xref: /openbmc/linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /**
2  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 struct xcbc_state {
35 	u8 state[AES_BLOCK_SIZE];
36 	unsigned int count;
37 	u8 buffer[AES_BLOCK_SIZE];
38 };
39 
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 			   const u8            *in_key,
42 			   unsigned int         key_len)
43 {
44 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 
46 	switch (key_len) {
47 	case AES_KEYSIZE_128:
48 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 		break;
50 	default:
51 		return -EINVAL;
52 	}
53 
54 	memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
55 
56 	return 0;
57 }
58 
59 /*
60  * Based on RFC 3566, for a zero-length message:
61  *
62  * n = 1
63  * K1 = E(K, 0x01010101010101010101010101010101)
64  * K3 = E(K, 0x03030303030303030303030303030303)
65  * E[0] = 0x00000000000000000000000000000000
66  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
67  * E[1] = (K1, M[1] ^ E[0] ^ K3)
68  * Tag = M[1]
69  */
70 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
71 {
72 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
74 	struct nx_sg *in_sg, *out_sg;
75 	u8 keys[2][AES_BLOCK_SIZE];
76 	u8 key[32];
77 	int rc = 0;
78 	int len;
79 
80 	/* Change to ECB mode */
81 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
82 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
83 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
84 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
85 
86 	/* K1 and K3 base patterns */
87 	memset(keys[0], 0x01, sizeof(keys[0]));
88 	memset(keys[1], 0x03, sizeof(keys[1]));
89 
90 	len = sizeof(keys);
91 	/* Generate K1 and K3 encrypting the patterns */
92 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
93 				 nx_ctx->ap->sglen);
94 
95 	if (len != sizeof(keys))
96 		return -EINVAL;
97 
98 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
99 				  nx_ctx->ap->sglen);
100 
101 	if (len != sizeof(keys))
102 		return -EINVAL;
103 
104 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
105 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
106 
107 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
108 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
109 	if (rc)
110 		goto out;
111 	atomic_inc(&(nx_ctx->stats->aes_ops));
112 
113 	/* XOr K3 with the padding for a 0 length message */
114 	keys[1][0] ^= 0x80;
115 
116 	len = sizeof(keys[1]);
117 
118 	/* Encrypt the final result */
119 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
120 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
121 				 nx_ctx->ap->sglen);
122 
123 	if (len != sizeof(keys[1]))
124 		return -EINVAL;
125 
126 	len = AES_BLOCK_SIZE;
127 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
128 				  nx_ctx->ap->sglen);
129 
130 	if (len != AES_BLOCK_SIZE)
131 		return -EINVAL;
132 
133 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
134 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
135 
136 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
137 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
138 	if (rc)
139 		goto out;
140 	atomic_inc(&(nx_ctx->stats->aes_ops));
141 
142 out:
143 	/* Restore XCBC mode */
144 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
145 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
146 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
147 
148 	return rc;
149 }
150 
151 static int nx_xcbc_init(struct shash_desc *desc)
152 {
153 	struct xcbc_state *sctx = shash_desc_ctx(desc);
154 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
155 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
156 	struct nx_sg *out_sg;
157 	int len;
158 
159 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
160 
161 	memset(sctx, 0, sizeof *sctx);
162 
163 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
164 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
165 
166 	memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
167 	memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
168 
169 	len = AES_BLOCK_SIZE;
170 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
171 				  &len, nx_ctx->ap->sglen);
172 
173 	if (len != AES_BLOCK_SIZE)
174 		return -EINVAL;
175 
176 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
177 
178 	return 0;
179 }
180 
181 static int nx_xcbc_update(struct shash_desc *desc,
182 			  const u8          *data,
183 			  unsigned int       len)
184 {
185 	struct xcbc_state *sctx = shash_desc_ctx(desc);
186 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
187 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
188 	struct nx_sg *in_sg;
189 	u32 to_process = 0, leftover, total;
190 	unsigned int max_sg_len;
191 	unsigned long irq_flags;
192 	int rc = 0;
193 	int data_len;
194 
195 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
196 
197 
198 	total = sctx->count + len;
199 
200 	/* 2 cases for total data len:
201 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
202 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
203 	 */
204 	if (total <= AES_BLOCK_SIZE) {
205 		memcpy(sctx->buffer + sctx->count, data, len);
206 		sctx->count += len;
207 		goto out;
208 	}
209 
210 	in_sg = nx_ctx->in_sg;
211 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
212 				nx_ctx->ap->sglen);
213 	max_sg_len = min_t(u64, max_sg_len,
214 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
215 
216 	do {
217 		to_process = total - to_process;
218 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
219 
220 		leftover = total - to_process;
221 
222 		/* the hardware will not accept a 0 byte operation for this
223 		 * algorithm and the operation MUST be finalized to be correct.
224 		 * So if we happen to get an update that falls on a block sized
225 		 * boundary, we must save off the last block to finalize with
226 		 * later. */
227 		if (!leftover) {
228 			to_process -= AES_BLOCK_SIZE;
229 			leftover = AES_BLOCK_SIZE;
230 		}
231 
232 		if (sctx->count) {
233 			data_len = sctx->count;
234 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
235 						(u8 *) sctx->buffer,
236 						&data_len,
237 						max_sg_len);
238 			if (data_len != sctx->count)
239 				return -EINVAL;
240 		}
241 
242 		data_len = to_process - sctx->count;
243 		in_sg = nx_build_sg_list(in_sg,
244 					(u8 *) data,
245 					&data_len,
246 					max_sg_len);
247 
248 		if (data_len != to_process - sctx->count)
249 			return -EINVAL;
250 
251 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
252 					sizeof(struct nx_sg);
253 
254 		/* we've hit the nx chip previously and we're updating again,
255 		 * so copy over the partial digest */
256 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
257 			memcpy(csbcpb->cpb.aes_xcbc.cv,
258 				csbcpb->cpb.aes_xcbc.out_cv_mac,
259 				AES_BLOCK_SIZE);
260 		}
261 
262 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
263 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
264 			rc = -EINVAL;
265 			goto out;
266 		}
267 
268 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
269 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
270 		if (rc)
271 			goto out;
272 
273 		atomic_inc(&(nx_ctx->stats->aes_ops));
274 
275 		/* everything after the first update is continuation */
276 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
277 
278 		total -= to_process;
279 		data += to_process - sctx->count;
280 		sctx->count = 0;
281 		in_sg = nx_ctx->in_sg;
282 	} while (leftover > AES_BLOCK_SIZE);
283 
284 	/* copy the leftover back into the state struct */
285 	memcpy(sctx->buffer, data, leftover);
286 	sctx->count = leftover;
287 
288 out:
289 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
290 	return rc;
291 }
292 
293 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
294 {
295 	struct xcbc_state *sctx = shash_desc_ctx(desc);
296 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
297 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
298 	struct nx_sg *in_sg, *out_sg;
299 	unsigned long irq_flags;
300 	int rc = 0;
301 	int len;
302 
303 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
304 
305 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
306 		/* we've hit the nx chip previously, now we're finalizing,
307 		 * so copy over the partial digest */
308 		memcpy(csbcpb->cpb.aes_xcbc.cv,
309 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
310 	} else if (sctx->count == 0) {
311 		/*
312 		 * we've never seen an update, so this is a 0 byte op. The
313 		 * hardware cannot handle a 0 byte op, so just ECB to
314 		 * generate the hash.
315 		 */
316 		rc = nx_xcbc_empty(desc, out);
317 		goto out;
318 	}
319 
320 	/* final is represented by continuing the operation and indicating that
321 	 * this is not an intermediate operation */
322 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
323 
324 	len = sctx->count;
325 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
326 				 &len, nx_ctx->ap->sglen);
327 
328 	if (len != sctx->count)
329 		return -EINVAL;
330 
331 	len = AES_BLOCK_SIZE;
332 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
333 				  nx_ctx->ap->sglen);
334 
335 	if (len != AES_BLOCK_SIZE)
336 		return -EINVAL;
337 
338 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
339 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
340 
341 	if (!nx_ctx->op.outlen) {
342 		rc = -EINVAL;
343 		goto out;
344 	}
345 
346 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
347 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
348 	if (rc)
349 		goto out;
350 
351 	atomic_inc(&(nx_ctx->stats->aes_ops));
352 
353 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
354 out:
355 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
356 	return rc;
357 }
358 
359 struct shash_alg nx_shash_aes_xcbc_alg = {
360 	.digestsize = AES_BLOCK_SIZE,
361 	.init       = nx_xcbc_init,
362 	.update     = nx_xcbc_update,
363 	.final      = nx_xcbc_final,
364 	.setkey     = nx_xcbc_set_key,
365 	.descsize   = sizeof(struct xcbc_state),
366 	.statesize  = sizeof(struct xcbc_state),
367 	.base       = {
368 		.cra_name        = "xcbc(aes)",
369 		.cra_driver_name = "xcbc-aes-nx",
370 		.cra_priority    = 300,
371 		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
372 		.cra_blocksize   = AES_BLOCK_SIZE,
373 		.cra_module      = THIS_MODULE,
374 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
375 		.cra_init        = nx_crypto_ctx_aes_xcbc_init,
376 		.cra_exit        = nx_crypto_ctx_exit,
377 	}
378 };
379