __cpu_to_be32(SHA256_H1);
57 	sctx->state[2] = __cpu_to_be32(SHA256_H2);
58 	sctx->state[3] = __cpu_to_be32(SHA256_H3);
59 	sctx->state[4] = __cpu_to_be32(SHA256_H4);
60 	sctx->state[5] = __cpu_to_be32(SHA256_H5);
61 	sctx->state[6] = __cpu_to_be32(SHA256_H6);
62 	sctx->state[7] = __cpu_to_be32(SHA256_H7);
63 	sctx->count = 0;
64 
65 	return 0;
66 }
67 
68 static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
69 			    unsigned int len)
70 {
71 	struct sha256_state *sctx = shash_desc_ctx(desc);
72 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
74 	struct nx_sg *out_sg;
75 	u64 to_process = 0, leftover, total;
76 	unsigned long irq_flags;
77 	int rc = 0;
78 	int data_len;
79 	u32 max_sg_len;
80 	u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
81 
82 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
83 
84 	/* 2 cases for total data len:
85 	 *  1: < SHA256_BLOCK_SIZE: copy into state, return 0
86 	 *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
87 	 */
88 	total = (sctx->count % SHA256_BLOCK_SIZE) + len;
89 	if (total < SHA256_BLOCK_SIZE) {
90 		memcpy(sctx->buf + buf_len, data, len);
91 		sctx->count += len;
92 		goto out;
93 	}
94 
95 	memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
96 	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
97 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
98 
99 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
100 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
101 	max_sg_len = min_t(u64, max_sg_len,
102 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
103 
104 	data_len = SHA256_DIGEST_SIZE;
105 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
106 				  &data_len, max_sg_len);
107 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
108 
109 	if (data_len != SHA256_DIGEST_SIZE) {
110 		rc = -EINVAL;
111 		goto out;
112 	}
113 
114 	do {
115 		int used_sgs = 0;
116 		struct nx_sg *in_sg = nx_ctx->in_sg;
117 
118 		if (buf_len) {
119 			data_len = buf_len;
120 			in_sg = nx_build_sg_list(in_sg,
121 						 (u8 *) sctx->buf,
122 						 &data_len,
123 						 max_sg_len);
124 
125 			if (data_len != buf_len) {
126 				rc = -EINVAL;
127 				goto out;
128 			}
129 			used_sgs = in_sg - nx_ctx->in_sg;
130 		}
131 
132 		/* to_process: SHA256_BLOCK_SIZE aligned chunk to be
133 		 * processed in this iteration. This value is restricted
134 		 * by sg list limits and number of sgs we already used
135 		 * for leftover data. (see above)
136 		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
137 		 * but because data may not be aligned, we need to account
138 		 * for that too. */
139 		to_process = min_t(u64, total,
140 			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
141 		to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
142 
143 		data_len = to_process - buf_len;
144 		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
145 					 &data_len, max_sg_len);
146 
147 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
148 
149 		to_process = data_len + buf_len;
150 		leftover = total - to_process;
151 
152 		/*
153 		 * we've hit the nx chip previously and we're updating
154 		 * again, so copy over the partial digest.
155 		 */
156 		memcpy(csbcpb->cpb.sha256.input_partial_digest,
157 			       csbcpb->cpb.sha256.message_digest,
158 			       SHA256_DIGEST_SIZE);
159 
160 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
161 			rc = -EINVAL;
162 			goto out;
163 		}
164 
165 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
166 				   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
167 		if (rc)
168 			goto out;
169 
170 		atomic_inc(&(nx_ctx->stats->sha256_ops));
171 
172 		total -= to_process;
173 		data += to_process - buf_len;
174 		buf_len = 0;
175 
176 	} while (leftover >= SHA256_BLOCK_SIZE);
177 
178 	/* copy the leftover back into the state struct */
179 	if (leftover)
180 		memcpy(sctx->buf, data, leftover);
181 
182 	sctx->count += len;
183 	memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
184 out:
185 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
186 	return rc;
187 }
188 
189 static int nx_sha256_final(struct shash_desc *desc, u8 *out)
190 {
191 	struct sha256_state *sctx = shash_desc_ctx(desc);
192 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
193 	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
194 	struct nx_sg *in_sg, *out_sg;
195 	unsigned long irq_flags;
196 	u32 max_sg_len;
197 	int rc = 0;
198 	int len;
199 
200 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
201 
202 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
203 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
204 	max_sg_len = min_t(u64, max_sg_len,
205 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
206 
207 	/* final is represented by continuing the operation and indicating that
208 	 * this is not an intermediate operation */
209 	if (sctx->count >= SHA256_BLOCK_SIZE) {
210 		/* we've hit the nx chip previously, now we're finalizing,
211 		 * so copy over the partial digest */
212 		memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
213 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
214 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
215 	} else {
216 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
217 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
218 	}
219 
220 	csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
221 
222 	len = sctx->count & (SHA256_BLOCK_SIZE - 1);
223 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
224 				 &len, max_sg_len);
225 
226 	if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
227 		rc = -EINVAL;
228 		goto out;
229 	}
230 
231 	len = SHA256_DIGEST_SIZE;
232 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len);
233 
234 	if (len != SHA256_DIGEST_SIZE) {
235 		rc = -EINVAL;
236 		goto out;
237 	}
238 
239 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
240 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
241 	if (!nx_ctx->op.outlen) {
242 		rc = -EINVAL;
243 		goto out;
244 	}
245 
246 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
247 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
248 	if (rc)
249 		goto out;
250 
251 	atomic_inc(&(nx_ctx->stats->sha256_ops));
252 
253 	atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
254 	memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
255 out:
256 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
257 	return rc;
258 }
259 
260 static int nx_sha256_export(struct shash_desc *desc, void *out)
261 {
262 	struct sha256_state *sctx = shash_desc_ctx(desc);
263 
264 	memcpy(out, sctx, sizeof(*sctx));
265 
266 	return 0;
267 }
268 
269 static int nx_sha256_import(struct shash_desc *desc, const void *in)
270 {
271 	struct sha256_state *sctx = shash_desc_ctx(desc);
272 
273 	memcpy(sctx, in, sizeof(*sctx));
274 
275 	return 0;
276 }
277 
278 struct shash_alg nx_shash_sha256_alg = {
279 	.digestsize = SHA256_DIGEST_SIZE,
280 	.init       = nx_sha256_init,
281 	.update     = nx_sha256_update,
282 	.final      = nx_sha256_final,
283 	.export     = nx_sha256_export,
284 	.import     = nx_sha256_import,
285 	.descsize   = sizeof(struct sha256_state),
286 	.statesize  = sizeof(struct sha256_state),
287 	.base       = {
288 		.cra_name        = "sha256",
289 		.cra_driver_name = "sha256-nx",
290 		.cra_priority    = 300,
291 		.cra_blocksize   = SHA256_BLOCK_SIZE,
292 		.cra_module      = THIS_MODULE,
293 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
294 		.cra_init        = nx_crypto_ctx_sha256_init,
295 		.cra_exit        = nx_crypto_ctx_exit,
296 	}
297 };
298