xref: /openbmc/linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 9344dade)
1 /**
2  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 struct xcbc_state {
35 	u8 state[AES_BLOCK_SIZE];
36 	unsigned int count;
37 	u8 buffer[AES_BLOCK_SIZE];
38 };
39 
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 			   const u8            *in_key,
42 			   unsigned int         key_len)
43 {
44 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 
46 	switch (key_len) {
47 	case AES_KEYSIZE_128:
48 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 		break;
50 	default:
51 		return -EINVAL;
52 	}
53 
54 	memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
55 
56 	return 0;
57 }
58 
59 static int nx_xcbc_init(struct shash_desc *desc)
60 {
61 	struct xcbc_state *sctx = shash_desc_ctx(desc);
62 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
63 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
64 	struct nx_sg *out_sg;
65 
66 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
67 
68 	memset(sctx, 0, sizeof *sctx);
69 
70 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
71 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
72 
73 	memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
74 	memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
75 
76 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
77 				  AES_BLOCK_SIZE, nx_ctx->ap->sglen);
78 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
79 
80 	return 0;
81 }
82 
83 static int nx_xcbc_update(struct shash_desc *desc,
84 			  const u8          *data,
85 			  unsigned int       len)
86 {
87 	struct xcbc_state *sctx = shash_desc_ctx(desc);
88 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
89 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
90 	struct nx_sg *in_sg;
91 	u32 to_process, leftover;
92 	int rc = 0;
93 
94 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
95 		/* we've hit the nx chip previously and we're updating again,
96 		 * so copy over the partial digest */
97 		memcpy(csbcpb->cpb.aes_xcbc.cv,
98 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
99 	}
100 
101 	/* 2 cases for total data len:
102 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
103 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
104 	 */
105 	if (len + sctx->count <= AES_BLOCK_SIZE) {
106 		memcpy(sctx->buffer + sctx->count, data, len);
107 		sctx->count += len;
108 		goto out;
109 	}
110 
111 	/* to_process: the AES_BLOCK_SIZE data chunk to process in this
112 	 * update */
113 	to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
114 	leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
115 
116 	/* the hardware will not accept a 0 byte operation for this algorithm
117 	 * and the operation MUST be finalized to be correct. So if we happen
118 	 * to get an update that falls on a block sized boundary, we must
119 	 * save off the last block to finalize with later. */
120 	if (!leftover) {
121 		to_process -= AES_BLOCK_SIZE;
122 		leftover = AES_BLOCK_SIZE;
123 	}
124 
125 	if (sctx->count) {
126 		in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
127 					 sctx->count, nx_ctx->ap->sglen);
128 		in_sg = nx_build_sg_list(in_sg, (u8 *)data,
129 					 to_process - sctx->count,
130 					 nx_ctx->ap->sglen);
131 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
132 					sizeof(struct nx_sg);
133 	} else {
134 		in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
135 					 nx_ctx->ap->sglen);
136 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
137 					sizeof(struct nx_sg);
138 	}
139 
140 	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
141 
142 	if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
143 		rc = -EINVAL;
144 		goto out;
145 	}
146 
147 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
148 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
149 	if (rc)
150 		goto out;
151 
152 	atomic_inc(&(nx_ctx->stats->aes_ops));
153 
154 	/* copy the leftover back into the state struct */
155 	memcpy(sctx->buffer, data + len - leftover, leftover);
156 	sctx->count = leftover;
157 
158 	/* everything after the first update is continuation */
159 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
160 out:
161 	return rc;
162 }
163 
164 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
165 {
166 	struct xcbc_state *sctx = shash_desc_ctx(desc);
167 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
168 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
169 	struct nx_sg *in_sg, *out_sg;
170 	int rc = 0;
171 
172 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
173 		/* we've hit the nx chip previously, now we're finalizing,
174 		 * so copy over the partial digest */
175 		memcpy(csbcpb->cpb.aes_xcbc.cv,
176 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
177 	} else if (sctx->count == 0) {
178 		/* we've never seen an update, so this is a 0 byte op. The
179 		 * hardware cannot handle a 0 byte op, so just copy out the
180 		 * known 0 byte result. This is cheaper than allocating a
181 		 * software context to do a 0 byte op */
182 		u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
183 			      0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
184 		memcpy(out, data, sizeof(data));
185 		goto out;
186 	}
187 
188 	/* final is represented by continuing the operation and indicating that
189 	 * this is not an intermediate operation */
190 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
191 
192 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
193 				 sctx->count, nx_ctx->ap->sglen);
194 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
195 				  nx_ctx->ap->sglen);
196 
197 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
198 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
199 
200 	if (!nx_ctx->op.outlen) {
201 		rc = -EINVAL;
202 		goto out;
203 	}
204 
205 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
206 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
207 	if (rc)
208 		goto out;
209 
210 	atomic_inc(&(nx_ctx->stats->aes_ops));
211 
212 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
213 out:
214 	return rc;
215 }
216 
217 struct shash_alg nx_shash_aes_xcbc_alg = {
218 	.digestsize = AES_BLOCK_SIZE,
219 	.init       = nx_xcbc_init,
220 	.update     = nx_xcbc_update,
221 	.final      = nx_xcbc_final,
222 	.setkey     = nx_xcbc_set_key,
223 	.descsize   = sizeof(struct xcbc_state),
224 	.statesize  = sizeof(struct xcbc_state),
225 	.base       = {
226 		.cra_name        = "xcbc(aes)",
227 		.cra_driver_name = "xcbc-aes-nx",
228 		.cra_priority    = 300,
229 		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
230 		.cra_blocksize   = AES_BLOCK_SIZE,
231 		.cra_module      = THIS_MODULE,
232 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
233 		.cra_init        = nx_crypto_ctx_aes_xcbc_init,
234 		.cra_exit        = nx_crypto_ctx_exit,
235 	}
236 };
237