xref: /openbmc/linux/drivers/crypto/nx/nx-aes-gcm.c (revision bc5aa3a0)
1 /**
2  * AES GCM routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/aead.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 static int gcm_aes_nx_set_key(struct crypto_aead *tfm,
35 			      const u8           *in_key,
36 			      unsigned int        key_len)
37 {
38 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
39 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
40 	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
41 
42 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
43 
44 	switch (key_len) {
45 	case AES_KEYSIZE_128:
46 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
47 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_128);
48 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 		break;
50 	case AES_KEYSIZE_192:
51 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_192);
52 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_192);
53 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_192];
54 		break;
55 	case AES_KEYSIZE_256:
56 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_256);
57 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_256);
58 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_256];
59 		break;
60 	default:
61 		return -EINVAL;
62 	}
63 
64 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
65 	memcpy(csbcpb->cpb.aes_gcm.key, in_key, key_len);
66 
67 	csbcpb_aead->cpb.hdr.mode = NX_MODE_AES_GCA;
68 	memcpy(csbcpb_aead->cpb.aes_gca.key, in_key, key_len);
69 
70 	return 0;
71 }
72 
73 static int gcm4106_aes_nx_set_key(struct crypto_aead *tfm,
74 				  const u8           *in_key,
75 				  unsigned int        key_len)
76 {
77 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
78 	char *nonce = nx_ctx->priv.gcm.nonce;
79 	int rc;
80 
81 	if (key_len < 4)
82 		return -EINVAL;
83 
84 	key_len -= 4;
85 
86 	rc = gcm_aes_nx_set_key(tfm, in_key, key_len);
87 	if (rc)
88 		goto out;
89 
90 	memcpy(nonce, in_key + key_len, 4);
91 out:
92 	return rc;
93 }
94 
95 static int gcm4106_aes_nx_setauthsize(struct crypto_aead *tfm,
96 				      unsigned int authsize)
97 {
98 	switch (authsize) {
99 	case 8:
100 	case 12:
101 	case 16:
102 		break;
103 	default:
104 		return -EINVAL;
105 	}
106 
107 	return 0;
108 }
109 
110 static int nx_gca(struct nx_crypto_ctx  *nx_ctx,
111 		  struct aead_request   *req,
112 		  u8                    *out,
113 		  unsigned int assoclen)
114 {
115 	int rc;
116 	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
117 	struct scatter_walk walk;
118 	struct nx_sg *nx_sg = nx_ctx->in_sg;
119 	unsigned int nbytes = assoclen;
120 	unsigned int processed = 0, to_process;
121 	unsigned int max_sg_len;
122 
123 	if (nbytes <= AES_BLOCK_SIZE) {
124 		scatterwalk_start(&walk, req->src);
125 		scatterwalk_copychunks(out, &walk, nbytes, SCATTERWALK_FROM_SG);
126 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, 0);
127 		return 0;
128 	}
129 
130 	NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_CONTINUATION;
131 
132 	/* page_limit: number of sg entries that fit on one page */
133 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
134 			   nx_ctx->ap->sglen);
135 	max_sg_len = min_t(u64, max_sg_len,
136 			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);
137 
138 	do {
139 		/*
140 		 * to_process: the data chunk to process in this update.
141 		 * This value is bound by sg list limits.
142 		 */
143 		to_process = min_t(u64, nbytes - processed,
144 				   nx_ctx->ap->databytelen);
145 		to_process = min_t(u64, to_process,
146 				   NX_PAGE_SIZE * (max_sg_len - 1));
147 
148 		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
149 					  req->src, processed, &to_process);
150 
151 		if ((to_process + processed) < nbytes)
152 			NX_CPB_FDM(csbcpb_aead) |= NX_FDM_INTERMEDIATE;
153 		else
154 			NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_INTERMEDIATE;
155 
156 		nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg)
157 					* sizeof(struct nx_sg);
158 
159 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
160 				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
161 		if (rc)
162 			return rc;
163 
164 		memcpy(csbcpb_aead->cpb.aes_gca.in_pat,
165 				csbcpb_aead->cpb.aes_gca.out_pat,
166 				AES_BLOCK_SIZE);
167 		NX_CPB_FDM(csbcpb_aead) |= NX_FDM_CONTINUATION;
168 
169 		atomic_inc(&(nx_ctx->stats->aes_ops));
170 		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));
171 
172 		processed += to_process;
173 	} while (processed < nbytes);
174 
175 	memcpy(out, csbcpb_aead->cpb.aes_gca.out_pat, AES_BLOCK_SIZE);
176 
177 	return rc;
178 }
179 
180 static int gmac(struct aead_request *req, struct blkcipher_desc *desc,
181 		unsigned int assoclen)
182 {
183 	int rc;
184 	struct nx_crypto_ctx *nx_ctx =
185 		crypto_aead_ctx(crypto_aead_reqtfm(req));
186 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
187 	struct nx_sg *nx_sg;
188 	unsigned int nbytes = assoclen;
189 	unsigned int processed = 0, to_process;
190 	unsigned int max_sg_len;
191 
192 	/* Set GMAC mode */
193 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GMAC;
194 
195 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
196 
197 	/* page_limit: number of sg entries that fit on one page */
198 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
199 			   nx_ctx->ap->sglen);
200 	max_sg_len = min_t(u64, max_sg_len,
201 			   nx_ctx->ap->databytelen/NX_PAGE_SIZE);
202 
203 	/* Copy IV */
204 	memcpy(csbcpb->cpb.aes_gcm.iv_or_cnt, desc->info, AES_BLOCK_SIZE);
205 
206 	do {
207 		/*
208 		 * to_process: the data chunk to process in this update.
209 		 * This value is bound by sg list limits.
210 		 */
211 		to_process = min_t(u64, nbytes - processed,
212 				   nx_ctx->ap->databytelen);
213 		to_process = min_t(u64, to_process,
214 				   NX_PAGE_SIZE * (max_sg_len - 1));
215 
216 		nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len,
217 					  req->src, processed, &to_process);
218 
219 		if ((to_process + processed) < nbytes)
220 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
221 		else
222 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
223 
224 		nx_ctx->op.inlen = (nx_ctx->in_sg - nx_sg)
225 					* sizeof(struct nx_sg);
226 
227 		csbcpb->cpb.aes_gcm.bit_length_data = 0;
228 		csbcpb->cpb.aes_gcm.bit_length_aad = 8 * nbytes;
229 
230 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
231 				req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
232 		if (rc)
233 			goto out;
234 
235 		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
236 			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
237 		memcpy(csbcpb->cpb.aes_gcm.in_s0,
238 			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
239 
240 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
241 
242 		atomic_inc(&(nx_ctx->stats->aes_ops));
243 		atomic64_add(assoclen, &(nx_ctx->stats->aes_bytes));
244 
245 		processed += to_process;
246 	} while (processed < nbytes);
247 
248 out:
249 	/* Restore GCM mode */
250 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
251 	return rc;
252 }
253 
254 static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc,
255 		     int enc)
256 {
257 	int rc;
258 	struct nx_crypto_ctx *nx_ctx =
259 		crypto_aead_ctx(crypto_aead_reqtfm(req));
260 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
261 	char out[AES_BLOCK_SIZE];
262 	struct nx_sg *in_sg, *out_sg;
263 	int len;
264 
265 	/* For scenarios where the input message is zero length, AES CTR mode
266 	 * may be used. Set the source data to be a single block (16B) of all
267 	 * zeros, and set the input IV value to be the same as the GMAC IV
268 	 * value. - nx_wb 4.8.1.3 */
269 
270 	/* Change to ECB mode */
271 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
272 	memcpy(csbcpb->cpb.aes_ecb.key, csbcpb->cpb.aes_gcm.key,
273 			sizeof(csbcpb->cpb.aes_ecb.key));
274 	if (enc)
275 		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
276 	else
277 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
278 
279 	len = AES_BLOCK_SIZE;
280 
281 	/* Encrypt the counter/IV */
282 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) desc->info,
283 				 &len, nx_ctx->ap->sglen);
284 
285 	if (len != AES_BLOCK_SIZE)
286 		return -EINVAL;
287 
288 	len = sizeof(out);
289 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, &len,
290 				  nx_ctx->ap->sglen);
291 
292 	if (len != sizeof(out))
293 		return -EINVAL;
294 
295 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
296 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
297 
298 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
299 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
300 	if (rc)
301 		goto out;
302 	atomic_inc(&(nx_ctx->stats->aes_ops));
303 
304 	/* Copy out the auth tag */
305 	memcpy(csbcpb->cpb.aes_gcm.out_pat_or_mac, out,
306 			crypto_aead_authsize(crypto_aead_reqtfm(req)));
307 out:
308 	/* Restore XCBC mode */
309 	csbcpb->cpb.hdr.mode = NX_MODE_AES_GCM;
310 
311 	/*
312 	 * ECB key uses the same region that GCM AAD and counter, so it's safe
313 	 * to just fill it with zeroes.
314 	 */
315 	memset(csbcpb->cpb.aes_ecb.key, 0, sizeof(csbcpb->cpb.aes_ecb.key));
316 
317 	return rc;
318 }
319 
320 static int gcm_aes_nx_crypt(struct aead_request *req, int enc,
321 			    unsigned int assoclen)
322 {
323 	struct nx_crypto_ctx *nx_ctx =
324 		crypto_aead_ctx(crypto_aead_reqtfm(req));
325 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
326 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
327 	struct blkcipher_desc desc;
328 	unsigned int nbytes = req->cryptlen;
329 	unsigned int processed = 0, to_process;
330 	unsigned long irq_flags;
331 	int rc = -EINVAL;
332 
333 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
334 
335 	desc.info = rctx->iv;
336 	/* initialize the counter */
337 	*(u32 *)(desc.info + NX_GCM_CTR_OFFSET) = 1;
338 
339 	if (nbytes == 0) {
340 		if (assoclen == 0)
341 			rc = gcm_empty(req, &desc, enc);
342 		else
343 			rc = gmac(req, &desc, assoclen);
344 		if (rc)
345 			goto out;
346 		else
347 			goto mac;
348 	}
349 
350 	/* Process associated data */
351 	csbcpb->cpb.aes_gcm.bit_length_aad = assoclen * 8;
352 	if (assoclen) {
353 		rc = nx_gca(nx_ctx, req, csbcpb->cpb.aes_gcm.in_pat_or_aad,
354 			    assoclen);
355 		if (rc)
356 			goto out;
357 	}
358 
359 	/* Set flags for encryption */
360 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
361 	if (enc) {
362 		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
363 	} else {
364 		NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
365 		nbytes -= crypto_aead_authsize(crypto_aead_reqtfm(req));
366 	}
367 
368 	do {
369 		to_process = nbytes - processed;
370 
371 		csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8;
372 		rc = nx_build_sg_lists(nx_ctx, &desc, req->dst,
373 				       req->src, &to_process,
374 				       processed + req->assoclen,
375 				       csbcpb->cpb.aes_gcm.iv_or_cnt);
376 
377 		if (rc)
378 			goto out;
379 
380 		if ((to_process + processed) < nbytes)
381 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
382 		else
383 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
384 
385 
386 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
387 				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
388 		if (rc)
389 			goto out;
390 
391 		memcpy(desc.info, csbcpb->cpb.aes_gcm.out_cnt, AES_BLOCK_SIZE);
392 		memcpy(csbcpb->cpb.aes_gcm.in_pat_or_aad,
393 			csbcpb->cpb.aes_gcm.out_pat_or_mac, AES_BLOCK_SIZE);
394 		memcpy(csbcpb->cpb.aes_gcm.in_s0,
395 			csbcpb->cpb.aes_gcm.out_s0, AES_BLOCK_SIZE);
396 
397 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
398 
399 		atomic_inc(&(nx_ctx->stats->aes_ops));
400 		atomic64_add(csbcpb->csb.processed_byte_count,
401 			     &(nx_ctx->stats->aes_bytes));
402 
403 		processed += to_process;
404 	} while (processed < nbytes);
405 
406 mac:
407 	if (enc) {
408 		/* copy out the auth tag */
409 		scatterwalk_map_and_copy(
410 			csbcpb->cpb.aes_gcm.out_pat_or_mac,
411 			req->dst, req->assoclen + nbytes,
412 			crypto_aead_authsize(crypto_aead_reqtfm(req)),
413 			SCATTERWALK_TO_SG);
414 	} else {
415 		u8 *itag = nx_ctx->priv.gcm.iauth_tag;
416 		u8 *otag = csbcpb->cpb.aes_gcm.out_pat_or_mac;
417 
418 		scatterwalk_map_and_copy(
419 			itag, req->src, req->assoclen + nbytes,
420 			crypto_aead_authsize(crypto_aead_reqtfm(req)),
421 			SCATTERWALK_FROM_SG);
422 		rc = crypto_memneq(itag, otag,
423 			    crypto_aead_authsize(crypto_aead_reqtfm(req))) ?
424 		     -EBADMSG : 0;
425 	}
426 out:
427 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
428 	return rc;
429 }
430 
431 static int gcm_aes_nx_encrypt(struct aead_request *req)
432 {
433 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
434 	char *iv = rctx->iv;
435 
436 	memcpy(iv, req->iv, 12);
437 
438 	return gcm_aes_nx_crypt(req, 1, req->assoclen);
439 }
440 
441 static int gcm_aes_nx_decrypt(struct aead_request *req)
442 {
443 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
444 	char *iv = rctx->iv;
445 
446 	memcpy(iv, req->iv, 12);
447 
448 	return gcm_aes_nx_crypt(req, 0, req->assoclen);
449 }
450 
451 static int gcm4106_aes_nx_encrypt(struct aead_request *req)
452 {
453 	struct nx_crypto_ctx *nx_ctx =
454 		crypto_aead_ctx(crypto_aead_reqtfm(req));
455 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
456 	char *iv = rctx->iv;
457 	char *nonce = nx_ctx->priv.gcm.nonce;
458 
459 	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
460 	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);
461 
462 	if (req->assoclen < 8)
463 		return -EINVAL;
464 
465 	return gcm_aes_nx_crypt(req, 1, req->assoclen - 8);
466 }
467 
468 static int gcm4106_aes_nx_decrypt(struct aead_request *req)
469 {
470 	struct nx_crypto_ctx *nx_ctx =
471 		crypto_aead_ctx(crypto_aead_reqtfm(req));
472 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
473 	char *iv = rctx->iv;
474 	char *nonce = nx_ctx->priv.gcm.nonce;
475 
476 	memcpy(iv, nonce, NX_GCM4106_NONCE_LEN);
477 	memcpy(iv + NX_GCM4106_NONCE_LEN, req->iv, 8);
478 
479 	if (req->assoclen < 8)
480 		return -EINVAL;
481 
482 	return gcm_aes_nx_crypt(req, 0, req->assoclen - 8);
483 }
484 
485 /* tell the block cipher walk routines that this is a stream cipher by
486  * setting cra_blocksize to 1. Even using blkcipher_walk_virt_block
487  * during encrypt/decrypt doesn't solve this problem, because it calls
488  * blkcipher_walk_done under the covers, which doesn't use walk->blocksize,
489  * but instead uses this tfm->blocksize. */
490 struct aead_alg nx_gcm_aes_alg = {
491 	.base = {
492 		.cra_name        = "gcm(aes)",
493 		.cra_driver_name = "gcm-aes-nx",
494 		.cra_priority    = 300,
495 		.cra_blocksize   = 1,
496 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
497 		.cra_module      = THIS_MODULE,
498 	},
499 	.init        = nx_crypto_ctx_aes_gcm_init,
500 	.exit        = nx_crypto_ctx_aead_exit,
501 	.ivsize      = 12,
502 	.maxauthsize = AES_BLOCK_SIZE,
503 	.setkey      = gcm_aes_nx_set_key,
504 	.encrypt     = gcm_aes_nx_encrypt,
505 	.decrypt     = gcm_aes_nx_decrypt,
506 };
507 
508 struct aead_alg nx_gcm4106_aes_alg = {
509 	.base = {
510 		.cra_name        = "rfc4106(gcm(aes))",
511 		.cra_driver_name = "rfc4106-gcm-aes-nx",
512 		.cra_priority    = 300,
513 		.cra_blocksize   = 1,
514 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
515 		.cra_module      = THIS_MODULE,
516 	},
517 	.init        = nx_crypto_ctx_aes_gcm_init,
518 	.exit        = nx_crypto_ctx_aead_exit,
519 	.ivsize      = 8,
520 	.maxauthsize = AES_BLOCK_SIZE,
521 	.setkey      = gcm4106_aes_nx_set_key,
522 	.setauthsize = gcm4106_aes_nx_setauthsize,
523 	.encrypt     = gcm4106_aes_nx_encrypt,
524 	.decrypt     = gcm4106_aes_nx_decrypt,
525 };
526