xref: /openbmc/linux/drivers/crypto/nx/nx-aes-xcbc.c (revision c4e78957)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4  *
5  * Copyright (C) 2011-2012 International Business Machines Inc.
6  *
7  * Author: Kent Yoder <yoder1@us.ibm.com>
8  */
9 
10 #include <crypto/internal/hash.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/crypto.h>
16 #include <asm/vio.h>
17 
18 #include "nx_csbcpb.h"
19 #include "nx.h"
20 
21 
22 struct xcbc_state {
23 	u8 state[AES_BLOCK_SIZE];
24 	unsigned int count;
25 	u8 buffer[AES_BLOCK_SIZE];
26 };
27 
28 static int nx_xcbc_set_key(struct crypto_shash *desc,
29 			   const u8            *in_key,
30 			   unsigned int         key_len)
31 {
32 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
33 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
34 
35 	switch (key_len) {
36 	case AES_KEYSIZE_128:
37 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
38 		break;
39 	default:
40 		return -EINVAL;
41 	}
42 
43 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
44 
45 	return 0;
46 }
47 
48 /*
49  * Based on RFC 3566, for a zero-length message:
50  *
51  * n = 1
52  * K1 = E(K, 0x01010101010101010101010101010101)
53  * K3 = E(K, 0x03030303030303030303030303030303)
54  * E[0] = 0x00000000000000000000000000000000
55  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
56  * E[1] = (K1, M[1] ^ E[0] ^ K3)
57  * Tag = M[1]
58  */
59 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
60 {
61 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
62 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
63 	struct nx_sg *in_sg, *out_sg;
64 	u8 keys[2][AES_BLOCK_SIZE];
65 	u8 key[32];
66 	int rc = 0;
67 	int len;
68 
69 	/* Change to ECB mode */
70 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
71 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
72 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
73 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
74 
75 	/* K1 and K3 base patterns */
76 	memset(keys[0], 0x01, sizeof(keys[0]));
77 	memset(keys[1], 0x03, sizeof(keys[1]));
78 
79 	len = sizeof(keys);
80 	/* Generate K1 and K3 encrypting the patterns */
81 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
82 				 nx_ctx->ap->sglen);
83 
84 	if (len != sizeof(keys))
85 		return -EINVAL;
86 
87 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
88 				  nx_ctx->ap->sglen);
89 
90 	if (len != sizeof(keys))
91 		return -EINVAL;
92 
93 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
94 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
95 
96 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
97 	if (rc)
98 		goto out;
99 	atomic_inc(&(nx_ctx->stats->aes_ops));
100 
101 	/* XOr K3 with the padding for a 0 length message */
102 	keys[1][0] ^= 0x80;
103 
104 	len = sizeof(keys[1]);
105 
106 	/* Encrypt the final result */
107 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
108 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
109 				 nx_ctx->ap->sglen);
110 
111 	if (len != sizeof(keys[1]))
112 		return -EINVAL;
113 
114 	len = AES_BLOCK_SIZE;
115 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
116 				  nx_ctx->ap->sglen);
117 
118 	if (len != AES_BLOCK_SIZE)
119 		return -EINVAL;
120 
121 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
122 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
123 
124 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
125 	if (rc)
126 		goto out;
127 	atomic_inc(&(nx_ctx->stats->aes_ops));
128 
129 out:
130 	/* Restore XCBC mode */
131 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
132 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
133 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
134 
135 	return rc;
136 }
137 
138 static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
139 {
140 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
141 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
142 	int err;
143 
144 	err = nx_crypto_ctx_aes_xcbc_init(tfm);
145 	if (err)
146 		return err;
147 
148 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
149 
150 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
151 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
152 
153 	return 0;
154 }
155 
156 static int nx_xcbc_init(struct shash_desc *desc)
157 {
158 	struct xcbc_state *sctx = shash_desc_ctx(desc);
159 
160 	memset(sctx, 0, sizeof *sctx);
161 
162 	return 0;
163 }
164 
165 static int nx_xcbc_update(struct shash_desc *desc,
166 			  const u8          *data,
167 			  unsigned int       len)
168 {
169 	struct xcbc_state *sctx = shash_desc_ctx(desc);
170 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
171 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
172 	struct nx_sg *in_sg;
173 	struct nx_sg *out_sg;
174 	u32 to_process = 0, leftover, total;
175 	unsigned int max_sg_len;
176 	unsigned long irq_flags;
177 	int rc = 0;
178 	int data_len;
179 
180 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
181 
182 
183 	total = sctx->count + len;
184 
185 	/* 2 cases for total data len:
186 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
187 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
188 	 */
189 	if (total <= AES_BLOCK_SIZE) {
190 		memcpy(sctx->buffer + sctx->count, data, len);
191 		sctx->count += len;
192 		goto out;
193 	}
194 
195 	in_sg = nx_ctx->in_sg;
196 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
197 				nx_ctx->ap->sglen);
198 	max_sg_len = min_t(u64, max_sg_len,
199 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
200 
201 	data_len = AES_BLOCK_SIZE;
202 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
203 				  &len, nx_ctx->ap->sglen);
204 
205 	if (data_len != AES_BLOCK_SIZE) {
206 		rc = -EINVAL;
207 		goto out;
208 	}
209 
210 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
211 
212 	do {
213 		to_process = total - to_process;
214 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
215 
216 		leftover = total - to_process;
217 
218 		/* the hardware will not accept a 0 byte operation for this
219 		 * algorithm and the operation MUST be finalized to be correct.
220 		 * So if we happen to get an update that falls on a block sized
221 		 * boundary, we must save off the last block to finalize with
222 		 * later. */
223 		if (!leftover) {
224 			to_process -= AES_BLOCK_SIZE;
225 			leftover = AES_BLOCK_SIZE;
226 		}
227 
228 		if (sctx->count) {
229 			data_len = sctx->count;
230 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
231 						(u8 *) sctx->buffer,
232 						&data_len,
233 						max_sg_len);
234 			if (data_len != sctx->count) {
235 				rc = -EINVAL;
236 				goto out;
237 			}
238 		}
239 
240 		data_len = to_process - sctx->count;
241 		in_sg = nx_build_sg_list(in_sg,
242 					(u8 *) data,
243 					&data_len,
244 					max_sg_len);
245 
246 		if (data_len != to_process - sctx->count) {
247 			rc = -EINVAL;
248 			goto out;
249 		}
250 
251 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
252 					sizeof(struct nx_sg);
253 
254 		/* we've hit the nx chip previously and we're updating again,
255 		 * so copy over the partial digest */
256 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
257 			memcpy(csbcpb->cpb.aes_xcbc.cv,
258 				csbcpb->cpb.aes_xcbc.out_cv_mac,
259 				AES_BLOCK_SIZE);
260 		}
261 
262 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
263 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
264 			rc = -EINVAL;
265 			goto out;
266 		}
267 
268 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
269 		if (rc)
270 			goto out;
271 
272 		atomic_inc(&(nx_ctx->stats->aes_ops));
273 
274 		/* everything after the first update is continuation */
275 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
276 
277 		total -= to_process;
278 		data += to_process - sctx->count;
279 		sctx->count = 0;
280 		in_sg = nx_ctx->in_sg;
281 	} while (leftover > AES_BLOCK_SIZE);
282 
283 	/* copy the leftover back into the state struct */
284 	memcpy(sctx->buffer, data, leftover);
285 	sctx->count = leftover;
286 
287 out:
288 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
289 	return rc;
290 }
291 
292 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
293 {
294 	struct xcbc_state *sctx = shash_desc_ctx(desc);
295 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
296 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
297 	struct nx_sg *in_sg, *out_sg;
298 	unsigned long irq_flags;
299 	int rc = 0;
300 	int len;
301 
302 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
303 
304 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
305 		/* we've hit the nx chip previously, now we're finalizing,
306 		 * so copy over the partial digest */
307 		memcpy(csbcpb->cpb.aes_xcbc.cv,
308 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
309 	} else if (sctx->count == 0) {
310 		/*
311 		 * we've never seen an update, so this is a 0 byte op. The
312 		 * hardware cannot handle a 0 byte op, so just ECB to
313 		 * generate the hash.
314 		 */
315 		rc = nx_xcbc_empty(desc, out);
316 		goto out;
317 	}
318 
319 	/* final is represented by continuing the operation and indicating that
320 	 * this is not an intermediate operation */
321 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
322 
323 	len = sctx->count;
324 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
325 				 &len, nx_ctx->ap->sglen);
326 
327 	if (len != sctx->count) {
328 		rc = -EINVAL;
329 		goto out;
330 	}
331 
332 	len = AES_BLOCK_SIZE;
333 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
334 				  nx_ctx->ap->sglen);
335 
336 	if (len != AES_BLOCK_SIZE) {
337 		rc = -EINVAL;
338 		goto out;
339 	}
340 
341 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
342 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
343 
344 	if (!nx_ctx->op.outlen) {
345 		rc = -EINVAL;
346 		goto out;
347 	}
348 
349 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
350 	if (rc)
351 		goto out;
352 
353 	atomic_inc(&(nx_ctx->stats->aes_ops));
354 
355 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
356 out:
357 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
358 	return rc;
359 }
360 
361 struct shash_alg nx_shash_aes_xcbc_alg = {
362 	.digestsize = AES_BLOCK_SIZE,
363 	.init       = nx_xcbc_init,
364 	.update     = nx_xcbc_update,
365 	.final      = nx_xcbc_final,
366 	.setkey     = nx_xcbc_set_key,
367 	.descsize   = sizeof(struct xcbc_state),
368 	.statesize  = sizeof(struct xcbc_state),
369 	.base       = {
370 		.cra_name        = "xcbc(aes)",
371 		.cra_driver_name = "xcbc-aes-nx",
372 		.cra_priority    = 300,
373 		.cra_blocksize   = AES_BLOCK_SIZE,
374 		.cra_module      = THIS_MODULE,
375 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
376 		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
377 		.cra_exit        = nx_crypto_ctx_exit,
378 	}
379 };
380