xref: /openbmc/linux/drivers/crypto/n2_core.c (revision e4fffa5f)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 struct spu_qreg {
69 	struct spu_queue	*queue;
70 	unsigned long		type;
71 };
72 
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75 
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 	if (q->q_type == HV_NCS_QTYPE_MAU) {
79 		off += MAU_ENTRY_SIZE;
80 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 			off = 0;
82 	} else {
83 		off += CWQ_ENTRY_SIZE;
84 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 			off = 0;
86 	}
87 	return off;
88 }
89 
90 struct n2_request_common {
91 	struct list_head	entry;
92 	unsigned int		offset;
93 };
94 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
95 
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 				unsigned long old_head, unsigned long new_head)
102 {
103 	if (old_head <= new_head) {
104 		if (offset > old_head && offset <= new_head)
105 			return true;
106 	} else {
107 		if (offset > old_head || offset <= new_head)
108 			return true;
109 	}
110 	return false;
111 }
112 
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 	unsigned long off, new_head, hv_ret;
121 	struct spu_queue *q = dev_id;
122 
123 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 	       smp_processor_id(), q->qhandle);
125 
126 	spin_lock(&q->lock);
127 
128 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129 
130 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 	       smp_processor_id(), new_head, hv_ret);
132 
133 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 		/* XXX ... XXX */
135 	}
136 
137 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 	if (hv_ret == HV_EOK)
139 		q->head = new_head;
140 
141 	spin_unlock(&q->lock);
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 	struct spu_queue *q = dev_id;
149 	unsigned long head, hv_ret;
150 
151 	spin_lock(&q->lock);
152 
153 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 	       smp_processor_id(), q->qhandle);
155 
156 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157 
158 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 	       smp_processor_id(), head, hv_ret);
160 
161 	sun4v_ncs_sethead_marker(q->qhandle, head);
162 
163 	spin_unlock(&q->lock);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 	return q->q + spu_next_offset(q, cur - q->q);
171 }
172 
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 	unsigned long head = q->head;
176 	unsigned long tail = q->tail;
177 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 	unsigned long diff;
179 
180 	if (head > tail)
181 		diff = head - tail;
182 	else
183 		diff = (end - tail) + head;
184 
185 	return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187 
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 	int avail = spu_queue_num_free(q);
191 
192 	if (avail >= num_entries)
193 		return q->q + q->tail;
194 
195 	return NULL;
196 }
197 
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 	unsigned long hv_ret, new_tail;
201 
202 	new_tail = spu_next_offset(q, last - q->q);
203 
204 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 	if (hv_ret == HV_EOK)
206 		q->tail = new_tail;
207 	return hv_ret;
208 }
209 
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 			     int enc_type, int auth_type,
212 			     unsigned int hash_len,
213 			     bool sfas, bool sob, bool eob, bool encrypt,
214 			     int opcode)
215 {
216 	u64 word = (len - 1) & CONTROL_LEN;
217 
218 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 	if (sfas)
222 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 	if (sob)
224 		word |= CONTROL_START_OF_BLOCK;
225 	if (eob)
226 		word |= CONTROL_END_OF_BLOCK;
227 	if (encrypt)
228 		word |= CONTROL_ENCRYPT;
229 	if (hmac_key_len)
230 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 	if (hash_len)
232 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 
234 	return word;
235 }
236 
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 	if (this_len >= 64 ||
241 	    qp->head != qp->tail)
242 		return true;
243 	return false;
244 }
245 #endif
246 
247 struct n2_ahash_alg {
248 	struct list_head	entry;
249 	const u8		*hash_zero;
250 	const u32		*hash_init;
251 	u8			hw_op_hashsz;
252 	u8			digest_size;
253 	u8			auth_type;
254 	u8			hmac_type;
255 	struct ahash_alg	alg;
256 };
257 
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 	struct crypto_alg *alg = tfm->__crt_alg;
261 	struct ahash_alg *ahash_alg;
262 
263 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264 
265 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267 
268 struct n2_hmac_alg {
269 	const char		*child_alg;
270 	struct n2_ahash_alg	derived;
271 };
272 
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 	struct crypto_alg *alg = tfm->__crt_alg;
276 	struct ahash_alg *ahash_alg;
277 
278 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279 
280 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282 
283 struct n2_hash_ctx {
284 	struct crypto_ahash		*fallback_tfm;
285 };
286 
287 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
288 
289 struct n2_hmac_ctx {
290 	struct n2_hash_ctx		base;
291 
292 	struct crypto_shash		*child_shash;
293 
294 	int				hash_key_len;
295 	unsigned char			hash_key[N2_HASH_KEY_MAX];
296 };
297 
298 struct n2_hash_req_ctx {
299 	union {
300 		struct md5_state	md5;
301 		struct sha1_state	sha1;
302 		struct sha256_state	sha256;
303 	} u;
304 
305 	struct ahash_request		fallback_req;
306 };
307 
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313 
314 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316 
317 	return crypto_ahash_init(&rctx->fallback_req);
318 }
319 
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325 
326 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 	rctx->fallback_req.nbytes = req->nbytes;
329 	rctx->fallback_req.src = req->src;
330 
331 	return crypto_ahash_update(&rctx->fallback_req);
332 }
333 
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339 
340 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 	rctx->fallback_req.result = req->result;
343 
344 	return crypto_ahash_final(&rctx->fallback_req);
345 }
346 
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352 
353 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 	rctx->fallback_req.nbytes = req->nbytes;
356 	rctx->fallback_req.src = req->src;
357 	rctx->fallback_req.result = req->result;
358 
359 	return crypto_ahash_finup(&rctx->fallback_req);
360 }
361 
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363 {
364 	return -ENOSYS;
365 }
366 
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368 {
369 	return -ENOSYS;
370 }
371 
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
373 {
374 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 	struct crypto_ahash *fallback_tfm;
378 	int err;
379 
380 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 					  CRYPTO_ALG_NEED_FALLBACK);
382 	if (IS_ERR(fallback_tfm)) {
383 		pr_warning("Fallback driver '%s' could not be loaded!\n",
384 			   fallback_driver_name);
385 		err = PTR_ERR(fallback_tfm);
386 		goto out;
387 	}
388 
389 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 					 crypto_ahash_reqsize(fallback_tfm)));
391 
392 	ctx->fallback_tfm = fallback_tfm;
393 	return 0;
394 
395 out:
396 	return err;
397 }
398 
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400 {
401 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403 
404 	crypto_free_ahash(ctx->fallback_tfm);
405 }
406 
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408 {
409 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 	struct crypto_ahash *fallback_tfm;
414 	struct crypto_shash *child_shash;
415 	int err;
416 
417 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 					  CRYPTO_ALG_NEED_FALLBACK);
419 	if (IS_ERR(fallback_tfm)) {
420 		pr_warning("Fallback driver '%s' could not be loaded!\n",
421 			   fallback_driver_name);
422 		err = PTR_ERR(fallback_tfm);
423 		goto out;
424 	}
425 
426 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 	if (IS_ERR(child_shash)) {
428 		pr_warning("Child shash '%s' could not be loaded!\n",
429 			   n2alg->child_alg);
430 		err = PTR_ERR(child_shash);
431 		goto out_free_fallback;
432 	}
433 
434 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 					 crypto_ahash_reqsize(fallback_tfm)));
436 
437 	ctx->child_shash = child_shash;
438 	ctx->base.fallback_tfm = fallback_tfm;
439 	return 0;
440 
441 out_free_fallback:
442 	crypto_free_ahash(fallback_tfm);
443 
444 out:
445 	return err;
446 }
447 
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449 {
450 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452 
453 	crypto_free_ahash(ctx->base.fallback_tfm);
454 	crypto_free_shash(ctx->child_shash);
455 }
456 
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458 				unsigned int keylen)
459 {
460 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 	struct crypto_shash *child_shash = ctx->child_shash;
462 	struct crypto_ahash *fallback_tfm;
463 	SHASH_DESC_ON_STACK(shash, child_shash);
464 	int err, bs, ds;
465 
466 	fallback_tfm = ctx->base.fallback_tfm;
467 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468 	if (err)
469 		return err;
470 
471 	shash->tfm = child_shash;
472 	shash->flags = crypto_ahash_get_flags(tfm) &
473 		CRYPTO_TFM_REQ_MAY_SLEEP;
474 
475 	bs = crypto_shash_blocksize(child_shash);
476 	ds = crypto_shash_digestsize(child_shash);
477 	BUG_ON(ds > N2_HASH_KEY_MAX);
478 	if (keylen > bs) {
479 		err = crypto_shash_digest(shash, key, keylen,
480 					  ctx->hash_key);
481 		if (err)
482 			return err;
483 		keylen = ds;
484 	} else if (keylen <= N2_HASH_KEY_MAX)
485 		memcpy(ctx->hash_key, key, keylen);
486 
487 	ctx->hash_key_len = keylen;
488 
489 	return err;
490 }
491 
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494 	unsigned long head, hv_ret;
495 
496 	do {
497 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 		if (hv_ret != HV_EOK) {
499 			pr_err("Hypervisor error on gethead\n");
500 			break;
501 		}
502 		if (head == qp->tail) {
503 			qp->head = head;
504 			break;
505 		}
506 	} while (1);
507 	return hv_ret;
508 }
509 
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 					      struct cwq_initial_entry *ent)
512 {
513 	unsigned long hv_ret = spu_queue_submit(qp, ent);
514 
515 	if (hv_ret == HV_EOK)
516 		hv_ret = wait_for_tail(qp);
517 
518 	return hv_ret;
519 }
520 
521 static int n2_do_async_digest(struct ahash_request *req,
522 			      unsigned int auth_type, unsigned int digest_size,
523 			      unsigned int result_size, void *hash_loc,
524 			      unsigned long auth_key, unsigned int auth_key_len)
525 {
526 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 	struct cwq_initial_entry *ent;
528 	struct crypto_hash_walk walk;
529 	struct spu_queue *qp;
530 	unsigned long flags;
531 	int err = -ENODEV;
532 	int nbytes, cpu;
533 
534 	/* The total effective length of the operation may not
535 	 * exceed 2^16.
536 	 */
537 	if (unlikely(req->nbytes > (1 << 16))) {
538 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 
541 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 		rctx->fallback_req.base.flags =
543 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 		rctx->fallback_req.nbytes = req->nbytes;
545 		rctx->fallback_req.src = req->src;
546 		rctx->fallback_req.result = req->result;
547 
548 		return crypto_ahash_digest(&rctx->fallback_req);
549 	}
550 
551 	nbytes = crypto_hash_walk_first(req, &walk);
552 
553 	cpu = get_cpu();
554 	qp = cpu_to_cwq[cpu];
555 	if (!qp)
556 		goto out;
557 
558 	spin_lock_irqsave(&qp->lock, flags);
559 
560 	/* XXX can do better, improve this later by doing a by-hand scatterlist
561 	 * XXX walk, etc.
562 	 */
563 	ent = qp->q + qp->tail;
564 
565 	ent->control = control_word_base(nbytes, auth_key_len, 0,
566 					 auth_type, digest_size,
567 					 false, true, false, false,
568 					 OPCODE_INPLACE_BIT |
569 					 OPCODE_AUTH_MAC);
570 	ent->src_addr = __pa(walk.data);
571 	ent->auth_key_addr = auth_key;
572 	ent->auth_iv_addr = __pa(hash_loc);
573 	ent->final_auth_state_addr = 0UL;
574 	ent->enc_key_addr = 0UL;
575 	ent->enc_iv_addr = 0UL;
576 	ent->dest_addr = __pa(hash_loc);
577 
578 	nbytes = crypto_hash_walk_done(&walk, 0);
579 	while (nbytes > 0) {
580 		ent = spu_queue_next(qp, ent);
581 
582 		ent->control = (nbytes - 1);
583 		ent->src_addr = __pa(walk.data);
584 		ent->auth_key_addr = 0UL;
585 		ent->auth_iv_addr = 0UL;
586 		ent->final_auth_state_addr = 0UL;
587 		ent->enc_key_addr = 0UL;
588 		ent->enc_iv_addr = 0UL;
589 		ent->dest_addr = 0UL;
590 
591 		nbytes = crypto_hash_walk_done(&walk, 0);
592 	}
593 	ent->control |= CONTROL_END_OF_BLOCK;
594 
595 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 		err = -EINVAL;
597 	else
598 		err = 0;
599 
600 	spin_unlock_irqrestore(&qp->lock, flags);
601 
602 	if (!err)
603 		memcpy(req->result, hash_loc, result_size);
604 out:
605 	put_cpu();
606 
607 	return err;
608 }
609 
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 	int ds;
615 
616 	ds = n2alg->digest_size;
617 	if (unlikely(req->nbytes == 0)) {
618 		memcpy(req->result, n2alg->hash_zero, ds);
619 		return 0;
620 	}
621 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 
623 	return n2_do_async_digest(req, n2alg->auth_type,
624 				  n2alg->hw_op_hashsz, ds,
625 				  &rctx->u, 0UL, 0);
626 }
627 
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 	int ds;
635 
636 	ds = n2alg->derived.digest_size;
637 	if (unlikely(req->nbytes == 0) ||
638 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 
642 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 		rctx->fallback_req.base.flags =
644 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 		rctx->fallback_req.nbytes = req->nbytes;
646 		rctx->fallback_req.src = req->src;
647 		rctx->fallback_req.result = req->result;
648 
649 		return crypto_ahash_digest(&rctx->fallback_req);
650 	}
651 	memcpy(&rctx->u, n2alg->derived.hash_init,
652 	       n2alg->derived.hw_op_hashsz);
653 
654 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 				  n2alg->derived.hw_op_hashsz, ds,
656 				  &rctx->u,
657 				  __pa(&ctx->hash_key),
658 				  ctx->hash_key_len);
659 }
660 
661 struct n2_cipher_context {
662 	int			key_len;
663 	int			enc_type;
664 	union {
665 		u8		aes[AES_MAX_KEY_SIZE];
666 		u8		des[DES_KEY_SIZE];
667 		u8		des3[3 * DES_KEY_SIZE];
668 		u8		arc4[258]; /* S-box, X, Y */
669 	} key;
670 };
671 
672 #define N2_CHUNK_ARR_LEN	16
673 
674 struct n2_crypto_chunk {
675 	struct list_head	entry;
676 	unsigned long		iv_paddr : 44;
677 	unsigned long		arr_len : 20;
678 	unsigned long		dest_paddr;
679 	unsigned long		dest_final;
680 	struct {
681 		unsigned long	src_paddr : 44;
682 		unsigned long	src_len : 20;
683 	} arr[N2_CHUNK_ARR_LEN];
684 };
685 
686 struct n2_request_context {
687 	struct ablkcipher_walk	walk;
688 	struct list_head	chunk_list;
689 	struct n2_crypto_chunk	chunk;
690 	u8			temp_iv[16];
691 };
692 
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *	0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *	0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711 
712 struct n2_cipher_alg {
713 	struct list_head	entry;
714 	u8			enc_type;
715 	struct crypto_alg	alg;
716 };
717 
718 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
719 {
720 	struct crypto_alg *alg = tfm->__crt_alg;
721 
722 	return container_of(alg, struct n2_cipher_alg, alg);
723 }
724 
725 struct n2_cipher_request_context {
726 	struct ablkcipher_walk	walk;
727 };
728 
729 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
730 			 unsigned int keylen)
731 {
732 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
735 
736 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 
738 	switch (keylen) {
739 	case AES_KEYSIZE_128:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 		break;
742 	case AES_KEYSIZE_192:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 		break;
745 	case AES_KEYSIZE_256:
746 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 		break;
748 	default:
749 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750 		return -EINVAL;
751 	}
752 
753 	ctx->key_len = keylen;
754 	memcpy(ctx->key.aes, key, keylen);
755 	return 0;
756 }
757 
758 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
759 			 unsigned int keylen)
760 {
761 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764 	u32 tmp[DES_EXPKEY_WORDS];
765 	int err;
766 
767 	ctx->enc_type = n2alg->enc_type;
768 
769 	if (keylen != DES_KEY_SIZE) {
770 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
771 		return -EINVAL;
772 	}
773 
774 	err = des_ekey(tmp, key);
775 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
776 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
777 		return -EINVAL;
778 	}
779 
780 	ctx->key_len = keylen;
781 	memcpy(ctx->key.des, key, keylen);
782 	return 0;
783 }
784 
785 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
786 			  unsigned int keylen)
787 {
788 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
791 	u32 flags;
792 	int err;
793 
794 	flags = crypto_ablkcipher_get_flags(cipher);
795 	err = __des3_verify_key(&flags, key);
796 	if (unlikely(err)) {
797 		crypto_ablkcipher_set_flags(cipher, flags);
798 		return err;
799 	}
800 
801 	ctx->enc_type = n2alg->enc_type;
802 
803 	ctx->key_len = keylen;
804 	memcpy(ctx->key.des3, key, keylen);
805 	return 0;
806 }
807 
808 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
809 			  unsigned int keylen)
810 {
811 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
812 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
813 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
814 	u8 *s = ctx->key.arc4;
815 	u8 *x = s + 256;
816 	u8 *y = x + 1;
817 	int i, j, k;
818 
819 	ctx->enc_type = n2alg->enc_type;
820 
821 	j = k = 0;
822 	*x = 0;
823 	*y = 0;
824 	for (i = 0; i < 256; i++)
825 		s[i] = i;
826 	for (i = 0; i < 256; i++) {
827 		u8 a = s[i];
828 		j = (j + key[k] + a) & 0xff;
829 		s[i] = s[j];
830 		s[j] = a;
831 		if (++k >= keylen)
832 			k = 0;
833 	}
834 
835 	return 0;
836 }
837 
838 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
839 {
840 	int this_len = nbytes;
841 
842 	this_len -= (nbytes & (block_size - 1));
843 	return this_len > (1 << 16) ? (1 << 16) : this_len;
844 }
845 
846 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
847 			    struct spu_queue *qp, bool encrypt)
848 {
849 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
850 	struct cwq_initial_entry *ent;
851 	bool in_place;
852 	int i;
853 
854 	ent = spu_queue_alloc(qp, cp->arr_len);
855 	if (!ent) {
856 		pr_info("queue_alloc() of %d fails\n",
857 			cp->arr_len);
858 		return -EBUSY;
859 	}
860 
861 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
862 
863 	ent->control = control_word_base(cp->arr[0].src_len,
864 					 0, ctx->enc_type, 0, 0,
865 					 false, true, false, encrypt,
866 					 OPCODE_ENCRYPT |
867 					 (in_place ? OPCODE_INPLACE_BIT : 0));
868 	ent->src_addr = cp->arr[0].src_paddr;
869 	ent->auth_key_addr = 0UL;
870 	ent->auth_iv_addr = 0UL;
871 	ent->final_auth_state_addr = 0UL;
872 	ent->enc_key_addr = __pa(&ctx->key);
873 	ent->enc_iv_addr = cp->iv_paddr;
874 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
875 
876 	for (i = 1; i < cp->arr_len; i++) {
877 		ent = spu_queue_next(qp, ent);
878 
879 		ent->control = cp->arr[i].src_len - 1;
880 		ent->src_addr = cp->arr[i].src_paddr;
881 		ent->auth_key_addr = 0UL;
882 		ent->auth_iv_addr = 0UL;
883 		ent->final_auth_state_addr = 0UL;
884 		ent->enc_key_addr = 0UL;
885 		ent->enc_iv_addr = 0UL;
886 		ent->dest_addr = 0UL;
887 	}
888 	ent->control |= CONTROL_END_OF_BLOCK;
889 
890 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
891 }
892 
893 static int n2_compute_chunks(struct ablkcipher_request *req)
894 {
895 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
896 	struct ablkcipher_walk *walk = &rctx->walk;
897 	struct n2_crypto_chunk *chunk;
898 	unsigned long dest_prev;
899 	unsigned int tot_len;
900 	bool prev_in_place;
901 	int err, nbytes;
902 
903 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
904 	err = ablkcipher_walk_phys(req, walk);
905 	if (err)
906 		return err;
907 
908 	INIT_LIST_HEAD(&rctx->chunk_list);
909 
910 	chunk = &rctx->chunk;
911 	INIT_LIST_HEAD(&chunk->entry);
912 
913 	chunk->iv_paddr = 0UL;
914 	chunk->arr_len = 0;
915 	chunk->dest_paddr = 0UL;
916 
917 	prev_in_place = false;
918 	dest_prev = ~0UL;
919 	tot_len = 0;
920 
921 	while ((nbytes = walk->nbytes) != 0) {
922 		unsigned long dest_paddr, src_paddr;
923 		bool in_place;
924 		int this_len;
925 
926 		src_paddr = (page_to_phys(walk->src.page) +
927 			     walk->src.offset);
928 		dest_paddr = (page_to_phys(walk->dst.page) +
929 			      walk->dst.offset);
930 		in_place = (src_paddr == dest_paddr);
931 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
932 
933 		if (chunk->arr_len != 0) {
934 			if (in_place != prev_in_place ||
935 			    (!prev_in_place &&
936 			     dest_paddr != dest_prev) ||
937 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
938 			    tot_len + this_len > (1 << 16)) {
939 				chunk->dest_final = dest_prev;
940 				list_add_tail(&chunk->entry,
941 					      &rctx->chunk_list);
942 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
943 				if (!chunk) {
944 					err = -ENOMEM;
945 					break;
946 				}
947 				INIT_LIST_HEAD(&chunk->entry);
948 			}
949 		}
950 		if (chunk->arr_len == 0) {
951 			chunk->dest_paddr = dest_paddr;
952 			tot_len = 0;
953 		}
954 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
955 		chunk->arr[chunk->arr_len].src_len = this_len;
956 		chunk->arr_len++;
957 
958 		dest_prev = dest_paddr + this_len;
959 		prev_in_place = in_place;
960 		tot_len += this_len;
961 
962 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
963 		if (err)
964 			break;
965 	}
966 	if (!err && chunk->arr_len != 0) {
967 		chunk->dest_final = dest_prev;
968 		list_add_tail(&chunk->entry, &rctx->chunk_list);
969 	}
970 
971 	return err;
972 }
973 
974 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
975 {
976 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
977 	struct n2_crypto_chunk *c, *tmp;
978 
979 	if (final_iv)
980 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
981 
982 	ablkcipher_walk_complete(&rctx->walk);
983 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
984 		list_del(&c->entry);
985 		if (unlikely(c != &rctx->chunk))
986 			kfree(c);
987 	}
988 
989 }
990 
991 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
992 {
993 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
994 	struct crypto_tfm *tfm = req->base.tfm;
995 	int err = n2_compute_chunks(req);
996 	struct n2_crypto_chunk *c, *tmp;
997 	unsigned long flags, hv_ret;
998 	struct spu_queue *qp;
999 
1000 	if (err)
1001 		return err;
1002 
1003 	qp = cpu_to_cwq[get_cpu()];
1004 	err = -ENODEV;
1005 	if (!qp)
1006 		goto out;
1007 
1008 	spin_lock_irqsave(&qp->lock, flags);
1009 
1010 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1011 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1012 		if (err)
1013 			break;
1014 		list_del(&c->entry);
1015 		if (unlikely(c != &rctx->chunk))
1016 			kfree(c);
1017 	}
1018 	if (!err) {
1019 		hv_ret = wait_for_tail(qp);
1020 		if (hv_ret != HV_EOK)
1021 			err = -EINVAL;
1022 	}
1023 
1024 	spin_unlock_irqrestore(&qp->lock, flags);
1025 
1026 out:
1027 	put_cpu();
1028 
1029 	n2_chunk_complete(req, NULL);
1030 	return err;
1031 }
1032 
1033 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1034 {
1035 	return n2_do_ecb(req, true);
1036 }
1037 
1038 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1039 {
1040 	return n2_do_ecb(req, false);
1041 }
1042 
1043 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1044 {
1045 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1046 	struct crypto_tfm *tfm = req->base.tfm;
1047 	unsigned long flags, hv_ret, iv_paddr;
1048 	int err = n2_compute_chunks(req);
1049 	struct n2_crypto_chunk *c, *tmp;
1050 	struct spu_queue *qp;
1051 	void *final_iv_addr;
1052 
1053 	final_iv_addr = NULL;
1054 
1055 	if (err)
1056 		return err;
1057 
1058 	qp = cpu_to_cwq[get_cpu()];
1059 	err = -ENODEV;
1060 	if (!qp)
1061 		goto out;
1062 
1063 	spin_lock_irqsave(&qp->lock, flags);
1064 
1065 	if (encrypt) {
1066 		iv_paddr = __pa(rctx->walk.iv);
1067 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1068 					 entry) {
1069 			c->iv_paddr = iv_paddr;
1070 			err = __n2_crypt_chunk(tfm, c, qp, true);
1071 			if (err)
1072 				break;
1073 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1074 			list_del(&c->entry);
1075 			if (unlikely(c != &rctx->chunk))
1076 				kfree(c);
1077 		}
1078 		final_iv_addr = __va(iv_paddr);
1079 	} else {
1080 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1081 						 entry) {
1082 			if (c == &rctx->chunk) {
1083 				iv_paddr = __pa(rctx->walk.iv);
1084 			} else {
1085 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1086 					    tmp->arr[tmp->arr_len-1].src_len -
1087 					    rctx->walk.blocksize);
1088 			}
1089 			if (!final_iv_addr) {
1090 				unsigned long pa;
1091 
1092 				pa = (c->arr[c->arr_len-1].src_paddr +
1093 				      c->arr[c->arr_len-1].src_len -
1094 				      rctx->walk.blocksize);
1095 				final_iv_addr = rctx->temp_iv;
1096 				memcpy(rctx->temp_iv, __va(pa),
1097 				       rctx->walk.blocksize);
1098 			}
1099 			c->iv_paddr = iv_paddr;
1100 			err = __n2_crypt_chunk(tfm, c, qp, false);
1101 			if (err)
1102 				break;
1103 			list_del(&c->entry);
1104 			if (unlikely(c != &rctx->chunk))
1105 				kfree(c);
1106 		}
1107 	}
1108 	if (!err) {
1109 		hv_ret = wait_for_tail(qp);
1110 		if (hv_ret != HV_EOK)
1111 			err = -EINVAL;
1112 	}
1113 
1114 	spin_unlock_irqrestore(&qp->lock, flags);
1115 
1116 out:
1117 	put_cpu();
1118 
1119 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1120 	return err;
1121 }
1122 
1123 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1124 {
1125 	return n2_do_chaining(req, true);
1126 }
1127 
1128 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1129 {
1130 	return n2_do_chaining(req, false);
1131 }
1132 
1133 struct n2_cipher_tmpl {
1134 	const char		*name;
1135 	const char		*drv_name;
1136 	u8			block_size;
1137 	u8			enc_type;
1138 	struct ablkcipher_alg	ablkcipher;
1139 };
1140 
1141 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1142 	/* ARC4: only ECB is supported (chaining bits ignored) */
1143 	{	.name		= "ecb(arc4)",
1144 		.drv_name	= "ecb-arc4",
1145 		.block_size	= 1,
1146 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1147 				   ENC_TYPE_CHAINING_ECB),
1148 		.ablkcipher	= {
1149 			.min_keysize	= 1,
1150 			.max_keysize	= 256,
1151 			.setkey		= n2_arc4_setkey,
1152 			.encrypt	= n2_encrypt_ecb,
1153 			.decrypt	= n2_decrypt_ecb,
1154 		},
1155 	},
1156 
1157 	/* DES: ECB CBC and CFB are supported */
1158 	{	.name		= "ecb(des)",
1159 		.drv_name	= "ecb-des",
1160 		.block_size	= DES_BLOCK_SIZE,
1161 		.enc_type	= (ENC_TYPE_ALG_DES |
1162 				   ENC_TYPE_CHAINING_ECB),
1163 		.ablkcipher	= {
1164 			.min_keysize	= DES_KEY_SIZE,
1165 			.max_keysize	= DES_KEY_SIZE,
1166 			.setkey		= n2_des_setkey,
1167 			.encrypt	= n2_encrypt_ecb,
1168 			.decrypt	= n2_decrypt_ecb,
1169 		},
1170 	},
1171 	{	.name		= "cbc(des)",
1172 		.drv_name	= "cbc-des",
1173 		.block_size	= DES_BLOCK_SIZE,
1174 		.enc_type	= (ENC_TYPE_ALG_DES |
1175 				   ENC_TYPE_CHAINING_CBC),
1176 		.ablkcipher	= {
1177 			.ivsize		= DES_BLOCK_SIZE,
1178 			.min_keysize	= DES_KEY_SIZE,
1179 			.max_keysize	= DES_KEY_SIZE,
1180 			.setkey		= n2_des_setkey,
1181 			.encrypt	= n2_encrypt_chaining,
1182 			.decrypt	= n2_decrypt_chaining,
1183 		},
1184 	},
1185 	{	.name		= "cfb(des)",
1186 		.drv_name	= "cfb-des",
1187 		.block_size	= DES_BLOCK_SIZE,
1188 		.enc_type	= (ENC_TYPE_ALG_DES |
1189 				   ENC_TYPE_CHAINING_CFB),
1190 		.ablkcipher	= {
1191 			.min_keysize	= DES_KEY_SIZE,
1192 			.max_keysize	= DES_KEY_SIZE,
1193 			.setkey		= n2_des_setkey,
1194 			.encrypt	= n2_encrypt_chaining,
1195 			.decrypt	= n2_decrypt_chaining,
1196 		},
1197 	},
1198 
1199 	/* 3DES: ECB CBC and CFB are supported */
1200 	{	.name		= "ecb(des3_ede)",
1201 		.drv_name	= "ecb-3des",
1202 		.block_size	= DES_BLOCK_SIZE,
1203 		.enc_type	= (ENC_TYPE_ALG_3DES |
1204 				   ENC_TYPE_CHAINING_ECB),
1205 		.ablkcipher	= {
1206 			.min_keysize	= 3 * DES_KEY_SIZE,
1207 			.max_keysize	= 3 * DES_KEY_SIZE,
1208 			.setkey		= n2_3des_setkey,
1209 			.encrypt	= n2_encrypt_ecb,
1210 			.decrypt	= n2_decrypt_ecb,
1211 		},
1212 	},
1213 	{	.name		= "cbc(des3_ede)",
1214 		.drv_name	= "cbc-3des",
1215 		.block_size	= DES_BLOCK_SIZE,
1216 		.enc_type	= (ENC_TYPE_ALG_3DES |
1217 				   ENC_TYPE_CHAINING_CBC),
1218 		.ablkcipher	= {
1219 			.ivsize		= DES_BLOCK_SIZE,
1220 			.min_keysize	= 3 * DES_KEY_SIZE,
1221 			.max_keysize	= 3 * DES_KEY_SIZE,
1222 			.setkey		= n2_3des_setkey,
1223 			.encrypt	= n2_encrypt_chaining,
1224 			.decrypt	= n2_decrypt_chaining,
1225 		},
1226 	},
1227 	{	.name		= "cfb(des3_ede)",
1228 		.drv_name	= "cfb-3des",
1229 		.block_size	= DES_BLOCK_SIZE,
1230 		.enc_type	= (ENC_TYPE_ALG_3DES |
1231 				   ENC_TYPE_CHAINING_CFB),
1232 		.ablkcipher	= {
1233 			.min_keysize	= 3 * DES_KEY_SIZE,
1234 			.max_keysize	= 3 * DES_KEY_SIZE,
1235 			.setkey		= n2_3des_setkey,
1236 			.encrypt	= n2_encrypt_chaining,
1237 			.decrypt	= n2_decrypt_chaining,
1238 		},
1239 	},
1240 	/* AES: ECB CBC and CTR are supported */
1241 	{	.name		= "ecb(aes)",
1242 		.drv_name	= "ecb-aes",
1243 		.block_size	= AES_BLOCK_SIZE,
1244 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1245 				   ENC_TYPE_CHAINING_ECB),
1246 		.ablkcipher	= {
1247 			.min_keysize	= AES_MIN_KEY_SIZE,
1248 			.max_keysize	= AES_MAX_KEY_SIZE,
1249 			.setkey		= n2_aes_setkey,
1250 			.encrypt	= n2_encrypt_ecb,
1251 			.decrypt	= n2_decrypt_ecb,
1252 		},
1253 	},
1254 	{	.name		= "cbc(aes)",
1255 		.drv_name	= "cbc-aes",
1256 		.block_size	= AES_BLOCK_SIZE,
1257 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1258 				   ENC_TYPE_CHAINING_CBC),
1259 		.ablkcipher	= {
1260 			.ivsize		= AES_BLOCK_SIZE,
1261 			.min_keysize	= AES_MIN_KEY_SIZE,
1262 			.max_keysize	= AES_MAX_KEY_SIZE,
1263 			.setkey		= n2_aes_setkey,
1264 			.encrypt	= n2_encrypt_chaining,
1265 			.decrypt	= n2_decrypt_chaining,
1266 		},
1267 	},
1268 	{	.name		= "ctr(aes)",
1269 		.drv_name	= "ctr-aes",
1270 		.block_size	= AES_BLOCK_SIZE,
1271 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1272 				   ENC_TYPE_CHAINING_COUNTER),
1273 		.ablkcipher	= {
1274 			.ivsize		= AES_BLOCK_SIZE,
1275 			.min_keysize	= AES_MIN_KEY_SIZE,
1276 			.max_keysize	= AES_MAX_KEY_SIZE,
1277 			.setkey		= n2_aes_setkey,
1278 			.encrypt	= n2_encrypt_chaining,
1279 			.decrypt	= n2_encrypt_chaining,
1280 		},
1281 	},
1282 
1283 };
1284 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1285 
1286 static LIST_HEAD(cipher_algs);
1287 
1288 struct n2_hash_tmpl {
1289 	const char	*name;
1290 	const u8	*hash_zero;
1291 	const u32	*hash_init;
1292 	u8		hw_op_hashsz;
1293 	u8		digest_size;
1294 	u8		block_size;
1295 	u8		auth_type;
1296 	u8		hmac_type;
1297 };
1298 
1299 static const u32 md5_init[MD5_HASH_WORDS] = {
1300 	cpu_to_le32(MD5_H0),
1301 	cpu_to_le32(MD5_H1),
1302 	cpu_to_le32(MD5_H2),
1303 	cpu_to_le32(MD5_H3),
1304 };
1305 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1306 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1307 };
1308 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1309 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1310 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1311 };
1312 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1313 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1314 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1315 };
1316 
1317 static const struct n2_hash_tmpl hash_tmpls[] = {
1318 	{ .name		= "md5",
1319 	  .hash_zero	= md5_zero_message_hash,
1320 	  .hash_init	= md5_init,
1321 	  .auth_type	= AUTH_TYPE_MD5,
1322 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1323 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1324 	  .digest_size	= MD5_DIGEST_SIZE,
1325 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1326 	{ .name		= "sha1",
1327 	  .hash_zero	= sha1_zero_message_hash,
1328 	  .hash_init	= sha1_init,
1329 	  .auth_type	= AUTH_TYPE_SHA1,
1330 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1331 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1332 	  .digest_size	= SHA1_DIGEST_SIZE,
1333 	  .block_size	= SHA1_BLOCK_SIZE },
1334 	{ .name		= "sha256",
1335 	  .hash_zero	= sha256_zero_message_hash,
1336 	  .hash_init	= sha256_init,
1337 	  .auth_type	= AUTH_TYPE_SHA256,
1338 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1339 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1340 	  .digest_size	= SHA256_DIGEST_SIZE,
1341 	  .block_size	= SHA256_BLOCK_SIZE },
1342 	{ .name		= "sha224",
1343 	  .hash_zero	= sha224_zero_message_hash,
1344 	  .hash_init	= sha224_init,
1345 	  .auth_type	= AUTH_TYPE_SHA256,
1346 	  .hmac_type	= AUTH_TYPE_RESERVED,
1347 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1348 	  .digest_size	= SHA224_DIGEST_SIZE,
1349 	  .block_size	= SHA224_BLOCK_SIZE },
1350 };
1351 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1352 
1353 static LIST_HEAD(ahash_algs);
1354 static LIST_HEAD(hmac_algs);
1355 
1356 static int algs_registered;
1357 
1358 static void __n2_unregister_algs(void)
1359 {
1360 	struct n2_cipher_alg *cipher, *cipher_tmp;
1361 	struct n2_ahash_alg *alg, *alg_tmp;
1362 	struct n2_hmac_alg *hmac, *hmac_tmp;
1363 
1364 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1365 		crypto_unregister_alg(&cipher->alg);
1366 		list_del(&cipher->entry);
1367 		kfree(cipher);
1368 	}
1369 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1370 		crypto_unregister_ahash(&hmac->derived.alg);
1371 		list_del(&hmac->derived.entry);
1372 		kfree(hmac);
1373 	}
1374 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1375 		crypto_unregister_ahash(&alg->alg);
1376 		list_del(&alg->entry);
1377 		kfree(alg);
1378 	}
1379 }
1380 
1381 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1382 {
1383 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1384 	return 0;
1385 }
1386 
1387 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1388 {
1389 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1390 	struct crypto_alg *alg;
1391 	int err;
1392 
1393 	if (!p)
1394 		return -ENOMEM;
1395 
1396 	alg = &p->alg;
1397 
1398 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1399 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1400 	alg->cra_priority = N2_CRA_PRIORITY;
1401 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1402 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1403 	alg->cra_blocksize = tmpl->block_size;
1404 	p->enc_type = tmpl->enc_type;
1405 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1406 	alg->cra_type = &crypto_ablkcipher_type;
1407 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1408 	alg->cra_init = n2_cipher_cra_init;
1409 	alg->cra_module = THIS_MODULE;
1410 
1411 	list_add(&p->entry, &cipher_algs);
1412 	err = crypto_register_alg(alg);
1413 	if (err) {
1414 		pr_err("%s alg registration failed\n", alg->cra_name);
1415 		list_del(&p->entry);
1416 		kfree(p);
1417 	} else {
1418 		pr_info("%s alg registered\n", alg->cra_name);
1419 	}
1420 	return err;
1421 }
1422 
1423 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1424 {
1425 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1426 	struct ahash_alg *ahash;
1427 	struct crypto_alg *base;
1428 	int err;
1429 
1430 	if (!p)
1431 		return -ENOMEM;
1432 
1433 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1434 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1435 	INIT_LIST_HEAD(&p->derived.entry);
1436 
1437 	ahash = &p->derived.alg;
1438 	ahash->digest = n2_hmac_async_digest;
1439 	ahash->setkey = n2_hmac_async_setkey;
1440 
1441 	base = &ahash->halg.base;
1442 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1443 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1444 
1445 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1446 	base->cra_init = n2_hmac_cra_init;
1447 	base->cra_exit = n2_hmac_cra_exit;
1448 
1449 	list_add(&p->derived.entry, &hmac_algs);
1450 	err = crypto_register_ahash(ahash);
1451 	if (err) {
1452 		pr_err("%s alg registration failed\n", base->cra_name);
1453 		list_del(&p->derived.entry);
1454 		kfree(p);
1455 	} else {
1456 		pr_info("%s alg registered\n", base->cra_name);
1457 	}
1458 	return err;
1459 }
1460 
1461 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1462 {
1463 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1464 	struct hash_alg_common *halg;
1465 	struct crypto_alg *base;
1466 	struct ahash_alg *ahash;
1467 	int err;
1468 
1469 	if (!p)
1470 		return -ENOMEM;
1471 
1472 	p->hash_zero = tmpl->hash_zero;
1473 	p->hash_init = tmpl->hash_init;
1474 	p->auth_type = tmpl->auth_type;
1475 	p->hmac_type = tmpl->hmac_type;
1476 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1477 	p->digest_size = tmpl->digest_size;
1478 
1479 	ahash = &p->alg;
1480 	ahash->init = n2_hash_async_init;
1481 	ahash->update = n2_hash_async_update;
1482 	ahash->final = n2_hash_async_final;
1483 	ahash->finup = n2_hash_async_finup;
1484 	ahash->digest = n2_hash_async_digest;
1485 	ahash->export = n2_hash_async_noexport;
1486 	ahash->import = n2_hash_async_noimport;
1487 
1488 	halg = &ahash->halg;
1489 	halg->digestsize = tmpl->digest_size;
1490 
1491 	base = &halg->base;
1492 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1493 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1494 	base->cra_priority = N2_CRA_PRIORITY;
1495 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1496 			  CRYPTO_ALG_NEED_FALLBACK;
1497 	base->cra_blocksize = tmpl->block_size;
1498 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1499 	base->cra_module = THIS_MODULE;
1500 	base->cra_init = n2_hash_cra_init;
1501 	base->cra_exit = n2_hash_cra_exit;
1502 
1503 	list_add(&p->entry, &ahash_algs);
1504 	err = crypto_register_ahash(ahash);
1505 	if (err) {
1506 		pr_err("%s alg registration failed\n", base->cra_name);
1507 		list_del(&p->entry);
1508 		kfree(p);
1509 	} else {
1510 		pr_info("%s alg registered\n", base->cra_name);
1511 	}
1512 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1513 		err = __n2_register_one_hmac(p);
1514 	return err;
1515 }
1516 
1517 static int n2_register_algs(void)
1518 {
1519 	int i, err = 0;
1520 
1521 	mutex_lock(&spu_lock);
1522 	if (algs_registered++)
1523 		goto out;
1524 
1525 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1526 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1527 		if (err) {
1528 			__n2_unregister_algs();
1529 			goto out;
1530 		}
1531 	}
1532 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1533 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1534 		if (err) {
1535 			__n2_unregister_algs();
1536 			goto out;
1537 		}
1538 	}
1539 
1540 out:
1541 	mutex_unlock(&spu_lock);
1542 	return err;
1543 }
1544 
1545 static void n2_unregister_algs(void)
1546 {
1547 	mutex_lock(&spu_lock);
1548 	if (!--algs_registered)
1549 		__n2_unregister_algs();
1550 	mutex_unlock(&spu_lock);
1551 }
1552 
1553 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1554  * a devino.  This isn't very useful to us because all of the
1555  * interrupts listed in the device_node have been translated to
1556  * Linux virtual IRQ cookie numbers.
1557  *
1558  * So we have to back-translate, going through the 'intr' and 'ino'
1559  * property tables of the n2cp MDESC node, matching it with the OF
1560  * 'interrupts' property entries, in order to to figure out which
1561  * devino goes to which already-translated IRQ.
1562  */
1563 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1564 			     unsigned long dev_ino)
1565 {
1566 	const unsigned int *dev_intrs;
1567 	unsigned int intr;
1568 	int i;
1569 
1570 	for (i = 0; i < ip->num_intrs; i++) {
1571 		if (ip->ino_table[i].ino == dev_ino)
1572 			break;
1573 	}
1574 	if (i == ip->num_intrs)
1575 		return -ENODEV;
1576 
1577 	intr = ip->ino_table[i].intr;
1578 
1579 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1580 	if (!dev_intrs)
1581 		return -ENODEV;
1582 
1583 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1584 		if (dev_intrs[i] == intr)
1585 			return i;
1586 	}
1587 
1588 	return -ENODEV;
1589 }
1590 
1591 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1592 		       const char *irq_name, struct spu_queue *p,
1593 		       irq_handler_t handler)
1594 {
1595 	unsigned long herr;
1596 	int index;
1597 
1598 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1599 	if (herr)
1600 		return -EINVAL;
1601 
1602 	index = find_devino_index(dev, ip, p->devino);
1603 	if (index < 0)
1604 		return index;
1605 
1606 	p->irq = dev->archdata.irqs[index];
1607 
1608 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1609 
1610 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1611 }
1612 
1613 static struct kmem_cache *queue_cache[2];
1614 
1615 static void *new_queue(unsigned long q_type)
1616 {
1617 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1618 }
1619 
1620 static void free_queue(void *p, unsigned long q_type)
1621 {
1622 	kmem_cache_free(queue_cache[q_type - 1], p);
1623 }
1624 
1625 static int queue_cache_init(void)
1626 {
1627 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1628 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1629 			kmem_cache_create("mau_queue",
1630 					  (MAU_NUM_ENTRIES *
1631 					   MAU_ENTRY_SIZE),
1632 					  MAU_ENTRY_SIZE, 0, NULL);
1633 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1634 		return -ENOMEM;
1635 
1636 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1637 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1638 			kmem_cache_create("cwq_queue",
1639 					  (CWQ_NUM_ENTRIES *
1640 					   CWQ_ENTRY_SIZE),
1641 					  CWQ_ENTRY_SIZE, 0, NULL);
1642 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1643 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1644 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1645 		return -ENOMEM;
1646 	}
1647 	return 0;
1648 }
1649 
1650 static void queue_cache_destroy(void)
1651 {
1652 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1653 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1654 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1655 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1656 }
1657 
1658 static long spu_queue_register_workfn(void *arg)
1659 {
1660 	struct spu_qreg *qr = arg;
1661 	struct spu_queue *p = qr->queue;
1662 	unsigned long q_type = qr->type;
1663 	unsigned long hv_ret;
1664 
1665 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1666 				 CWQ_NUM_ENTRIES, &p->qhandle);
1667 	if (!hv_ret)
1668 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1669 
1670 	return hv_ret ? -EINVAL : 0;
1671 }
1672 
1673 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1674 {
1675 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1676 	struct spu_qreg qr = { .queue = p, .type = q_type };
1677 
1678 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1679 }
1680 
1681 static int spu_queue_setup(struct spu_queue *p)
1682 {
1683 	int err;
1684 
1685 	p->q = new_queue(p->q_type);
1686 	if (!p->q)
1687 		return -ENOMEM;
1688 
1689 	err = spu_queue_register(p, p->q_type);
1690 	if (err) {
1691 		free_queue(p->q, p->q_type);
1692 		p->q = NULL;
1693 	}
1694 
1695 	return err;
1696 }
1697 
1698 static void spu_queue_destroy(struct spu_queue *p)
1699 {
1700 	unsigned long hv_ret;
1701 
1702 	if (!p->q)
1703 		return;
1704 
1705 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1706 
1707 	if (!hv_ret)
1708 		free_queue(p->q, p->q_type);
1709 }
1710 
1711 static void spu_list_destroy(struct list_head *list)
1712 {
1713 	struct spu_queue *p, *n;
1714 
1715 	list_for_each_entry_safe(p, n, list, list) {
1716 		int i;
1717 
1718 		for (i = 0; i < NR_CPUS; i++) {
1719 			if (cpu_to_cwq[i] == p)
1720 				cpu_to_cwq[i] = NULL;
1721 		}
1722 
1723 		if (p->irq) {
1724 			free_irq(p->irq, p);
1725 			p->irq = 0;
1726 		}
1727 		spu_queue_destroy(p);
1728 		list_del(&p->list);
1729 		kfree(p);
1730 	}
1731 }
1732 
1733 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1734  * gathering cpu membership information.
1735  */
1736 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1737 			       struct platform_device *dev,
1738 			       u64 node, struct spu_queue *p,
1739 			       struct spu_queue **table)
1740 {
1741 	u64 arc;
1742 
1743 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1744 		u64 tgt = mdesc_arc_target(mdesc, arc);
1745 		const char *name = mdesc_node_name(mdesc, tgt);
1746 		const u64 *id;
1747 
1748 		if (strcmp(name, "cpu"))
1749 			continue;
1750 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1751 		if (table[*id] != NULL) {
1752 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1753 				dev->dev.of_node);
1754 			return -EINVAL;
1755 		}
1756 		cpumask_set_cpu(*id, &p->sharing);
1757 		table[*id] = p;
1758 	}
1759 	return 0;
1760 }
1761 
1762 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1763 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1764 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1765 			    u64 node, const char *iname, unsigned long q_type,
1766 			    irq_handler_t handler, struct spu_queue **table)
1767 {
1768 	struct spu_queue *p;
1769 	int err;
1770 
1771 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1772 	if (!p) {
1773 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1774 			dev->dev.of_node);
1775 		return -ENOMEM;
1776 	}
1777 
1778 	cpumask_clear(&p->sharing);
1779 	spin_lock_init(&p->lock);
1780 	p->q_type = q_type;
1781 	INIT_LIST_HEAD(&p->jobs);
1782 	list_add(&p->list, list);
1783 
1784 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1785 	if (err)
1786 		return err;
1787 
1788 	err = spu_queue_setup(p);
1789 	if (err)
1790 		return err;
1791 
1792 	return spu_map_ino(dev, ip, iname, p, handler);
1793 }
1794 
1795 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1796 			  struct spu_mdesc_info *ip, struct list_head *list,
1797 			  const char *exec_name, unsigned long q_type,
1798 			  irq_handler_t handler, struct spu_queue **table)
1799 {
1800 	int err = 0;
1801 	u64 node;
1802 
1803 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1804 		const char *type;
1805 
1806 		type = mdesc_get_property(mdesc, node, "type", NULL);
1807 		if (!type || strcmp(type, exec_name))
1808 			continue;
1809 
1810 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1811 				       exec_name, q_type, handler, table);
1812 		if (err) {
1813 			spu_list_destroy(list);
1814 			break;
1815 		}
1816 	}
1817 
1818 	return err;
1819 }
1820 
1821 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1822 			 struct spu_mdesc_info *ip)
1823 {
1824 	const u64 *ino;
1825 	int ino_len;
1826 	int i;
1827 
1828 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1829 	if (!ino) {
1830 		printk("NO 'ino'\n");
1831 		return -ENODEV;
1832 	}
1833 
1834 	ip->num_intrs = ino_len / sizeof(u64);
1835 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1836 				 ip->num_intrs),
1837 				GFP_KERNEL);
1838 	if (!ip->ino_table)
1839 		return -ENOMEM;
1840 
1841 	for (i = 0; i < ip->num_intrs; i++) {
1842 		struct ino_blob *b = &ip->ino_table[i];
1843 		b->intr = i + 1;
1844 		b->ino = ino[i];
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1851 				struct platform_device *dev,
1852 				struct spu_mdesc_info *ip,
1853 				const char *node_name)
1854 {
1855 	const unsigned int *reg;
1856 	u64 node;
1857 
1858 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1859 	if (!reg)
1860 		return -ENODEV;
1861 
1862 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1863 		const char *name;
1864 		const u64 *chdl;
1865 
1866 		name = mdesc_get_property(mdesc, node, "name", NULL);
1867 		if (!name || strcmp(name, node_name))
1868 			continue;
1869 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1870 		if (!chdl || (*chdl != *reg))
1871 			continue;
1872 		ip->cfg_handle = *chdl;
1873 		return get_irq_props(mdesc, node, ip);
1874 	}
1875 
1876 	return -ENODEV;
1877 }
1878 
1879 static unsigned long n2_spu_hvapi_major;
1880 static unsigned long n2_spu_hvapi_minor;
1881 
1882 static int n2_spu_hvapi_register(void)
1883 {
1884 	int err;
1885 
1886 	n2_spu_hvapi_major = 2;
1887 	n2_spu_hvapi_minor = 0;
1888 
1889 	err = sun4v_hvapi_register(HV_GRP_NCS,
1890 				   n2_spu_hvapi_major,
1891 				   &n2_spu_hvapi_minor);
1892 
1893 	if (!err)
1894 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1895 			n2_spu_hvapi_major,
1896 			n2_spu_hvapi_minor);
1897 
1898 	return err;
1899 }
1900 
1901 static void n2_spu_hvapi_unregister(void)
1902 {
1903 	sun4v_hvapi_unregister(HV_GRP_NCS);
1904 }
1905 
1906 static int global_ref;
1907 
1908 static int grab_global_resources(void)
1909 {
1910 	int err = 0;
1911 
1912 	mutex_lock(&spu_lock);
1913 
1914 	if (global_ref++)
1915 		goto out;
1916 
1917 	err = n2_spu_hvapi_register();
1918 	if (err)
1919 		goto out;
1920 
1921 	err = queue_cache_init();
1922 	if (err)
1923 		goto out_hvapi_release;
1924 
1925 	err = -ENOMEM;
1926 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1927 			     GFP_KERNEL);
1928 	if (!cpu_to_cwq)
1929 		goto out_queue_cache_destroy;
1930 
1931 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1932 			     GFP_KERNEL);
1933 	if (!cpu_to_mau)
1934 		goto out_free_cwq_table;
1935 
1936 	err = 0;
1937 
1938 out:
1939 	if (err)
1940 		global_ref--;
1941 	mutex_unlock(&spu_lock);
1942 	return err;
1943 
1944 out_free_cwq_table:
1945 	kfree(cpu_to_cwq);
1946 	cpu_to_cwq = NULL;
1947 
1948 out_queue_cache_destroy:
1949 	queue_cache_destroy();
1950 
1951 out_hvapi_release:
1952 	n2_spu_hvapi_unregister();
1953 	goto out;
1954 }
1955 
1956 static void release_global_resources(void)
1957 {
1958 	mutex_lock(&spu_lock);
1959 	if (!--global_ref) {
1960 		kfree(cpu_to_cwq);
1961 		cpu_to_cwq = NULL;
1962 
1963 		kfree(cpu_to_mau);
1964 		cpu_to_mau = NULL;
1965 
1966 		queue_cache_destroy();
1967 		n2_spu_hvapi_unregister();
1968 	}
1969 	mutex_unlock(&spu_lock);
1970 }
1971 
1972 static struct n2_crypto *alloc_n2cp(void)
1973 {
1974 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1975 
1976 	if (np)
1977 		INIT_LIST_HEAD(&np->cwq_list);
1978 
1979 	return np;
1980 }
1981 
1982 static void free_n2cp(struct n2_crypto *np)
1983 {
1984 	kfree(np->cwq_info.ino_table);
1985 	np->cwq_info.ino_table = NULL;
1986 
1987 	kfree(np);
1988 }
1989 
1990 static void n2_spu_driver_version(void)
1991 {
1992 	static int n2_spu_version_printed;
1993 
1994 	if (n2_spu_version_printed++ == 0)
1995 		pr_info("%s", version);
1996 }
1997 
1998 static int n2_crypto_probe(struct platform_device *dev)
1999 {
2000 	struct mdesc_handle *mdesc;
2001 	struct n2_crypto *np;
2002 	int err;
2003 
2004 	n2_spu_driver_version();
2005 
2006 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2007 
2008 	np = alloc_n2cp();
2009 	if (!np) {
2010 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2011 			dev->dev.of_node);
2012 		return -ENOMEM;
2013 	}
2014 
2015 	err = grab_global_resources();
2016 	if (err) {
2017 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2018 			dev->dev.of_node);
2019 		goto out_free_n2cp;
2020 	}
2021 
2022 	mdesc = mdesc_grab();
2023 
2024 	if (!mdesc) {
2025 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2026 			dev->dev.of_node);
2027 		err = -ENODEV;
2028 		goto out_free_global;
2029 	}
2030 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2031 	if (err) {
2032 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2033 			dev->dev.of_node);
2034 		mdesc_release(mdesc);
2035 		goto out_free_global;
2036 	}
2037 
2038 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2039 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2040 			     cpu_to_cwq);
2041 	mdesc_release(mdesc);
2042 
2043 	if (err) {
2044 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2045 			dev->dev.of_node);
2046 		goto out_free_global;
2047 	}
2048 
2049 	err = n2_register_algs();
2050 	if (err) {
2051 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2052 			dev->dev.of_node);
2053 		goto out_free_spu_list;
2054 	}
2055 
2056 	dev_set_drvdata(&dev->dev, np);
2057 
2058 	return 0;
2059 
2060 out_free_spu_list:
2061 	spu_list_destroy(&np->cwq_list);
2062 
2063 out_free_global:
2064 	release_global_resources();
2065 
2066 out_free_n2cp:
2067 	free_n2cp(np);
2068 
2069 	return err;
2070 }
2071 
2072 static int n2_crypto_remove(struct platform_device *dev)
2073 {
2074 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2075 
2076 	n2_unregister_algs();
2077 
2078 	spu_list_destroy(&np->cwq_list);
2079 
2080 	release_global_resources();
2081 
2082 	free_n2cp(np);
2083 
2084 	return 0;
2085 }
2086 
2087 static struct n2_mau *alloc_ncp(void)
2088 {
2089 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2090 
2091 	if (mp)
2092 		INIT_LIST_HEAD(&mp->mau_list);
2093 
2094 	return mp;
2095 }
2096 
2097 static void free_ncp(struct n2_mau *mp)
2098 {
2099 	kfree(mp->mau_info.ino_table);
2100 	mp->mau_info.ino_table = NULL;
2101 
2102 	kfree(mp);
2103 }
2104 
2105 static int n2_mau_probe(struct platform_device *dev)
2106 {
2107 	struct mdesc_handle *mdesc;
2108 	struct n2_mau *mp;
2109 	int err;
2110 
2111 	n2_spu_driver_version();
2112 
2113 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2114 
2115 	mp = alloc_ncp();
2116 	if (!mp) {
2117 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2118 			dev->dev.of_node);
2119 		return -ENOMEM;
2120 	}
2121 
2122 	err = grab_global_resources();
2123 	if (err) {
2124 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2125 			dev->dev.of_node);
2126 		goto out_free_ncp;
2127 	}
2128 
2129 	mdesc = mdesc_grab();
2130 
2131 	if (!mdesc) {
2132 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2133 			dev->dev.of_node);
2134 		err = -ENODEV;
2135 		goto out_free_global;
2136 	}
2137 
2138 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2139 	if (err) {
2140 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2141 			dev->dev.of_node);
2142 		mdesc_release(mdesc);
2143 		goto out_free_global;
2144 	}
2145 
2146 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2147 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2148 			     cpu_to_mau);
2149 	mdesc_release(mdesc);
2150 
2151 	if (err) {
2152 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2153 			dev->dev.of_node);
2154 		goto out_free_global;
2155 	}
2156 
2157 	dev_set_drvdata(&dev->dev, mp);
2158 
2159 	return 0;
2160 
2161 out_free_global:
2162 	release_global_resources();
2163 
2164 out_free_ncp:
2165 	free_ncp(mp);
2166 
2167 	return err;
2168 }
2169 
2170 static int n2_mau_remove(struct platform_device *dev)
2171 {
2172 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2173 
2174 	spu_list_destroy(&mp->mau_list);
2175 
2176 	release_global_resources();
2177 
2178 	free_ncp(mp);
2179 
2180 	return 0;
2181 }
2182 
2183 static const struct of_device_id n2_crypto_match[] = {
2184 	{
2185 		.name = "n2cp",
2186 		.compatible = "SUNW,n2-cwq",
2187 	},
2188 	{
2189 		.name = "n2cp",
2190 		.compatible = "SUNW,vf-cwq",
2191 	},
2192 	{
2193 		.name = "n2cp",
2194 		.compatible = "SUNW,kt-cwq",
2195 	},
2196 	{},
2197 };
2198 
2199 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2200 
2201 static struct platform_driver n2_crypto_driver = {
2202 	.driver = {
2203 		.name		=	"n2cp",
2204 		.of_match_table	=	n2_crypto_match,
2205 	},
2206 	.probe		=	n2_crypto_probe,
2207 	.remove		=	n2_crypto_remove,
2208 };
2209 
2210 static const struct of_device_id n2_mau_match[] = {
2211 	{
2212 		.name = "ncp",
2213 		.compatible = "SUNW,n2-mau",
2214 	},
2215 	{
2216 		.name = "ncp",
2217 		.compatible = "SUNW,vf-mau",
2218 	},
2219 	{
2220 		.name = "ncp",
2221 		.compatible = "SUNW,kt-mau",
2222 	},
2223 	{},
2224 };
2225 
2226 MODULE_DEVICE_TABLE(of, n2_mau_match);
2227 
2228 static struct platform_driver n2_mau_driver = {
2229 	.driver = {
2230 		.name		=	"ncp",
2231 		.of_match_table	=	n2_mau_match,
2232 	},
2233 	.probe		=	n2_mau_probe,
2234 	.remove		=	n2_mau_remove,
2235 };
2236 
2237 static struct platform_driver * const drivers[] = {
2238 	&n2_crypto_driver,
2239 	&n2_mau_driver,
2240 };
2241 
2242 static int __init n2_init(void)
2243 {
2244 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2245 }
2246 
2247 static void __exit n2_exit(void)
2248 {
2249 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2250 }
2251 
2252 module_init(n2_init);
2253 module_exit(n2_exit);
2254