1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_device.h> 13 #include <linux/cpumask.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/crypto.h> 17 #include <crypto/md5.h> 18 #include <crypto/sha1.h> 19 #include <crypto/sha2.h> 20 #include <crypto/aes.h> 21 #include <crypto/internal/des.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/sched.h> 25 26 #include <crypto/internal/hash.h> 27 #include <crypto/internal/skcipher.h> 28 #include <crypto/scatterwalk.h> 29 #include <crypto/algapi.h> 30 31 #include <asm/hypervisor.h> 32 #include <asm/mdesc.h> 33 34 #include "n2_core.h" 35 36 #define DRV_MODULE_NAME "n2_crypto" 37 #define DRV_MODULE_VERSION "0.2" 38 #define DRV_MODULE_RELDATE "July 28, 2011" 39 40 static const char version[] = 41 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 42 43 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 44 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 45 MODULE_LICENSE("GPL"); 46 MODULE_VERSION(DRV_MODULE_VERSION); 47 48 #define N2_CRA_PRIORITY 200 49 50 static DEFINE_MUTEX(spu_lock); 51 52 struct spu_queue { 53 cpumask_t sharing; 54 unsigned long qhandle; 55 56 spinlock_t lock; 57 u8 q_type; 58 void *q; 59 unsigned long head; 60 unsigned long tail; 61 struct list_head jobs; 62 63 unsigned long devino; 64 65 char irq_name[32]; 66 unsigned int irq; 67 68 struct list_head list; 69 }; 70 71 struct spu_qreg { 72 struct spu_queue *queue; 73 unsigned long type; 74 }; 75 76 static struct spu_queue **cpu_to_cwq; 77 static struct spu_queue **cpu_to_mau; 78 79 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 80 { 81 if (q->q_type == HV_NCS_QTYPE_MAU) { 82 off += MAU_ENTRY_SIZE; 83 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 84 off = 0; 85 } else { 86 off += CWQ_ENTRY_SIZE; 87 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 88 off = 0; 89 } 90 return off; 91 } 92 93 struct n2_request_common { 94 struct list_head entry; 95 unsigned int offset; 96 }; 97 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 98 99 /* An async job request records the final tail value it used in 100 * n2_request_common->offset, test to see if that offset is in 101 * the range old_head, new_head, inclusive. 102 */ 103 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 104 unsigned long old_head, unsigned long new_head) 105 { 106 if (old_head <= new_head) { 107 if (offset > old_head && offset <= new_head) 108 return true; 109 } else { 110 if (offset > old_head || offset <= new_head) 111 return true; 112 } 113 return false; 114 } 115 116 /* When the HEAD marker is unequal to the actual HEAD, we get 117 * a virtual device INO interrupt. We should process the 118 * completed CWQ entries and adjust the HEAD marker to clear 119 * the IRQ. 120 */ 121 static irqreturn_t cwq_intr(int irq, void *dev_id) 122 { 123 unsigned long off, new_head, hv_ret; 124 struct spu_queue *q = dev_id; 125 126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 127 smp_processor_id(), q->qhandle); 128 129 spin_lock(&q->lock); 130 131 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 132 133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 134 smp_processor_id(), new_head, hv_ret); 135 136 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 137 /* XXX ... XXX */ 138 } 139 140 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 141 if (hv_ret == HV_EOK) 142 q->head = new_head; 143 144 spin_unlock(&q->lock); 145 146 return IRQ_HANDLED; 147 } 148 149 static irqreturn_t mau_intr(int irq, void *dev_id) 150 { 151 struct spu_queue *q = dev_id; 152 unsigned long head, hv_ret; 153 154 spin_lock(&q->lock); 155 156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 157 smp_processor_id(), q->qhandle); 158 159 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 160 161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 162 smp_processor_id(), head, hv_ret); 163 164 sun4v_ncs_sethead_marker(q->qhandle, head); 165 166 spin_unlock(&q->lock); 167 168 return IRQ_HANDLED; 169 } 170 171 static void *spu_queue_next(struct spu_queue *q, void *cur) 172 { 173 return q->q + spu_next_offset(q, cur - q->q); 174 } 175 176 static int spu_queue_num_free(struct spu_queue *q) 177 { 178 unsigned long head = q->head; 179 unsigned long tail = q->tail; 180 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 181 unsigned long diff; 182 183 if (head > tail) 184 diff = head - tail; 185 else 186 diff = (end - tail) + head; 187 188 return (diff / CWQ_ENTRY_SIZE) - 1; 189 } 190 191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 192 { 193 int avail = spu_queue_num_free(q); 194 195 if (avail >= num_entries) 196 return q->q + q->tail; 197 198 return NULL; 199 } 200 201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 202 { 203 unsigned long hv_ret, new_tail; 204 205 new_tail = spu_next_offset(q, last - q->q); 206 207 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 208 if (hv_ret == HV_EOK) 209 q->tail = new_tail; 210 return hv_ret; 211 } 212 213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 214 int enc_type, int auth_type, 215 unsigned int hash_len, 216 bool sfas, bool sob, bool eob, bool encrypt, 217 int opcode) 218 { 219 u64 word = (len - 1) & CONTROL_LEN; 220 221 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 222 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 223 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 224 if (sfas) 225 word |= CONTROL_STORE_FINAL_AUTH_STATE; 226 if (sob) 227 word |= CONTROL_START_OF_BLOCK; 228 if (eob) 229 word |= CONTROL_END_OF_BLOCK; 230 if (encrypt) 231 word |= CONTROL_ENCRYPT; 232 if (hmac_key_len) 233 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 234 if (hash_len) 235 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 236 237 return word; 238 } 239 240 #if 0 241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 242 { 243 if (this_len >= 64 || 244 qp->head != qp->tail) 245 return true; 246 return false; 247 } 248 #endif 249 250 struct n2_ahash_alg { 251 struct list_head entry; 252 const u8 *hash_zero; 253 const u8 *hash_init; 254 u8 hw_op_hashsz; 255 u8 digest_size; 256 u8 auth_type; 257 u8 hmac_type; 258 struct ahash_alg alg; 259 }; 260 261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 262 { 263 struct crypto_alg *alg = tfm->__crt_alg; 264 struct ahash_alg *ahash_alg; 265 266 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 267 268 return container_of(ahash_alg, struct n2_ahash_alg, alg); 269 } 270 271 struct n2_hmac_alg { 272 const char *child_alg; 273 struct n2_ahash_alg derived; 274 }; 275 276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 277 { 278 struct crypto_alg *alg = tfm->__crt_alg; 279 struct ahash_alg *ahash_alg; 280 281 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 282 283 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 284 } 285 286 struct n2_hash_ctx { 287 struct crypto_ahash *fallback_tfm; 288 }; 289 290 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 291 292 struct n2_hmac_ctx { 293 struct n2_hash_ctx base; 294 295 struct crypto_shash *child_shash; 296 297 int hash_key_len; 298 unsigned char hash_key[N2_HASH_KEY_MAX]; 299 }; 300 301 struct n2_hash_req_ctx { 302 union { 303 struct md5_state md5; 304 struct sha1_state sha1; 305 struct sha256_state sha256; 306 } u; 307 308 struct ahash_request fallback_req; 309 }; 310 311 static int n2_hash_async_init(struct ahash_request *req) 312 { 313 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 314 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 315 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 316 317 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 318 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 319 320 return crypto_ahash_init(&rctx->fallback_req); 321 } 322 323 static int n2_hash_async_update(struct ahash_request *req) 324 { 325 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 326 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 327 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 328 329 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 330 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 331 rctx->fallback_req.nbytes = req->nbytes; 332 rctx->fallback_req.src = req->src; 333 334 return crypto_ahash_update(&rctx->fallback_req); 335 } 336 337 static int n2_hash_async_final(struct ahash_request *req) 338 { 339 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 340 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 341 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 342 343 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 344 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 345 rctx->fallback_req.result = req->result; 346 347 return crypto_ahash_final(&rctx->fallback_req); 348 } 349 350 static int n2_hash_async_finup(struct ahash_request *req) 351 { 352 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 353 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 354 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 355 356 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 357 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 358 rctx->fallback_req.nbytes = req->nbytes; 359 rctx->fallback_req.src = req->src; 360 rctx->fallback_req.result = req->result; 361 362 return crypto_ahash_finup(&rctx->fallback_req); 363 } 364 365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 366 { 367 return -ENOSYS; 368 } 369 370 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 371 { 372 return -ENOSYS; 373 } 374 375 static int n2_hash_cra_init(struct crypto_tfm *tfm) 376 { 377 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 378 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 379 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 380 struct crypto_ahash *fallback_tfm; 381 int err; 382 383 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 384 CRYPTO_ALG_NEED_FALLBACK); 385 if (IS_ERR(fallback_tfm)) { 386 pr_warn("Fallback driver '%s' could not be loaded!\n", 387 fallback_driver_name); 388 err = PTR_ERR(fallback_tfm); 389 goto out; 390 } 391 392 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 393 crypto_ahash_reqsize(fallback_tfm))); 394 395 ctx->fallback_tfm = fallback_tfm; 396 return 0; 397 398 out: 399 return err; 400 } 401 402 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 403 { 404 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 405 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 406 407 crypto_free_ahash(ctx->fallback_tfm); 408 } 409 410 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 411 { 412 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 413 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 414 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 415 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 416 struct crypto_ahash *fallback_tfm; 417 struct crypto_shash *child_shash; 418 int err; 419 420 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 421 CRYPTO_ALG_NEED_FALLBACK); 422 if (IS_ERR(fallback_tfm)) { 423 pr_warn("Fallback driver '%s' could not be loaded!\n", 424 fallback_driver_name); 425 err = PTR_ERR(fallback_tfm); 426 goto out; 427 } 428 429 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 430 if (IS_ERR(child_shash)) { 431 pr_warn("Child shash '%s' could not be loaded!\n", 432 n2alg->child_alg); 433 err = PTR_ERR(child_shash); 434 goto out_free_fallback; 435 } 436 437 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 438 crypto_ahash_reqsize(fallback_tfm))); 439 440 ctx->child_shash = child_shash; 441 ctx->base.fallback_tfm = fallback_tfm; 442 return 0; 443 444 out_free_fallback: 445 crypto_free_ahash(fallback_tfm); 446 447 out: 448 return err; 449 } 450 451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 452 { 453 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 454 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 455 456 crypto_free_ahash(ctx->base.fallback_tfm); 457 crypto_free_shash(ctx->child_shash); 458 } 459 460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 461 unsigned int keylen) 462 { 463 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 464 struct crypto_shash *child_shash = ctx->child_shash; 465 struct crypto_ahash *fallback_tfm; 466 int err, bs, ds; 467 468 fallback_tfm = ctx->base.fallback_tfm; 469 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 470 if (err) 471 return err; 472 473 bs = crypto_shash_blocksize(child_shash); 474 ds = crypto_shash_digestsize(child_shash); 475 BUG_ON(ds > N2_HASH_KEY_MAX); 476 if (keylen > bs) { 477 err = crypto_shash_tfm_digest(child_shash, key, keylen, 478 ctx->hash_key); 479 if (err) 480 return err; 481 keylen = ds; 482 } else if (keylen <= N2_HASH_KEY_MAX) 483 memcpy(ctx->hash_key, key, keylen); 484 485 ctx->hash_key_len = keylen; 486 487 return err; 488 } 489 490 static unsigned long wait_for_tail(struct spu_queue *qp) 491 { 492 unsigned long head, hv_ret; 493 494 do { 495 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 496 if (hv_ret != HV_EOK) { 497 pr_err("Hypervisor error on gethead\n"); 498 break; 499 } 500 if (head == qp->tail) { 501 qp->head = head; 502 break; 503 } 504 } while (1); 505 return hv_ret; 506 } 507 508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 509 struct cwq_initial_entry *ent) 510 { 511 unsigned long hv_ret = spu_queue_submit(qp, ent); 512 513 if (hv_ret == HV_EOK) 514 hv_ret = wait_for_tail(qp); 515 516 return hv_ret; 517 } 518 519 static int n2_do_async_digest(struct ahash_request *req, 520 unsigned int auth_type, unsigned int digest_size, 521 unsigned int result_size, void *hash_loc, 522 unsigned long auth_key, unsigned int auth_key_len) 523 { 524 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 525 struct cwq_initial_entry *ent; 526 struct crypto_hash_walk walk; 527 struct spu_queue *qp; 528 unsigned long flags; 529 int err = -ENODEV; 530 int nbytes, cpu; 531 532 /* The total effective length of the operation may not 533 * exceed 2^16. 534 */ 535 if (unlikely(req->nbytes > (1 << 16))) { 536 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 537 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 538 539 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 540 rctx->fallback_req.base.flags = 541 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 542 rctx->fallback_req.nbytes = req->nbytes; 543 rctx->fallback_req.src = req->src; 544 rctx->fallback_req.result = req->result; 545 546 return crypto_ahash_digest(&rctx->fallback_req); 547 } 548 549 nbytes = crypto_hash_walk_first(req, &walk); 550 551 cpu = get_cpu(); 552 qp = cpu_to_cwq[cpu]; 553 if (!qp) 554 goto out; 555 556 spin_lock_irqsave(&qp->lock, flags); 557 558 /* XXX can do better, improve this later by doing a by-hand scatterlist 559 * XXX walk, etc. 560 */ 561 ent = qp->q + qp->tail; 562 563 ent->control = control_word_base(nbytes, auth_key_len, 0, 564 auth_type, digest_size, 565 false, true, false, false, 566 OPCODE_INPLACE_BIT | 567 OPCODE_AUTH_MAC); 568 ent->src_addr = __pa(walk.data); 569 ent->auth_key_addr = auth_key; 570 ent->auth_iv_addr = __pa(hash_loc); 571 ent->final_auth_state_addr = 0UL; 572 ent->enc_key_addr = 0UL; 573 ent->enc_iv_addr = 0UL; 574 ent->dest_addr = __pa(hash_loc); 575 576 nbytes = crypto_hash_walk_done(&walk, 0); 577 while (nbytes > 0) { 578 ent = spu_queue_next(qp, ent); 579 580 ent->control = (nbytes - 1); 581 ent->src_addr = __pa(walk.data); 582 ent->auth_key_addr = 0UL; 583 ent->auth_iv_addr = 0UL; 584 ent->final_auth_state_addr = 0UL; 585 ent->enc_key_addr = 0UL; 586 ent->enc_iv_addr = 0UL; 587 ent->dest_addr = 0UL; 588 589 nbytes = crypto_hash_walk_done(&walk, 0); 590 } 591 ent->control |= CONTROL_END_OF_BLOCK; 592 593 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 594 err = -EINVAL; 595 else 596 err = 0; 597 598 spin_unlock_irqrestore(&qp->lock, flags); 599 600 if (!err) 601 memcpy(req->result, hash_loc, result_size); 602 out: 603 put_cpu(); 604 605 return err; 606 } 607 608 static int n2_hash_async_digest(struct ahash_request *req) 609 { 610 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 611 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 612 int ds; 613 614 ds = n2alg->digest_size; 615 if (unlikely(req->nbytes == 0)) { 616 memcpy(req->result, n2alg->hash_zero, ds); 617 return 0; 618 } 619 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 620 621 return n2_do_async_digest(req, n2alg->auth_type, 622 n2alg->hw_op_hashsz, ds, 623 &rctx->u, 0UL, 0); 624 } 625 626 static int n2_hmac_async_digest(struct ahash_request *req) 627 { 628 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 630 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 631 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 632 int ds; 633 634 ds = n2alg->derived.digest_size; 635 if (unlikely(req->nbytes == 0) || 636 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 637 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 638 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 639 640 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 641 rctx->fallback_req.base.flags = 642 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 643 rctx->fallback_req.nbytes = req->nbytes; 644 rctx->fallback_req.src = req->src; 645 rctx->fallback_req.result = req->result; 646 647 return crypto_ahash_digest(&rctx->fallback_req); 648 } 649 memcpy(&rctx->u, n2alg->derived.hash_init, 650 n2alg->derived.hw_op_hashsz); 651 652 return n2_do_async_digest(req, n2alg->derived.hmac_type, 653 n2alg->derived.hw_op_hashsz, ds, 654 &rctx->u, 655 __pa(&ctx->hash_key), 656 ctx->hash_key_len); 657 } 658 659 struct n2_skcipher_context { 660 int key_len; 661 int enc_type; 662 union { 663 u8 aes[AES_MAX_KEY_SIZE]; 664 u8 des[DES_KEY_SIZE]; 665 u8 des3[3 * DES_KEY_SIZE]; 666 } key; 667 }; 668 669 #define N2_CHUNK_ARR_LEN 16 670 671 struct n2_crypto_chunk { 672 struct list_head entry; 673 unsigned long iv_paddr : 44; 674 unsigned long arr_len : 20; 675 unsigned long dest_paddr; 676 unsigned long dest_final; 677 struct { 678 unsigned long src_paddr : 44; 679 unsigned long src_len : 20; 680 } arr[N2_CHUNK_ARR_LEN]; 681 }; 682 683 struct n2_request_context { 684 struct skcipher_walk walk; 685 struct list_head chunk_list; 686 struct n2_crypto_chunk chunk; 687 u8 temp_iv[16]; 688 }; 689 690 /* The SPU allows some level of flexibility for partial cipher blocks 691 * being specified in a descriptor. 692 * 693 * It merely requires that every descriptor's length field is at least 694 * as large as the cipher block size. This means that a cipher block 695 * can span at most 2 descriptors. However, this does not allow a 696 * partial block to span into the final descriptor as that would 697 * violate the rule (since every descriptor's length must be at lest 698 * the block size). So, for example, assuming an 8 byte block size: 699 * 700 * 0xe --> 0xa --> 0x8 701 * 702 * is a valid length sequence, whereas: 703 * 704 * 0xe --> 0xb --> 0x7 705 * 706 * is not a valid sequence. 707 */ 708 709 struct n2_skcipher_alg { 710 struct list_head entry; 711 u8 enc_type; 712 struct skcipher_alg skcipher; 713 }; 714 715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 716 { 717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 718 719 return container_of(alg, struct n2_skcipher_alg, skcipher); 720 } 721 722 struct n2_skcipher_request_context { 723 struct skcipher_walk walk; 724 }; 725 726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 727 unsigned int keylen) 728 { 729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 732 733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 734 735 switch (keylen) { 736 case AES_KEYSIZE_128: 737 ctx->enc_type |= ENC_TYPE_ALG_AES128; 738 break; 739 case AES_KEYSIZE_192: 740 ctx->enc_type |= ENC_TYPE_ALG_AES192; 741 break; 742 case AES_KEYSIZE_256: 743 ctx->enc_type |= ENC_TYPE_ALG_AES256; 744 break; 745 default: 746 return -EINVAL; 747 } 748 749 ctx->key_len = keylen; 750 memcpy(ctx->key.aes, key, keylen); 751 return 0; 752 } 753 754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 755 unsigned int keylen) 756 { 757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 760 int err; 761 762 err = verify_skcipher_des_key(skcipher, key); 763 if (err) 764 return err; 765 766 ctx->enc_type = n2alg->enc_type; 767 768 ctx->key_len = keylen; 769 memcpy(ctx->key.des, key, keylen); 770 return 0; 771 } 772 773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 774 unsigned int keylen) 775 { 776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 779 int err; 780 781 err = verify_skcipher_des3_key(skcipher, key); 782 if (err) 783 return err; 784 785 ctx->enc_type = n2alg->enc_type; 786 787 ctx->key_len = keylen; 788 memcpy(ctx->key.des3, key, keylen); 789 return 0; 790 } 791 792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 793 { 794 int this_len = nbytes; 795 796 this_len -= (nbytes & (block_size - 1)); 797 return this_len > (1 << 16) ? (1 << 16) : this_len; 798 } 799 800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 801 struct n2_crypto_chunk *cp, 802 struct spu_queue *qp, bool encrypt) 803 { 804 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 805 struct cwq_initial_entry *ent; 806 bool in_place; 807 int i; 808 809 ent = spu_queue_alloc(qp, cp->arr_len); 810 if (!ent) { 811 pr_info("queue_alloc() of %d fails\n", 812 cp->arr_len); 813 return -EBUSY; 814 } 815 816 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 817 818 ent->control = control_word_base(cp->arr[0].src_len, 819 0, ctx->enc_type, 0, 0, 820 false, true, false, encrypt, 821 OPCODE_ENCRYPT | 822 (in_place ? OPCODE_INPLACE_BIT : 0)); 823 ent->src_addr = cp->arr[0].src_paddr; 824 ent->auth_key_addr = 0UL; 825 ent->auth_iv_addr = 0UL; 826 ent->final_auth_state_addr = 0UL; 827 ent->enc_key_addr = __pa(&ctx->key); 828 ent->enc_iv_addr = cp->iv_paddr; 829 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 830 831 for (i = 1; i < cp->arr_len; i++) { 832 ent = spu_queue_next(qp, ent); 833 834 ent->control = cp->arr[i].src_len - 1; 835 ent->src_addr = cp->arr[i].src_paddr; 836 ent->auth_key_addr = 0UL; 837 ent->auth_iv_addr = 0UL; 838 ent->final_auth_state_addr = 0UL; 839 ent->enc_key_addr = 0UL; 840 ent->enc_iv_addr = 0UL; 841 ent->dest_addr = 0UL; 842 } 843 ent->control |= CONTROL_END_OF_BLOCK; 844 845 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 846 } 847 848 static int n2_compute_chunks(struct skcipher_request *req) 849 { 850 struct n2_request_context *rctx = skcipher_request_ctx(req); 851 struct skcipher_walk *walk = &rctx->walk; 852 struct n2_crypto_chunk *chunk; 853 unsigned long dest_prev; 854 unsigned int tot_len; 855 bool prev_in_place; 856 int err, nbytes; 857 858 err = skcipher_walk_async(walk, req); 859 if (err) 860 return err; 861 862 INIT_LIST_HEAD(&rctx->chunk_list); 863 864 chunk = &rctx->chunk; 865 INIT_LIST_HEAD(&chunk->entry); 866 867 chunk->iv_paddr = 0UL; 868 chunk->arr_len = 0; 869 chunk->dest_paddr = 0UL; 870 871 prev_in_place = false; 872 dest_prev = ~0UL; 873 tot_len = 0; 874 875 while ((nbytes = walk->nbytes) != 0) { 876 unsigned long dest_paddr, src_paddr; 877 bool in_place; 878 int this_len; 879 880 src_paddr = (page_to_phys(walk->src.phys.page) + 881 walk->src.phys.offset); 882 dest_paddr = (page_to_phys(walk->dst.phys.page) + 883 walk->dst.phys.offset); 884 in_place = (src_paddr == dest_paddr); 885 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 886 887 if (chunk->arr_len != 0) { 888 if (in_place != prev_in_place || 889 (!prev_in_place && 890 dest_paddr != dest_prev) || 891 chunk->arr_len == N2_CHUNK_ARR_LEN || 892 tot_len + this_len > (1 << 16)) { 893 chunk->dest_final = dest_prev; 894 list_add_tail(&chunk->entry, 895 &rctx->chunk_list); 896 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 897 if (!chunk) { 898 err = -ENOMEM; 899 break; 900 } 901 INIT_LIST_HEAD(&chunk->entry); 902 } 903 } 904 if (chunk->arr_len == 0) { 905 chunk->dest_paddr = dest_paddr; 906 tot_len = 0; 907 } 908 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 909 chunk->arr[chunk->arr_len].src_len = this_len; 910 chunk->arr_len++; 911 912 dest_prev = dest_paddr + this_len; 913 prev_in_place = in_place; 914 tot_len += this_len; 915 916 err = skcipher_walk_done(walk, nbytes - this_len); 917 if (err) 918 break; 919 } 920 if (!err && chunk->arr_len != 0) { 921 chunk->dest_final = dest_prev; 922 list_add_tail(&chunk->entry, &rctx->chunk_list); 923 } 924 925 return err; 926 } 927 928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 929 { 930 struct n2_request_context *rctx = skcipher_request_ctx(req); 931 struct n2_crypto_chunk *c, *tmp; 932 933 if (final_iv) 934 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 935 936 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 937 list_del(&c->entry); 938 if (unlikely(c != &rctx->chunk)) 939 kfree(c); 940 } 941 942 } 943 944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 945 { 946 struct n2_request_context *rctx = skcipher_request_ctx(req); 947 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 948 int err = n2_compute_chunks(req); 949 struct n2_crypto_chunk *c, *tmp; 950 unsigned long flags, hv_ret; 951 struct spu_queue *qp; 952 953 if (err) 954 return err; 955 956 qp = cpu_to_cwq[get_cpu()]; 957 err = -ENODEV; 958 if (!qp) 959 goto out; 960 961 spin_lock_irqsave(&qp->lock, flags); 962 963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 964 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 965 if (err) 966 break; 967 list_del(&c->entry); 968 if (unlikely(c != &rctx->chunk)) 969 kfree(c); 970 } 971 if (!err) { 972 hv_ret = wait_for_tail(qp); 973 if (hv_ret != HV_EOK) 974 err = -EINVAL; 975 } 976 977 spin_unlock_irqrestore(&qp->lock, flags); 978 979 out: 980 put_cpu(); 981 982 n2_chunk_complete(req, NULL); 983 return err; 984 } 985 986 static int n2_encrypt_ecb(struct skcipher_request *req) 987 { 988 return n2_do_ecb(req, true); 989 } 990 991 static int n2_decrypt_ecb(struct skcipher_request *req) 992 { 993 return n2_do_ecb(req, false); 994 } 995 996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 997 { 998 struct n2_request_context *rctx = skcipher_request_ctx(req); 999 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 1000 unsigned long flags, hv_ret, iv_paddr; 1001 int err = n2_compute_chunks(req); 1002 struct n2_crypto_chunk *c, *tmp; 1003 struct spu_queue *qp; 1004 void *final_iv_addr; 1005 1006 final_iv_addr = NULL; 1007 1008 if (err) 1009 return err; 1010 1011 qp = cpu_to_cwq[get_cpu()]; 1012 err = -ENODEV; 1013 if (!qp) 1014 goto out; 1015 1016 spin_lock_irqsave(&qp->lock, flags); 1017 1018 if (encrypt) { 1019 iv_paddr = __pa(rctx->walk.iv); 1020 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1021 entry) { 1022 c->iv_paddr = iv_paddr; 1023 err = __n2_crypt_chunk(tfm, c, qp, true); 1024 if (err) 1025 break; 1026 iv_paddr = c->dest_final - rctx->walk.blocksize; 1027 list_del(&c->entry); 1028 if (unlikely(c != &rctx->chunk)) 1029 kfree(c); 1030 } 1031 final_iv_addr = __va(iv_paddr); 1032 } else { 1033 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1034 entry) { 1035 if (c == &rctx->chunk) { 1036 iv_paddr = __pa(rctx->walk.iv); 1037 } else { 1038 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1039 tmp->arr[tmp->arr_len-1].src_len - 1040 rctx->walk.blocksize); 1041 } 1042 if (!final_iv_addr) { 1043 unsigned long pa; 1044 1045 pa = (c->arr[c->arr_len-1].src_paddr + 1046 c->arr[c->arr_len-1].src_len - 1047 rctx->walk.blocksize); 1048 final_iv_addr = rctx->temp_iv; 1049 memcpy(rctx->temp_iv, __va(pa), 1050 rctx->walk.blocksize); 1051 } 1052 c->iv_paddr = iv_paddr; 1053 err = __n2_crypt_chunk(tfm, c, qp, false); 1054 if (err) 1055 break; 1056 list_del(&c->entry); 1057 if (unlikely(c != &rctx->chunk)) 1058 kfree(c); 1059 } 1060 } 1061 if (!err) { 1062 hv_ret = wait_for_tail(qp); 1063 if (hv_ret != HV_EOK) 1064 err = -EINVAL; 1065 } 1066 1067 spin_unlock_irqrestore(&qp->lock, flags); 1068 1069 out: 1070 put_cpu(); 1071 1072 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1073 return err; 1074 } 1075 1076 static int n2_encrypt_chaining(struct skcipher_request *req) 1077 { 1078 return n2_do_chaining(req, true); 1079 } 1080 1081 static int n2_decrypt_chaining(struct skcipher_request *req) 1082 { 1083 return n2_do_chaining(req, false); 1084 } 1085 1086 struct n2_skcipher_tmpl { 1087 const char *name; 1088 const char *drv_name; 1089 u8 block_size; 1090 u8 enc_type; 1091 struct skcipher_alg skcipher; 1092 }; 1093 1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1095 /* DES: ECB CBC and CFB are supported */ 1096 { .name = "ecb(des)", 1097 .drv_name = "ecb-des", 1098 .block_size = DES_BLOCK_SIZE, 1099 .enc_type = (ENC_TYPE_ALG_DES | 1100 ENC_TYPE_CHAINING_ECB), 1101 .skcipher = { 1102 .min_keysize = DES_KEY_SIZE, 1103 .max_keysize = DES_KEY_SIZE, 1104 .setkey = n2_des_setkey, 1105 .encrypt = n2_encrypt_ecb, 1106 .decrypt = n2_decrypt_ecb, 1107 }, 1108 }, 1109 { .name = "cbc(des)", 1110 .drv_name = "cbc-des", 1111 .block_size = DES_BLOCK_SIZE, 1112 .enc_type = (ENC_TYPE_ALG_DES | 1113 ENC_TYPE_CHAINING_CBC), 1114 .skcipher = { 1115 .ivsize = DES_BLOCK_SIZE, 1116 .min_keysize = DES_KEY_SIZE, 1117 .max_keysize = DES_KEY_SIZE, 1118 .setkey = n2_des_setkey, 1119 .encrypt = n2_encrypt_chaining, 1120 .decrypt = n2_decrypt_chaining, 1121 }, 1122 }, 1123 { .name = "cfb(des)", 1124 .drv_name = "cfb-des", 1125 .block_size = DES_BLOCK_SIZE, 1126 .enc_type = (ENC_TYPE_ALG_DES | 1127 ENC_TYPE_CHAINING_CFB), 1128 .skcipher = { 1129 .min_keysize = DES_KEY_SIZE, 1130 .max_keysize = DES_KEY_SIZE, 1131 .setkey = n2_des_setkey, 1132 .encrypt = n2_encrypt_chaining, 1133 .decrypt = n2_decrypt_chaining, 1134 }, 1135 }, 1136 1137 /* 3DES: ECB CBC and CFB are supported */ 1138 { .name = "ecb(des3_ede)", 1139 .drv_name = "ecb-3des", 1140 .block_size = DES_BLOCK_SIZE, 1141 .enc_type = (ENC_TYPE_ALG_3DES | 1142 ENC_TYPE_CHAINING_ECB), 1143 .skcipher = { 1144 .min_keysize = 3 * DES_KEY_SIZE, 1145 .max_keysize = 3 * DES_KEY_SIZE, 1146 .setkey = n2_3des_setkey, 1147 .encrypt = n2_encrypt_ecb, 1148 .decrypt = n2_decrypt_ecb, 1149 }, 1150 }, 1151 { .name = "cbc(des3_ede)", 1152 .drv_name = "cbc-3des", 1153 .block_size = DES_BLOCK_SIZE, 1154 .enc_type = (ENC_TYPE_ALG_3DES | 1155 ENC_TYPE_CHAINING_CBC), 1156 .skcipher = { 1157 .ivsize = DES_BLOCK_SIZE, 1158 .min_keysize = 3 * DES_KEY_SIZE, 1159 .max_keysize = 3 * DES_KEY_SIZE, 1160 .setkey = n2_3des_setkey, 1161 .encrypt = n2_encrypt_chaining, 1162 .decrypt = n2_decrypt_chaining, 1163 }, 1164 }, 1165 { .name = "cfb(des3_ede)", 1166 .drv_name = "cfb-3des", 1167 .block_size = DES_BLOCK_SIZE, 1168 .enc_type = (ENC_TYPE_ALG_3DES | 1169 ENC_TYPE_CHAINING_CFB), 1170 .skcipher = { 1171 .min_keysize = 3 * DES_KEY_SIZE, 1172 .max_keysize = 3 * DES_KEY_SIZE, 1173 .setkey = n2_3des_setkey, 1174 .encrypt = n2_encrypt_chaining, 1175 .decrypt = n2_decrypt_chaining, 1176 }, 1177 }, 1178 /* AES: ECB CBC and CTR are supported */ 1179 { .name = "ecb(aes)", 1180 .drv_name = "ecb-aes", 1181 .block_size = AES_BLOCK_SIZE, 1182 .enc_type = (ENC_TYPE_ALG_AES128 | 1183 ENC_TYPE_CHAINING_ECB), 1184 .skcipher = { 1185 .min_keysize = AES_MIN_KEY_SIZE, 1186 .max_keysize = AES_MAX_KEY_SIZE, 1187 .setkey = n2_aes_setkey, 1188 .encrypt = n2_encrypt_ecb, 1189 .decrypt = n2_decrypt_ecb, 1190 }, 1191 }, 1192 { .name = "cbc(aes)", 1193 .drv_name = "cbc-aes", 1194 .block_size = AES_BLOCK_SIZE, 1195 .enc_type = (ENC_TYPE_ALG_AES128 | 1196 ENC_TYPE_CHAINING_CBC), 1197 .skcipher = { 1198 .ivsize = AES_BLOCK_SIZE, 1199 .min_keysize = AES_MIN_KEY_SIZE, 1200 .max_keysize = AES_MAX_KEY_SIZE, 1201 .setkey = n2_aes_setkey, 1202 .encrypt = n2_encrypt_chaining, 1203 .decrypt = n2_decrypt_chaining, 1204 }, 1205 }, 1206 { .name = "ctr(aes)", 1207 .drv_name = "ctr-aes", 1208 .block_size = AES_BLOCK_SIZE, 1209 .enc_type = (ENC_TYPE_ALG_AES128 | 1210 ENC_TYPE_CHAINING_COUNTER), 1211 .skcipher = { 1212 .ivsize = AES_BLOCK_SIZE, 1213 .min_keysize = AES_MIN_KEY_SIZE, 1214 .max_keysize = AES_MAX_KEY_SIZE, 1215 .setkey = n2_aes_setkey, 1216 .encrypt = n2_encrypt_chaining, 1217 .decrypt = n2_encrypt_chaining, 1218 }, 1219 }, 1220 1221 }; 1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1223 1224 static LIST_HEAD(skcipher_algs); 1225 1226 struct n2_hash_tmpl { 1227 const char *name; 1228 const u8 *hash_zero; 1229 const u8 *hash_init; 1230 u8 hw_op_hashsz; 1231 u8 digest_size; 1232 u8 block_size; 1233 u8 auth_type; 1234 u8 hmac_type; 1235 }; 1236 1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = { 1238 cpu_to_le32(MD5_H0), 1239 cpu_to_le32(MD5_H1), 1240 cpu_to_le32(MD5_H2), 1241 cpu_to_le32(MD5_H3), 1242 }; 1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1244 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1245 }; 1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1247 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1248 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1249 }; 1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1251 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1252 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1253 }; 1254 1255 static const struct n2_hash_tmpl hash_tmpls[] = { 1256 { .name = "md5", 1257 .hash_zero = md5_zero_message_hash, 1258 .hash_init = (u8 *)n2_md5_init, 1259 .auth_type = AUTH_TYPE_MD5, 1260 .hmac_type = AUTH_TYPE_HMAC_MD5, 1261 .hw_op_hashsz = MD5_DIGEST_SIZE, 1262 .digest_size = MD5_DIGEST_SIZE, 1263 .block_size = MD5_HMAC_BLOCK_SIZE }, 1264 { .name = "sha1", 1265 .hash_zero = sha1_zero_message_hash, 1266 .hash_init = (u8 *)n2_sha1_init, 1267 .auth_type = AUTH_TYPE_SHA1, 1268 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1269 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1270 .digest_size = SHA1_DIGEST_SIZE, 1271 .block_size = SHA1_BLOCK_SIZE }, 1272 { .name = "sha256", 1273 .hash_zero = sha256_zero_message_hash, 1274 .hash_init = (u8 *)n2_sha256_init, 1275 .auth_type = AUTH_TYPE_SHA256, 1276 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1277 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1278 .digest_size = SHA256_DIGEST_SIZE, 1279 .block_size = SHA256_BLOCK_SIZE }, 1280 { .name = "sha224", 1281 .hash_zero = sha224_zero_message_hash, 1282 .hash_init = (u8 *)n2_sha224_init, 1283 .auth_type = AUTH_TYPE_SHA256, 1284 .hmac_type = AUTH_TYPE_RESERVED, 1285 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1286 .digest_size = SHA224_DIGEST_SIZE, 1287 .block_size = SHA224_BLOCK_SIZE }, 1288 }; 1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1290 1291 static LIST_HEAD(ahash_algs); 1292 static LIST_HEAD(hmac_algs); 1293 1294 static int algs_registered; 1295 1296 static void __n2_unregister_algs(void) 1297 { 1298 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1299 struct n2_ahash_alg *alg, *alg_tmp; 1300 struct n2_hmac_alg *hmac, *hmac_tmp; 1301 1302 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1303 crypto_unregister_skcipher(&skcipher->skcipher); 1304 list_del(&skcipher->entry); 1305 kfree(skcipher); 1306 } 1307 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1308 crypto_unregister_ahash(&hmac->derived.alg); 1309 list_del(&hmac->derived.entry); 1310 kfree(hmac); 1311 } 1312 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1313 crypto_unregister_ahash(&alg->alg); 1314 list_del(&alg->entry); 1315 kfree(alg); 1316 } 1317 } 1318 1319 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1320 { 1321 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1322 return 0; 1323 } 1324 1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1326 { 1327 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1328 struct skcipher_alg *alg; 1329 int err; 1330 1331 if (!p) 1332 return -ENOMEM; 1333 1334 alg = &p->skcipher; 1335 *alg = tmpl->skcipher; 1336 1337 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1338 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1339 alg->base.cra_priority = N2_CRA_PRIORITY; 1340 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 1341 CRYPTO_ALG_ALLOCATES_MEMORY; 1342 alg->base.cra_blocksize = tmpl->block_size; 1343 p->enc_type = tmpl->enc_type; 1344 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1345 alg->base.cra_module = THIS_MODULE; 1346 alg->init = n2_skcipher_init_tfm; 1347 1348 list_add(&p->entry, &skcipher_algs); 1349 err = crypto_register_skcipher(alg); 1350 if (err) { 1351 pr_err("%s alg registration failed\n", alg->base.cra_name); 1352 list_del(&p->entry); 1353 kfree(p); 1354 } else { 1355 pr_info("%s alg registered\n", alg->base.cra_name); 1356 } 1357 return err; 1358 } 1359 1360 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1361 { 1362 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1363 struct ahash_alg *ahash; 1364 struct crypto_alg *base; 1365 int err; 1366 1367 if (!p) 1368 return -ENOMEM; 1369 1370 p->child_alg = n2ahash->alg.halg.base.cra_name; 1371 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1372 INIT_LIST_HEAD(&p->derived.entry); 1373 1374 ahash = &p->derived.alg; 1375 ahash->digest = n2_hmac_async_digest; 1376 ahash->setkey = n2_hmac_async_setkey; 1377 1378 base = &ahash->halg.base; 1379 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); 1380 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); 1381 1382 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1383 base->cra_init = n2_hmac_cra_init; 1384 base->cra_exit = n2_hmac_cra_exit; 1385 1386 list_add(&p->derived.entry, &hmac_algs); 1387 err = crypto_register_ahash(ahash); 1388 if (err) { 1389 pr_err("%s alg registration failed\n", base->cra_name); 1390 list_del(&p->derived.entry); 1391 kfree(p); 1392 } else { 1393 pr_info("%s alg registered\n", base->cra_name); 1394 } 1395 return err; 1396 } 1397 1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1399 { 1400 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1401 struct hash_alg_common *halg; 1402 struct crypto_alg *base; 1403 struct ahash_alg *ahash; 1404 int err; 1405 1406 if (!p) 1407 return -ENOMEM; 1408 1409 p->hash_zero = tmpl->hash_zero; 1410 p->hash_init = tmpl->hash_init; 1411 p->auth_type = tmpl->auth_type; 1412 p->hmac_type = tmpl->hmac_type; 1413 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1414 p->digest_size = tmpl->digest_size; 1415 1416 ahash = &p->alg; 1417 ahash->init = n2_hash_async_init; 1418 ahash->update = n2_hash_async_update; 1419 ahash->final = n2_hash_async_final; 1420 ahash->finup = n2_hash_async_finup; 1421 ahash->digest = n2_hash_async_digest; 1422 ahash->export = n2_hash_async_noexport; 1423 ahash->import = n2_hash_async_noimport; 1424 1425 halg = &ahash->halg; 1426 halg->digestsize = tmpl->digest_size; 1427 1428 base = &halg->base; 1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1431 base->cra_priority = N2_CRA_PRIORITY; 1432 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1433 CRYPTO_ALG_NEED_FALLBACK; 1434 base->cra_blocksize = tmpl->block_size; 1435 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1436 base->cra_module = THIS_MODULE; 1437 base->cra_init = n2_hash_cra_init; 1438 base->cra_exit = n2_hash_cra_exit; 1439 1440 list_add(&p->entry, &ahash_algs); 1441 err = crypto_register_ahash(ahash); 1442 if (err) { 1443 pr_err("%s alg registration failed\n", base->cra_name); 1444 list_del(&p->entry); 1445 kfree(p); 1446 } else { 1447 pr_info("%s alg registered\n", base->cra_name); 1448 } 1449 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1450 err = __n2_register_one_hmac(p); 1451 return err; 1452 } 1453 1454 static int n2_register_algs(void) 1455 { 1456 int i, err = 0; 1457 1458 mutex_lock(&spu_lock); 1459 if (algs_registered++) 1460 goto out; 1461 1462 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1463 err = __n2_register_one_ahash(&hash_tmpls[i]); 1464 if (err) { 1465 __n2_unregister_algs(); 1466 goto out; 1467 } 1468 } 1469 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1470 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1471 if (err) { 1472 __n2_unregister_algs(); 1473 goto out; 1474 } 1475 } 1476 1477 out: 1478 mutex_unlock(&spu_lock); 1479 return err; 1480 } 1481 1482 static void n2_unregister_algs(void) 1483 { 1484 mutex_lock(&spu_lock); 1485 if (!--algs_registered) 1486 __n2_unregister_algs(); 1487 mutex_unlock(&spu_lock); 1488 } 1489 1490 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1491 * a devino. This isn't very useful to us because all of the 1492 * interrupts listed in the device_node have been translated to 1493 * Linux virtual IRQ cookie numbers. 1494 * 1495 * So we have to back-translate, going through the 'intr' and 'ino' 1496 * property tables of the n2cp MDESC node, matching it with the OF 1497 * 'interrupts' property entries, in order to to figure out which 1498 * devino goes to which already-translated IRQ. 1499 */ 1500 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1501 unsigned long dev_ino) 1502 { 1503 const unsigned int *dev_intrs; 1504 unsigned int intr; 1505 int i; 1506 1507 for (i = 0; i < ip->num_intrs; i++) { 1508 if (ip->ino_table[i].ino == dev_ino) 1509 break; 1510 } 1511 if (i == ip->num_intrs) 1512 return -ENODEV; 1513 1514 intr = ip->ino_table[i].intr; 1515 1516 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1517 if (!dev_intrs) 1518 return -ENODEV; 1519 1520 for (i = 0; i < dev->archdata.num_irqs; i++) { 1521 if (dev_intrs[i] == intr) 1522 return i; 1523 } 1524 1525 return -ENODEV; 1526 } 1527 1528 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1529 const char *irq_name, struct spu_queue *p, 1530 irq_handler_t handler) 1531 { 1532 unsigned long herr; 1533 int index; 1534 1535 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1536 if (herr) 1537 return -EINVAL; 1538 1539 index = find_devino_index(dev, ip, p->devino); 1540 if (index < 0) 1541 return index; 1542 1543 p->irq = dev->archdata.irqs[index]; 1544 1545 sprintf(p->irq_name, "%s-%d", irq_name, index); 1546 1547 return request_irq(p->irq, handler, 0, p->irq_name, p); 1548 } 1549 1550 static struct kmem_cache *queue_cache[2]; 1551 1552 static void *new_queue(unsigned long q_type) 1553 { 1554 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1555 } 1556 1557 static void free_queue(void *p, unsigned long q_type) 1558 { 1559 kmem_cache_free(queue_cache[q_type - 1], p); 1560 } 1561 1562 static int queue_cache_init(void) 1563 { 1564 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1565 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1566 kmem_cache_create("mau_queue", 1567 (MAU_NUM_ENTRIES * 1568 MAU_ENTRY_SIZE), 1569 MAU_ENTRY_SIZE, 0, NULL); 1570 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1571 return -ENOMEM; 1572 1573 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1574 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1575 kmem_cache_create("cwq_queue", 1576 (CWQ_NUM_ENTRIES * 1577 CWQ_ENTRY_SIZE), 1578 CWQ_ENTRY_SIZE, 0, NULL); 1579 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1580 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1581 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1582 return -ENOMEM; 1583 } 1584 return 0; 1585 } 1586 1587 static void queue_cache_destroy(void) 1588 { 1589 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1590 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1591 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1592 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1593 } 1594 1595 static long spu_queue_register_workfn(void *arg) 1596 { 1597 struct spu_qreg *qr = arg; 1598 struct spu_queue *p = qr->queue; 1599 unsigned long q_type = qr->type; 1600 unsigned long hv_ret; 1601 1602 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1603 CWQ_NUM_ENTRIES, &p->qhandle); 1604 if (!hv_ret) 1605 sun4v_ncs_sethead_marker(p->qhandle, 0); 1606 1607 return hv_ret ? -EINVAL : 0; 1608 } 1609 1610 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1611 { 1612 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1613 struct spu_qreg qr = { .queue = p, .type = q_type }; 1614 1615 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1616 } 1617 1618 static int spu_queue_setup(struct spu_queue *p) 1619 { 1620 int err; 1621 1622 p->q = new_queue(p->q_type); 1623 if (!p->q) 1624 return -ENOMEM; 1625 1626 err = spu_queue_register(p, p->q_type); 1627 if (err) { 1628 free_queue(p->q, p->q_type); 1629 p->q = NULL; 1630 } 1631 1632 return err; 1633 } 1634 1635 static void spu_queue_destroy(struct spu_queue *p) 1636 { 1637 unsigned long hv_ret; 1638 1639 if (!p->q) 1640 return; 1641 1642 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1643 1644 if (!hv_ret) 1645 free_queue(p->q, p->q_type); 1646 } 1647 1648 static void spu_list_destroy(struct list_head *list) 1649 { 1650 struct spu_queue *p, *n; 1651 1652 list_for_each_entry_safe(p, n, list, list) { 1653 int i; 1654 1655 for (i = 0; i < NR_CPUS; i++) { 1656 if (cpu_to_cwq[i] == p) 1657 cpu_to_cwq[i] = NULL; 1658 } 1659 1660 if (p->irq) { 1661 free_irq(p->irq, p); 1662 p->irq = 0; 1663 } 1664 spu_queue_destroy(p); 1665 list_del(&p->list); 1666 kfree(p); 1667 } 1668 } 1669 1670 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1671 * gathering cpu membership information. 1672 */ 1673 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1674 struct platform_device *dev, 1675 u64 node, struct spu_queue *p, 1676 struct spu_queue **table) 1677 { 1678 u64 arc; 1679 1680 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1681 u64 tgt = mdesc_arc_target(mdesc, arc); 1682 const char *name = mdesc_node_name(mdesc, tgt); 1683 const u64 *id; 1684 1685 if (strcmp(name, "cpu")) 1686 continue; 1687 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1688 if (table[*id] != NULL) { 1689 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1690 dev->dev.of_node); 1691 return -EINVAL; 1692 } 1693 cpumask_set_cpu(*id, &p->sharing); 1694 table[*id] = p; 1695 } 1696 return 0; 1697 } 1698 1699 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1700 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1701 struct platform_device *dev, struct mdesc_handle *mdesc, 1702 u64 node, const char *iname, unsigned long q_type, 1703 irq_handler_t handler, struct spu_queue **table) 1704 { 1705 struct spu_queue *p; 1706 int err; 1707 1708 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1709 if (!p) { 1710 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1711 dev->dev.of_node); 1712 return -ENOMEM; 1713 } 1714 1715 cpumask_clear(&p->sharing); 1716 spin_lock_init(&p->lock); 1717 p->q_type = q_type; 1718 INIT_LIST_HEAD(&p->jobs); 1719 list_add(&p->list, list); 1720 1721 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1722 if (err) 1723 return err; 1724 1725 err = spu_queue_setup(p); 1726 if (err) 1727 return err; 1728 1729 return spu_map_ino(dev, ip, iname, p, handler); 1730 } 1731 1732 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1733 struct spu_mdesc_info *ip, struct list_head *list, 1734 const char *exec_name, unsigned long q_type, 1735 irq_handler_t handler, struct spu_queue **table) 1736 { 1737 int err = 0; 1738 u64 node; 1739 1740 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1741 const char *type; 1742 1743 type = mdesc_get_property(mdesc, node, "type", NULL); 1744 if (!type || strcmp(type, exec_name)) 1745 continue; 1746 1747 err = handle_exec_unit(ip, list, dev, mdesc, node, 1748 exec_name, q_type, handler, table); 1749 if (err) { 1750 spu_list_destroy(list); 1751 break; 1752 } 1753 } 1754 1755 return err; 1756 } 1757 1758 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1759 struct spu_mdesc_info *ip) 1760 { 1761 const u64 *ino; 1762 int ino_len; 1763 int i; 1764 1765 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1766 if (!ino) { 1767 printk("NO 'ino'\n"); 1768 return -ENODEV; 1769 } 1770 1771 ip->num_intrs = ino_len / sizeof(u64); 1772 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1773 ip->num_intrs), 1774 GFP_KERNEL); 1775 if (!ip->ino_table) 1776 return -ENOMEM; 1777 1778 for (i = 0; i < ip->num_intrs; i++) { 1779 struct ino_blob *b = &ip->ino_table[i]; 1780 b->intr = i + 1; 1781 b->ino = ino[i]; 1782 } 1783 1784 return 0; 1785 } 1786 1787 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1788 struct platform_device *dev, 1789 struct spu_mdesc_info *ip, 1790 const char *node_name) 1791 { 1792 const unsigned int *reg; 1793 u64 node; 1794 1795 reg = of_get_property(dev->dev.of_node, "reg", NULL); 1796 if (!reg) 1797 return -ENODEV; 1798 1799 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1800 const char *name; 1801 const u64 *chdl; 1802 1803 name = mdesc_get_property(mdesc, node, "name", NULL); 1804 if (!name || strcmp(name, node_name)) 1805 continue; 1806 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1807 if (!chdl || (*chdl != *reg)) 1808 continue; 1809 ip->cfg_handle = *chdl; 1810 return get_irq_props(mdesc, node, ip); 1811 } 1812 1813 return -ENODEV; 1814 } 1815 1816 static unsigned long n2_spu_hvapi_major; 1817 static unsigned long n2_spu_hvapi_minor; 1818 1819 static int n2_spu_hvapi_register(void) 1820 { 1821 int err; 1822 1823 n2_spu_hvapi_major = 2; 1824 n2_spu_hvapi_minor = 0; 1825 1826 err = sun4v_hvapi_register(HV_GRP_NCS, 1827 n2_spu_hvapi_major, 1828 &n2_spu_hvapi_minor); 1829 1830 if (!err) 1831 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1832 n2_spu_hvapi_major, 1833 n2_spu_hvapi_minor); 1834 1835 return err; 1836 } 1837 1838 static void n2_spu_hvapi_unregister(void) 1839 { 1840 sun4v_hvapi_unregister(HV_GRP_NCS); 1841 } 1842 1843 static int global_ref; 1844 1845 static int grab_global_resources(void) 1846 { 1847 int err = 0; 1848 1849 mutex_lock(&spu_lock); 1850 1851 if (global_ref++) 1852 goto out; 1853 1854 err = n2_spu_hvapi_register(); 1855 if (err) 1856 goto out; 1857 1858 err = queue_cache_init(); 1859 if (err) 1860 goto out_hvapi_release; 1861 1862 err = -ENOMEM; 1863 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1864 GFP_KERNEL); 1865 if (!cpu_to_cwq) 1866 goto out_queue_cache_destroy; 1867 1868 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1869 GFP_KERNEL); 1870 if (!cpu_to_mau) 1871 goto out_free_cwq_table; 1872 1873 err = 0; 1874 1875 out: 1876 if (err) 1877 global_ref--; 1878 mutex_unlock(&spu_lock); 1879 return err; 1880 1881 out_free_cwq_table: 1882 kfree(cpu_to_cwq); 1883 cpu_to_cwq = NULL; 1884 1885 out_queue_cache_destroy: 1886 queue_cache_destroy(); 1887 1888 out_hvapi_release: 1889 n2_spu_hvapi_unregister(); 1890 goto out; 1891 } 1892 1893 static void release_global_resources(void) 1894 { 1895 mutex_lock(&spu_lock); 1896 if (!--global_ref) { 1897 kfree(cpu_to_cwq); 1898 cpu_to_cwq = NULL; 1899 1900 kfree(cpu_to_mau); 1901 cpu_to_mau = NULL; 1902 1903 queue_cache_destroy(); 1904 n2_spu_hvapi_unregister(); 1905 } 1906 mutex_unlock(&spu_lock); 1907 } 1908 1909 static struct n2_crypto *alloc_n2cp(void) 1910 { 1911 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1912 1913 if (np) 1914 INIT_LIST_HEAD(&np->cwq_list); 1915 1916 return np; 1917 } 1918 1919 static void free_n2cp(struct n2_crypto *np) 1920 { 1921 kfree(np->cwq_info.ino_table); 1922 np->cwq_info.ino_table = NULL; 1923 1924 kfree(np); 1925 } 1926 1927 static void n2_spu_driver_version(void) 1928 { 1929 static int n2_spu_version_printed; 1930 1931 if (n2_spu_version_printed++ == 0) 1932 pr_info("%s", version); 1933 } 1934 1935 static int n2_crypto_probe(struct platform_device *dev) 1936 { 1937 struct mdesc_handle *mdesc; 1938 struct n2_crypto *np; 1939 int err; 1940 1941 n2_spu_driver_version(); 1942 1943 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1944 1945 np = alloc_n2cp(); 1946 if (!np) { 1947 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1948 dev->dev.of_node); 1949 return -ENOMEM; 1950 } 1951 1952 err = grab_global_resources(); 1953 if (err) { 1954 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 1955 dev->dev.of_node); 1956 goto out_free_n2cp; 1957 } 1958 1959 mdesc = mdesc_grab(); 1960 1961 if (!mdesc) { 1962 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 1963 dev->dev.of_node); 1964 err = -ENODEV; 1965 goto out_free_global; 1966 } 1967 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 1968 if (err) { 1969 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 1970 dev->dev.of_node); 1971 mdesc_release(mdesc); 1972 goto out_free_global; 1973 } 1974 1975 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 1976 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 1977 cpu_to_cwq); 1978 mdesc_release(mdesc); 1979 1980 if (err) { 1981 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 1982 dev->dev.of_node); 1983 goto out_free_global; 1984 } 1985 1986 err = n2_register_algs(); 1987 if (err) { 1988 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 1989 dev->dev.of_node); 1990 goto out_free_spu_list; 1991 } 1992 1993 dev_set_drvdata(&dev->dev, np); 1994 1995 return 0; 1996 1997 out_free_spu_list: 1998 spu_list_destroy(&np->cwq_list); 1999 2000 out_free_global: 2001 release_global_resources(); 2002 2003 out_free_n2cp: 2004 free_n2cp(np); 2005 2006 return err; 2007 } 2008 2009 static int n2_crypto_remove(struct platform_device *dev) 2010 { 2011 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 2012 2013 n2_unregister_algs(); 2014 2015 spu_list_destroy(&np->cwq_list); 2016 2017 release_global_resources(); 2018 2019 free_n2cp(np); 2020 2021 return 0; 2022 } 2023 2024 static struct n2_mau *alloc_ncp(void) 2025 { 2026 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2027 2028 if (mp) 2029 INIT_LIST_HEAD(&mp->mau_list); 2030 2031 return mp; 2032 } 2033 2034 static void free_ncp(struct n2_mau *mp) 2035 { 2036 kfree(mp->mau_info.ino_table); 2037 mp->mau_info.ino_table = NULL; 2038 2039 kfree(mp); 2040 } 2041 2042 static int n2_mau_probe(struct platform_device *dev) 2043 { 2044 struct mdesc_handle *mdesc; 2045 struct n2_mau *mp; 2046 int err; 2047 2048 n2_spu_driver_version(); 2049 2050 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2051 2052 mp = alloc_ncp(); 2053 if (!mp) { 2054 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2055 dev->dev.of_node); 2056 return -ENOMEM; 2057 } 2058 2059 err = grab_global_resources(); 2060 if (err) { 2061 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2062 dev->dev.of_node); 2063 goto out_free_ncp; 2064 } 2065 2066 mdesc = mdesc_grab(); 2067 2068 if (!mdesc) { 2069 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2070 dev->dev.of_node); 2071 err = -ENODEV; 2072 goto out_free_global; 2073 } 2074 2075 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2076 if (err) { 2077 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2078 dev->dev.of_node); 2079 mdesc_release(mdesc); 2080 goto out_free_global; 2081 } 2082 2083 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2084 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2085 cpu_to_mau); 2086 mdesc_release(mdesc); 2087 2088 if (err) { 2089 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2090 dev->dev.of_node); 2091 goto out_free_global; 2092 } 2093 2094 dev_set_drvdata(&dev->dev, mp); 2095 2096 return 0; 2097 2098 out_free_global: 2099 release_global_resources(); 2100 2101 out_free_ncp: 2102 free_ncp(mp); 2103 2104 return err; 2105 } 2106 2107 static int n2_mau_remove(struct platform_device *dev) 2108 { 2109 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2110 2111 spu_list_destroy(&mp->mau_list); 2112 2113 release_global_resources(); 2114 2115 free_ncp(mp); 2116 2117 return 0; 2118 } 2119 2120 static const struct of_device_id n2_crypto_match[] = { 2121 { 2122 .name = "n2cp", 2123 .compatible = "SUNW,n2-cwq", 2124 }, 2125 { 2126 .name = "n2cp", 2127 .compatible = "SUNW,vf-cwq", 2128 }, 2129 { 2130 .name = "n2cp", 2131 .compatible = "SUNW,kt-cwq", 2132 }, 2133 {}, 2134 }; 2135 2136 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2137 2138 static struct platform_driver n2_crypto_driver = { 2139 .driver = { 2140 .name = "n2cp", 2141 .of_match_table = n2_crypto_match, 2142 }, 2143 .probe = n2_crypto_probe, 2144 .remove = n2_crypto_remove, 2145 }; 2146 2147 static const struct of_device_id n2_mau_match[] = { 2148 { 2149 .name = "ncp", 2150 .compatible = "SUNW,n2-mau", 2151 }, 2152 { 2153 .name = "ncp", 2154 .compatible = "SUNW,vf-mau", 2155 }, 2156 { 2157 .name = "ncp", 2158 .compatible = "SUNW,kt-mau", 2159 }, 2160 {}, 2161 }; 2162 2163 MODULE_DEVICE_TABLE(of, n2_mau_match); 2164 2165 static struct platform_driver n2_mau_driver = { 2166 .driver = { 2167 .name = "ncp", 2168 .of_match_table = n2_mau_match, 2169 }, 2170 .probe = n2_mau_probe, 2171 .remove = n2_mau_remove, 2172 }; 2173 2174 static struct platform_driver * const drivers[] = { 2175 &n2_crypto_driver, 2176 &n2_mau_driver, 2177 }; 2178 2179 static int __init n2_init(void) 2180 { 2181 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2182 } 2183 2184 static void __exit n2_exit(void) 2185 { 2186 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2187 } 2188 2189 module_init(n2_init); 2190 module_exit(n2_exit); 2191