xref: /openbmc/linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 41e3173d)
1 /**
2  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 struct xcbc_state {
35 	u8 state[AES_BLOCK_SIZE];
36 	unsigned int count;
37 	u8 buffer[AES_BLOCK_SIZE];
38 };
39 
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 			   const u8            *in_key,
42 			   unsigned int         key_len)
43 {
44 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 
46 	switch (key_len) {
47 	case AES_KEYSIZE_128:
48 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 		break;
50 	default:
51 		return -EINVAL;
52 	}
53 
54 	memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
55 
56 	return 0;
57 }
58 
59 /*
60  * Based on RFC 3566, for a zero-length message:
61  *
62  * n = 1
63  * K1 = E(K, 0x01010101010101010101010101010101)
64  * K3 = E(K, 0x03030303030303030303030303030303)
65  * E[0] = 0x00000000000000000000000000000000
66  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
67  * E[1] = (K1, M[1] ^ E[0] ^ K3)
68  * Tag = M[1]
69  */
70 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
71 {
72 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
74 	struct nx_sg *in_sg, *out_sg;
75 	u8 keys[2][AES_BLOCK_SIZE];
76 	u8 key[32];
77 	int rc = 0;
78 
79 	/* Change to ECB mode */
80 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
81 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
82 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
83 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
84 
85 	/* K1 and K3 base patterns */
86 	memset(keys[0], 0x01, sizeof(keys[0]));
87 	memset(keys[1], 0x03, sizeof(keys[1]));
88 
89 	/* Generate K1 and K3 encrypting the patterns */
90 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, sizeof(keys),
91 				 nx_ctx->ap->sglen);
92 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, sizeof(keys),
93 				  nx_ctx->ap->sglen);
94 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
95 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
96 
97 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
98 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
99 	if (rc)
100 		goto out;
101 	atomic_inc(&(nx_ctx->stats->aes_ops));
102 
103 	/* XOr K3 with the padding for a 0 length message */
104 	keys[1][0] ^= 0x80;
105 
106 	/* Encrypt the final result */
107 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
108 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], sizeof(keys[1]),
109 				 nx_ctx->ap->sglen);
110 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
111 				  nx_ctx->ap->sglen);
112 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
113 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
114 
115 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
116 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
117 	if (rc)
118 		goto out;
119 	atomic_inc(&(nx_ctx->stats->aes_ops));
120 
121 out:
122 	/* Restore XCBC mode */
123 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
124 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
125 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
126 
127 	return rc;
128 }
129 
130 static int nx_xcbc_init(struct shash_desc *desc)
131 {
132 	struct xcbc_state *sctx = shash_desc_ctx(desc);
133 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
134 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
135 	struct nx_sg *out_sg;
136 
137 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
138 
139 	memset(sctx, 0, sizeof *sctx);
140 
141 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
142 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
143 
144 	memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
145 	memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
146 
147 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
148 				  AES_BLOCK_SIZE, nx_ctx->ap->sglen);
149 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
150 
151 	return 0;
152 }
153 
154 static int nx_xcbc_update(struct shash_desc *desc,
155 			  const u8          *data,
156 			  unsigned int       len)
157 {
158 	struct xcbc_state *sctx = shash_desc_ctx(desc);
159 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
160 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
161 	struct nx_sg *in_sg;
162 	u32 to_process, leftover, total;
163 	u32 max_sg_len;
164 	unsigned long irq_flags;
165 	int rc = 0;
166 
167 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
168 
169 
170 	total = sctx->count + len;
171 
172 	/* 2 cases for total data len:
173 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
174 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
175 	 */
176 	if (total <= AES_BLOCK_SIZE) {
177 		memcpy(sctx->buffer + sctx->count, data, len);
178 		sctx->count += len;
179 		goto out;
180 	}
181 
182 	in_sg = nx_ctx->in_sg;
183 	max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
184 				nx_ctx->ap->sglen);
185 
186 	do {
187 
188 		/* to_process: the AES_BLOCK_SIZE data chunk to process in this
189 		 * update */
190 		to_process = min_t(u64, total, nx_ctx->ap->databytelen);
191 		to_process = min_t(u64, to_process,
192 					NX_PAGE_SIZE * (max_sg_len - 1));
193 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
194 		leftover = total - to_process;
195 
196 		/* the hardware will not accept a 0 byte operation for this
197 		 * algorithm and the operation MUST be finalized to be correct.
198 		 * So if we happen to get an update that falls on a block sized
199 		 * boundary, we must save off the last block to finalize with
200 		 * later. */
201 		if (!leftover) {
202 			to_process -= AES_BLOCK_SIZE;
203 			leftover = AES_BLOCK_SIZE;
204 		}
205 
206 		if (sctx->count) {
207 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
208 						(u8 *) sctx->buffer,
209 						sctx->count,
210 						max_sg_len);
211 		}
212 		in_sg = nx_build_sg_list(in_sg,
213 					(u8 *) data,
214 					to_process - sctx->count,
215 					max_sg_len);
216 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
217 					sizeof(struct nx_sg);
218 
219 		/* we've hit the nx chip previously and we're updating again,
220 		 * so copy over the partial digest */
221 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
222 			memcpy(csbcpb->cpb.aes_xcbc.cv,
223 				csbcpb->cpb.aes_xcbc.out_cv_mac,
224 				AES_BLOCK_SIZE);
225 		}
226 
227 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
228 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
229 			rc = -EINVAL;
230 			goto out;
231 		}
232 
233 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
234 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
235 		if (rc)
236 			goto out;
237 
238 		atomic_inc(&(nx_ctx->stats->aes_ops));
239 
240 		/* everything after the first update is continuation */
241 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
242 
243 		total -= to_process;
244 		data += to_process - sctx->count;
245 		sctx->count = 0;
246 		in_sg = nx_ctx->in_sg;
247 	} while (leftover > AES_BLOCK_SIZE);
248 
249 	/* copy the leftover back into the state struct */
250 	memcpy(sctx->buffer, data, leftover);
251 	sctx->count = leftover;
252 
253 out:
254 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
255 	return rc;
256 }
257 
258 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
259 {
260 	struct xcbc_state *sctx = shash_desc_ctx(desc);
261 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
262 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
263 	struct nx_sg *in_sg, *out_sg;
264 	unsigned long irq_flags;
265 	int rc = 0;
266 
267 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
268 
269 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
270 		/* we've hit the nx chip previously, now we're finalizing,
271 		 * so copy over the partial digest */
272 		memcpy(csbcpb->cpb.aes_xcbc.cv,
273 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
274 	} else if (sctx->count == 0) {
275 		/*
276 		 * we've never seen an update, so this is a 0 byte op. The
277 		 * hardware cannot handle a 0 byte op, so just ECB to
278 		 * generate the hash.
279 		 */
280 		rc = nx_xcbc_empty(desc, out);
281 		goto out;
282 	}
283 
284 	/* final is represented by continuing the operation and indicating that
285 	 * this is not an intermediate operation */
286 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
287 
288 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
289 				 sctx->count, nx_ctx->ap->sglen);
290 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
291 				  nx_ctx->ap->sglen);
292 
293 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
294 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
295 
296 	if (!nx_ctx->op.outlen) {
297 		rc = -EINVAL;
298 		goto out;
299 	}
300 
301 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
302 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
303 	if (rc)
304 		goto out;
305 
306 	atomic_inc(&(nx_ctx->stats->aes_ops));
307 
308 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
309 out:
310 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
311 	return rc;
312 }
313 
314 struct shash_alg nx_shash_aes_xcbc_alg = {
315 	.digestsize = AES_BLOCK_SIZE,
316 	.init       = nx_xcbc_init,
317 	.update     = nx_xcbc_update,
318 	.final      = nx_xcbc_final,
319 	.setkey     = nx_xcbc_set_key,
320 	.descsize   = sizeof(struct xcbc_state),
321 	.statesize  = sizeof(struct xcbc_state),
322 	.base       = {
323 		.cra_name        = "xcbc(aes)",
324 		.cra_driver_name = "xcbc-aes-nx",
325 		.cra_priority    = 300,
326 		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
327 		.cra_blocksize   = AES_BLOCK_SIZE,
328 		.cra_module      = THIS_MODULE,
329 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
330 		.cra_init        = nx_crypto_ctx_aes_xcbc_init,
331 		.cra_exit        = nx_crypto_ctx_exit,
332 	}
333 };
334