xref: /openbmc/linux/drivers/crypto/nx/nx-aes-gcm.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /**
2  * AES GCM routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/aead.h>
23 #include <crypto/aes.h>
24 #include <crypto/scatterwalk.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <asm/vio.h>
28 
29 #include "nx_csbcpb.h"
30 #include "nx.h"
31 
32 
33 static int gcm_aes_nx_set_key(struct crypto_aead *tfm,
34 			      const u8           *in_key,
35 			      unsigned int        key_len)
36 {
37 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
38 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
39 	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
40 
41 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
42 
43 	switch (key_len) {
44 	case AES_KEYSIZE_128:
45 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
46 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_128);
47 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
48 		break;
49 	case AES_KEYSIZE_192:
50 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_192);
51 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_192);
52 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_192];
53 		break;
54 	case AES_KEYSIZE_256:
55 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_256);
56 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_256);
57 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_256];
58 		break;
59 	default:
60 		return -EINVAL;
61 	}
62 
63 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
64 	memcpy(csbcpb->cpb.aes_gcm.key, in_key, key_len);
65 
66 	csbcpb_aead->cpb.hdr.mode = NX_MODE_AES_GCA;
67 	memcpy(csbcpb_aead->cpb.aes_gca.key, in_key, key_len);
68 
69 	return 0;
70 }
71 
72 static int gcm4106_aes_nx_set_key(struct crypto_aead *tfm,
73 				  const u8           *in_key,
74 				  unsigned int        key_len)
75 {
76 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
77 	char *nonce = nx_ctx->priv.gcm.nonce;
78 	int rc;
79 
80 	if (key_len < 4)
81 		return -EINVAL;
82 
83 	key_len -= 4;
84 
85 	rc = gcm_aes_nx_set_key(tfm, in_key, key_len);
86 	if (rc)
87 		goto out;
88 
89 	memcpy(nonce, in_key + key_len, 4);
90 out:
91 	return rc;
92 }
93 
94 static int gcm4106_aes_nx_setauthsize(struct crypto_aead *tfm,
95 				      unsigned int authsize)
96 {
97 	switch (authsize) {
98 	case 8:
99 	case 12:
100 	case 16:
101 		break;
102 	default:
103 		return -EINVAL;
104 	}
105 
106 	return 0;
107 }
108 
109 static int nx_gca(struct nx_crypto_ctx  *nx_ctx,
110 		  struct aead_request   *req,
111 		  u8                    *out,
112 		  unsigned int assoclen)
113 {
114 	int rc;
115 	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
116 	struct scatter_walk walk;
117 	struct nx_sg *nx_sg = nx_ctx->in_sg;
118 	unsigned int nbytes = assoclen;
119 	unsigned int processed = 0, to_process;
120 	unsigned int max_sg_len;
121 
122 	if (nbytes <= AES_BLOCK_SIZE) {
123 		scatterwalk_start(&walk, req->src);
124 		scatterwalk_copychunks(out, &walk, nbytes, SCATTERWALK_FROM_SG);
125 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, 0);
126 		return 0;
127 	}
128 
129 	NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_CONTINUATION;
130 
131 	/* page_limit: number of sg entries that fit on one page */
132 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
133 			   nx_ctx->ap->sglen);
134 	max_sg_len = min_t(u64, max_sg_len,
135 			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);
136 
137 	do {
138 		/*
139 		 * to_process: the data chunk to process in this update.
140 		 * This value is bound by sg list limits.
141 		 */
142 		to_process = min_t(u64, nbytes - processed,
143 				   nx_ctx->ap->databytelen);
144 		to_process = min_t(u64, to_process,
145 				   NX_PAGE_SIZE * (max_sg_len - 1));
146 
147 		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
148 					  req->src, processed, &to_process);
149 
150 		if ((to_process + processed) < nbytes)
151 			NX_CPB_FDM(csbcpb_aead) |= NX_FDM_INTERMEDIATE;
152 		else
153 			NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_INTERMEDIATE;
154 
155 		nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg)
156 					* sizeof(struct nx_sg);
157 
158 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
159 				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
160 		if (rc)
161 			return rc;
162 
163 		memcpy(csbcpb_aead->cpb.aes_gca.in_pat,
164 				csbcpb_aead->cpb.aes_gca.out_pat,
165 				AES_BLOCK_SIZE);
166 		NX_CPB_FDM(csbcpb_aead) |= NX_FDM_CONTINUATION;
167 
168 		atomic_inc(&(nx_ctx->stats->aes_ops));
169 		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));
170 
171 		processed += to_process;
172 	} while (processed < nbytes);
173 
174 	memcpy(out, csbcpb_aead->cpb.aes_gca.out_pat, AES_BLOCK_SIZE);
175 
176 	return rc;
177 }
178 
179 static int gmac(struct aead_request *req, struct blkcipher_desc *desc,
180 		unsigned int assoclen)
181 {
182 	int rc;
183 	struct nx_crypto_ctx *nx_ctx =
184 		crypto_aead_ctx(crypto_aead_reqtfm(req));
185 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
186 	struct nx_sg *nx_sg;
187 	unsigned int nbytes = assoclen;
188 	unsigned int processed = 0, to_process;
189 	unsigned int max_sg_len;
190 
191 	/* Set GMAC mode */
192 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GMAC;
193 
194 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
195 
196 	/* page_limit: number of sg entries that fit on one page */
197 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
198 			   nx_ctx->ap->sglen);
199 	max_sg_len = min_t(u64, max_sg_len,
200 			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);
201 
202 	/* Copy IV */
203 	memcpy(csbcpb->cpb.aes_gcm.iv_or_cnt, desc->info, AES_BLOCK_SIZE);
204 
205 	do {
206 		/*
207 		 * to_process: the data chunk to process in this update.
208 		 * This value is bound by sg list limits.
209 		 */
210 		to_process = min_t(u64, nbytes - processed,
211 				   nx_ctx->ap->databytelen);
212 		to_process = min_t(u64, to_process,
213 				   NX_PAGE_SIZE * (max_sg_len - 1));
214 
215 		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
216 					  req->src, processed, &to_process);
217 
218 		if ((to_process + processed) < nbytes)
219 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
220 		else
221 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
222 
223 		nx_ctx->op.inlen = (nx_ctx->in_sg - nx_sg)
224 					* sizeof(struct nx_sg);
225 
226 		csbcpb->cpb.aes_gcm.bit_length_data = 0;
227 		csbcpb->cpb.aes_gcm.bit_length_aad = 8 * nbytes;
228 
229 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
230 				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
231 		if (rc)
232 			goto out;
233 
234 		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
235 			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
236 		memcpy(csbcpb->cpb.aes_gcm.in_s0,
237 			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
238 
239 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
240 
241 		atomic_inc(&(nx_ctx->stats->aes_ops));
242 		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));
243 
244 		processed += to_process;
245 	} while (processed < nbytes);
246 
247 out:
248 	/* Restore GCM mode */
249 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
250 	return rc;
251 }
252 
253 static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc,
254 		     int enc)
255 {
256 	int rc;
257 	struct nx_crypto_ctx *nx_ctx =
258 		crypto_aead_ctx(crypto_aead_reqtfm(req));
259 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
260 	char out[AES_BLOCK_SIZE];
261 	struct nx_sg *in_sg, *out_sg;
262 	int len;
263 
264 	/* For scenarios where the input message is zero length, AES CTR mode
265 	 * may be used. Set the source data to be a single block (16B) of all
266 	 * zeros, and set the input IV value to be the same as the GMAC IV
267 	 * value. - nx_wb 4.8.1.3 */
268 
269 	/* Change to ECB mode */
270 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
271 	memcpy(csbcpb->cpb.aes_ecb.key, csbcpb->cpb.aes_gcm.key,
272 			sizeof(csbcpb->cpb.aes_ecb.key));
273 	if (enc)
274 		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
275 	else
276 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
277 
278 	len = AES_BLOCK_SIZE;
279 
280 	/* Encrypt the counter/IV */
281 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) desc->info,
282 				 &len, nx_ctx->ap->sglen);
283 
284 	if (len != AES_BLOCK_SIZE)
285 		return -EINVAL;
286 
287 	len = sizeof(out);
288 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, &len,
289 				  nx_ctx->ap->sglen);
290 
291 	if (len != sizeof(out))
292 		return -EINVAL;
293 
294 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
295 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
296 
297 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
298 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
299 	if (rc)
300 		goto out;
301 	atomic_inc(&(nx_ctx->stats->aes_ops));
302 
303 	/* Copy out the auth tag */
304 	memcpy(csbcpb->cpb.aes_gcm.out_pat_or_mac, out,
305 			crypto_aead_authsize(crypto_aead_reqtfm(req)));
306 out:
307 	/* Restore XCBC mode */
308 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
309 
310 	/*
311 	 * ECB key uses the same region that GCM AAD and counter, so it's safe
312 	 * to just fill it with zeroes.
313 	 */
314 	memset(csbcpb->cpb.aes_ecb.key, 0, sizeof(csbcpb->cpb.aes_ecb.key));
315 
316 	return rc;
317 }
318 
319 static int gcm_aes_nx_crypt(struct aead_request *req, int enc,
320 			    unsigned int assoclen)
321 {
322 	struct nx_crypto_ctx *nx_ctx =
323 		crypto_aead_ctx(crypto_aead_reqtfm(req));
324 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
325 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
326 	struct blkcipher_desc desc;
327 	unsigned int nbytes = req->cryptlen;
328 	unsigned int processed = 0, to_process;
329 	unsigned long irq_flags;
330 	int rc = -EINVAL;
331 
332 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
333 
334 	desc.info = rctx->iv;
335 	/* initialize the counter */
336 	*(u32 *)(desc.info + NX_GCM_CTR_OFFSET) = 1;
337 
338 	if (nbytes == 0) {
339 		if (assoclen == 0)
340 			rc = gcm_empty(req, &desc, enc);
341 		else
342 			rc = gmac(req, &desc, assoclen);
343 		if (rc)
344 			goto out;
345 		else
346 			goto mac;
347 	}
348 
349 	/* Process associated data */
350 	csbcpb->cpb.aes_gcm.bit_length_aad = assoclen * 8;
351 	if (assoclen) {
352 		rc = nx_gca(nx_ctx, req, csbcpb->cpb.aes_gcm.in_pat_or_aad,
353 			    assoclen);
354 		if (rc)
355 			goto out;
356 	}
357 
358 	/* Set flags for encryption */
359 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
360 	if (enc) {
361 		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
362 	} else {
363 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
364 		nbytes -= crypto_aead_authsize(crypto_aead_reqtfm(req));
365 	}
366 
367 	do {
368 		to_process = nbytes - processed;
369 
370 		csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8;
371 		rc = nx_build_sg_lists(nx_ctx, &desc, req->dst,
372 				       req->src, &to_process,
373 				       processed + req->assoclen,
374 				       csbcpb->cpb.aes_gcm.iv_or_cnt);
375 
376 		if (rc)
377 			goto out;
378 
379 		if ((to_process + processed) < nbytes)
380 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
381 		else
382 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
383 
384 
385 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
386 				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
387 		if (rc)
388 			goto out;
389 
390 		memcpy(desc.info, csbcpb->cpb.aes_gcm.out_cnt, AES_BLOCK_SIZE);
391 		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
392 			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
393 		memcpy(csbcpb->cpb.aes_gcm.in_s0,
394 			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
395 
396 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
397 
398 		atomic_inc(&(nx_ctx->stats->aes_ops));
399 		atomic64_add(csbcpb->csb.processed_byte_count,
400 			     &(nx_ctx->stats->aes_bytes));
401 
402 		processed += to_process;
403 	} while (processed < nbytes);
404 
405 mac:
406 	if (enc) {
407 		/* copy out the auth tag */
408 		scatterwalk_map_and_copy(
409 			csbcpb->cpb.aes_gcm.out_pat_or_mac,
410 			req->dst, req->assoclen + nbytes,
411 			crypto_aead_authsize(crypto_aead_reqtfm(req)),
412 			SCATTERWALK_TO_SG);
413 	} else {
414 		u8 *itag = nx_ctx->priv.gcm.iauth_tag;
415 		u8 *otag = csbcpb->cpb.aes_gcm.out_pat_or_mac;
416 
417 		scatterwalk_map_and_copy(
418 			itag, req->src, req->assoclen + nbytes,
419 			crypto_aead_authsize(crypto_aead_reqtfm(req)),
420 			SCATTERWALK_FROM_SG);
421 		rc = memcmp(itag, otag,
422 			    crypto_aead_authsize(crypto_aead_reqtfm(req))) ?
423 		     -EBADMSG : 0;
424 	}
425 out:
426 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
427 	return rc;
428 }
429 
430 static int gcm_aes_nx_encrypt(struct aead_request *req)
431 {
432 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
433 	char *iv = rctx->iv;
434 
435 	memcpy(iv, req->iv, 12);
436 
437 	return gcm_aes_nx_crypt(req, 1, req->assoclen);
438 }
439 
440 static int gcm_aes_nx_decrypt(struct aead_request *req)
441 {
442 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
443 	char *iv = rctx->iv;
444 
445 	memcpy(iv, req->iv, 12);
446 
447 	return gcm_aes_nx_crypt(req, 0, req->assoclen);
448 }
449 
450 static int gcm4106_aes_nx_encrypt(struct aead_request *req)
451 {
452 	struct nx_crypto_ctx *nx_ctx =
453 		crypto_aead_ctx(crypto_aead_reqtfm(req));
454 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
455 	char *iv = rctx->iv;
456 	char *nonce = nx_ctx->priv.gcm.nonce;
457 
458 	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
459 	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);
460 
461 	if (req->assoclen < 8)
462 		return -EINVAL;
463 
464 	return gcm_aes_nx_crypt(req, 1, req->assoclen - 8);
465 }
466 
467 static int gcm4106_aes_nx_decrypt(struct aead_request *req)
468 {
469 	struct nx_crypto_ctx *nx_ctx =
470 		crypto_aead_ctx(crypto_aead_reqtfm(req));
471 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
472 	char *iv = rctx->iv;
473 	char *nonce = nx_ctx->priv.gcm.nonce;
474 
475 	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
476 	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);
477 
478 	if (req->assoclen < 8)
479 		return -EINVAL;
480 
481 	return gcm_aes_nx_crypt(req, 0, req->assoclen - 8);
482 }
483 
484 /* tell the block cipher walk routines that this is a stream cipher by
485  * setting cra_blocksize to 1. Even using blkcipher_walk_virt_block
486  * during encrypt/decrypt doesn't solve this problem, because it calls
487  * blkcipher_walk_done under the covers, which doesn't use walk->blocksize,
488  * but instead uses this tfm->blocksize. */
489 struct aead_alg nx_gcm_aes_alg = {
490 	.base = {
491 		.cra_name        = "gcm(aes)",
492 		.cra_driver_name = "gcm-aes-nx",
493 		.cra_priority    = 300,
494 		.cra_blocksize   = 1,
495 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
496 		.cra_module      = THIS_MODULE,
497 	},
498 	.init        = nx_crypto_ctx_aes_gcm_init,
499 	.exit        = nx_crypto_ctx_aead_exit,
500 	.ivsize      = 12,
501 	.maxauthsize = AES_BLOCK_SIZE,
502 	.setkey      = gcm_aes_nx_set_key,
503 	.encrypt     = gcm_aes_nx_encrypt,
504 	.decrypt     = gcm_aes_nx_decrypt,
505 };
506 
507 struct aead_alg nx_gcm4106_aes_alg = {
508 	.base = {
509 		.cra_name        = "rfc4106(gcm(aes))",
510 		.cra_driver_name = "rfc4106-gcm-aes-nx",
511 		.cra_priority    = 300,
512 		.cra_blocksize   = 1,
513 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
514 		.cra_module      = THIS_MODULE,
515 	},
516 	.init        = nx_crypto_ctx_aes_gcm_init,
517 	.exit        = nx_crypto_ctx_aead_exit,
518 	.ivsize      = 8,
519 	.maxauthsize = AES_BLOCK_SIZE,
520 	.setkey      = gcm4106_aes_nx_set_key,
521 	.setauthsize = gcm4106_aes_nx_setauthsize,
522 	.encrypt     = gcm4106_aes_nx_encrypt,
523 	.decrypt     = gcm4106_aes_nx_decrypt,
524 };
525