xref: /openbmc/linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /**
2  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 struct xcbc_state {
35 	u8 state[AES_BLOCK_SIZE];
36 	unsigned int count;
37 	u8 buffer[AES_BLOCK_SIZE];
38 };
39 
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 			   const u8            *in_key,
42 			   unsigned int         key_len)
43 {
44 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
46 
47 	switch (key_len) {
48 	case AES_KEYSIZE_128:
49 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
50 		break;
51 	default:
52 		return -EINVAL;
53 	}
54 
55 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
56 
57 	return 0;
58 }
59 
60 /*
61  * Based on RFC 3566, for a zero-length message:
62  *
63  * n = 1
64  * K1 = E(K, 0x01010101010101010101010101010101)
65  * K3 = E(K, 0x03030303030303030303030303030303)
66  * E[0] = 0x00000000000000000000000000000000
67  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
68  * E[1] = (K1, M[1] ^ E[0] ^ K3)
69  * Tag = M[1]
70  */
71 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
72 {
73 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
74 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
75 	struct nx_sg *in_sg, *out_sg;
76 	u8 keys[2][AES_BLOCK_SIZE];
77 	u8 key[32];
78 	int rc = 0;
79 	int len;
80 
81 	/* Change to ECB mode */
82 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
83 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
84 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
85 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
86 
87 	/* K1 and K3 base patterns */
88 	memset(keys[0], 0x01, sizeof(keys[0]));
89 	memset(keys[1], 0x03, sizeof(keys[1]));
90 
91 	len = sizeof(keys);
92 	/* Generate K1 and K3 encrypting the patterns */
93 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
94 				 nx_ctx->ap->sglen);
95 
96 	if (len != sizeof(keys))
97 		return -EINVAL;
98 
99 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
100 				  nx_ctx->ap->sglen);
101 
102 	if (len != sizeof(keys))
103 		return -EINVAL;
104 
105 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
106 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
107 
108 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
109 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
110 	if (rc)
111 		goto out;
112 	atomic_inc(&(nx_ctx->stats->aes_ops));
113 
114 	/* XOr K3 with the padding for a 0 length message */
115 	keys[1][0] ^= 0x80;
116 
117 	len = sizeof(keys[1]);
118 
119 	/* Encrypt the final result */
120 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
121 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
122 				 nx_ctx->ap->sglen);
123 
124 	if (len != sizeof(keys[1]))
125 		return -EINVAL;
126 
127 	len = AES_BLOCK_SIZE;
128 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
129 				  nx_ctx->ap->sglen);
130 
131 	if (len != AES_BLOCK_SIZE)
132 		return -EINVAL;
133 
134 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
135 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
136 
137 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
138 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
139 	if (rc)
140 		goto out;
141 	atomic_inc(&(nx_ctx->stats->aes_ops));
142 
143 out:
144 	/* Restore XCBC mode */
145 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
146 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
147 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
148 
149 	return rc;
150 }
151 
152 static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
153 {
154 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
155 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
156 	int err;
157 
158 	err = nx_crypto_ctx_aes_xcbc_init(tfm);
159 	if (err)
160 		return err;
161 
162 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
163 
164 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
165 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
166 
167 	return 0;
168 }
169 
170 static int nx_xcbc_init(struct shash_desc *desc)
171 {
172 	struct xcbc_state *sctx = shash_desc_ctx(desc);
173 
174 	memset(sctx, 0, sizeof *sctx);
175 
176 	return 0;
177 }
178 
179 static int nx_xcbc_update(struct shash_desc *desc,
180 			  const u8          *data,
181 			  unsigned int       len)
182 {
183 	struct xcbc_state *sctx = shash_desc_ctx(desc);
184 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
185 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
186 	struct nx_sg *in_sg;
187 	struct nx_sg *out_sg;
188 	u32 to_process = 0, leftover, total;
189 	unsigned int max_sg_len;
190 	unsigned long irq_flags;
191 	int rc = 0;
192 	int data_len;
193 
194 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
195 
196 
197 	total = sctx->count + len;
198 
199 	/* 2 cases for total data len:
200 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
201 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
202 	 */
203 	if (total <= AES_BLOCK_SIZE) {
204 		memcpy(sctx->buffer + sctx->count, data, len);
205 		sctx->count += len;
206 		goto out;
207 	}
208 
209 	in_sg = nx_ctx->in_sg;
210 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
211 				nx_ctx->ap->sglen);
212 	max_sg_len = min_t(u64, max_sg_len,
213 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
214 
215 	data_len = AES_BLOCK_SIZE;
216 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
217 				  &len, nx_ctx->ap->sglen);
218 
219 	if (data_len != AES_BLOCK_SIZE) {
220 		rc = -EINVAL;
221 		goto out;
222 	}
223 
224 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
225 
226 	do {
227 		to_process = total - to_process;
228 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
229 
230 		leftover = total - to_process;
231 
232 		/* the hardware will not accept a 0 byte operation for this
233 		 * algorithm and the operation MUST be finalized to be correct.
234 		 * So if we happen to get an update that falls on a block sized
235 		 * boundary, we must save off the last block to finalize with
236 		 * later. */
237 		if (!leftover) {
238 			to_process -= AES_BLOCK_SIZE;
239 			leftover = AES_BLOCK_SIZE;
240 		}
241 
242 		if (sctx->count) {
243 			data_len = sctx->count;
244 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
245 						(u8 *) sctx->buffer,
246 						&data_len,
247 						max_sg_len);
248 			if (data_len != sctx->count) {
249 				rc = -EINVAL;
250 				goto out;
251 			}
252 		}
253 
254 		data_len = to_process - sctx->count;
255 		in_sg = nx_build_sg_list(in_sg,
256 					(u8 *) data,
257 					&data_len,
258 					max_sg_len);
259 
260 		if (data_len != to_process - sctx->count) {
261 			rc = -EINVAL;
262 			goto out;
263 		}
264 
265 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
266 					sizeof(struct nx_sg);
267 
268 		/* we've hit the nx chip previously and we're updating again,
269 		 * so copy over the partial digest */
270 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
271 			memcpy(csbcpb->cpb.aes_xcbc.cv,
272 				csbcpb->cpb.aes_xcbc.out_cv_mac,
273 				AES_BLOCK_SIZE);
274 		}
275 
276 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
277 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
278 			rc = -EINVAL;
279 			goto out;
280 		}
281 
282 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
283 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
284 		if (rc)
285 			goto out;
286 
287 		atomic_inc(&(nx_ctx->stats->aes_ops));
288 
289 		/* everything after the first update is continuation */
290 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
291 
292 		total -= to_process;
293 		data += to_process - sctx->count;
294 		sctx->count = 0;
295 		in_sg = nx_ctx->in_sg;
296 	} while (leftover > AES_BLOCK_SIZE);
297 
298 	/* copy the leftover back into the state struct */
299 	memcpy(sctx->buffer, data, leftover);
300 	sctx->count = leftover;
301 
302 out:
303 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
304 	return rc;
305 }
306 
307 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
308 {
309 	struct xcbc_state *sctx = shash_desc_ctx(desc);
310 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
311 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
312 	struct nx_sg *in_sg, *out_sg;
313 	unsigned long irq_flags;
314 	int rc = 0;
315 	int len;
316 
317 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
318 
319 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
320 		/* we've hit the nx chip previously, now we're finalizing,
321 		 * so copy over the partial digest */
322 		memcpy(csbcpb->cpb.aes_xcbc.cv,
323 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
324 	} else if (sctx->count == 0) {
325 		/*
326 		 * we've never seen an update, so this is a 0 byte op. The
327 		 * hardware cannot handle a 0 byte op, so just ECB to
328 		 * generate the hash.
329 		 */
330 		rc = nx_xcbc_empty(desc, out);
331 		goto out;
332 	}
333 
334 	/* final is represented by continuing the operation and indicating that
335 	 * this is not an intermediate operation */
336 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
337 
338 	len = sctx->count;
339 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
340 				 &len, nx_ctx->ap->sglen);
341 
342 	if (len != sctx->count) {
343 		rc = -EINVAL;
344 		goto out;
345 	}
346 
347 	len = AES_BLOCK_SIZE;
348 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
349 				  nx_ctx->ap->sglen);
350 
351 	if (len != AES_BLOCK_SIZE) {
352 		rc = -EINVAL;
353 		goto out;
354 	}
355 
356 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
357 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
358 
359 	if (!nx_ctx->op.outlen) {
360 		rc = -EINVAL;
361 		goto out;
362 	}
363 
364 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
365 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
366 	if (rc)
367 		goto out;
368 
369 	atomic_inc(&(nx_ctx->stats->aes_ops));
370 
371 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
372 out:
373 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
374 	return rc;
375 }
376 
377 struct shash_alg nx_shash_aes_xcbc_alg = {
378 	.digestsize = AES_BLOCK_SIZE,
379 	.init       = nx_xcbc_init,
380 	.update     = nx_xcbc_update,
381 	.final      = nx_xcbc_final,
382 	.setkey     = nx_xcbc_set_key,
383 	.descsize   = sizeof(struct xcbc_state),
384 	.statesize  = sizeof(struct xcbc_state),
385 	.base       = {
386 		.cra_name        = "xcbc(aes)",
387 		.cra_driver_name = "xcbc-aes-nx",
388 		.cra_priority    = 300,
389 		.cra_blocksize   = AES_BLOCK_SIZE,
390 		.cra_module      = THIS_MODULE,
391 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
392 		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
393 		.cra_exit        = nx_crypto_ctx_exit,
394 	}
395 };
396