1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 2 * 3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_device.h> 12 #include <linux/cpumask.h> 13 #include <linux/slab.h> 14 #include <linux/interrupt.h> 15 #include <linux/crypto.h> 16 #include <crypto/md5.h> 17 #include <crypto/sha.h> 18 #include <crypto/aes.h> 19 #include <crypto/des.h> 20 #include <linux/mutex.h> 21 #include <linux/delay.h> 22 #include <linux/sched.h> 23 24 #include <crypto/internal/hash.h> 25 #include <crypto/scatterwalk.h> 26 #include <crypto/algapi.h> 27 28 #include <asm/hypervisor.h> 29 #include <asm/mdesc.h> 30 31 #include "n2_core.h" 32 33 #define DRV_MODULE_NAME "n2_crypto" 34 #define DRV_MODULE_VERSION "0.2" 35 #define DRV_MODULE_RELDATE "July 28, 2011" 36 37 static char version[] = 38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 39 40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 41 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 42 MODULE_LICENSE("GPL"); 43 MODULE_VERSION(DRV_MODULE_VERSION); 44 45 #define N2_CRA_PRIORITY 200 46 47 static DEFINE_MUTEX(spu_lock); 48 49 struct spu_queue { 50 cpumask_t sharing; 51 unsigned long qhandle; 52 53 spinlock_t lock; 54 u8 q_type; 55 void *q; 56 unsigned long head; 57 unsigned long tail; 58 struct list_head jobs; 59 60 unsigned long devino; 61 62 char irq_name[32]; 63 unsigned int irq; 64 65 struct list_head list; 66 }; 67 68 static struct spu_queue **cpu_to_cwq; 69 static struct spu_queue **cpu_to_mau; 70 71 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 72 { 73 if (q->q_type == HV_NCS_QTYPE_MAU) { 74 off += MAU_ENTRY_SIZE; 75 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 76 off = 0; 77 } else { 78 off += CWQ_ENTRY_SIZE; 79 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 80 off = 0; 81 } 82 return off; 83 } 84 85 struct n2_request_common { 86 struct list_head entry; 87 unsigned int offset; 88 }; 89 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 90 91 /* An async job request records the final tail value it used in 92 * n2_request_common->offset, test to see if that offset is in 93 * the range old_head, new_head, inclusive. 94 */ 95 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 96 unsigned long old_head, unsigned long new_head) 97 { 98 if (old_head <= new_head) { 99 if (offset > old_head && offset <= new_head) 100 return true; 101 } else { 102 if (offset > old_head || offset <= new_head) 103 return true; 104 } 105 return false; 106 } 107 108 /* When the HEAD marker is unequal to the actual HEAD, we get 109 * a virtual device INO interrupt. We should process the 110 * completed CWQ entries and adjust the HEAD marker to clear 111 * the IRQ. 112 */ 113 static irqreturn_t cwq_intr(int irq, void *dev_id) 114 { 115 unsigned long off, new_head, hv_ret; 116 struct spu_queue *q = dev_id; 117 118 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 119 smp_processor_id(), q->qhandle); 120 121 spin_lock(&q->lock); 122 123 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 124 125 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 126 smp_processor_id(), new_head, hv_ret); 127 128 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 129 /* XXX ... XXX */ 130 } 131 132 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 133 if (hv_ret == HV_EOK) 134 q->head = new_head; 135 136 spin_unlock(&q->lock); 137 138 return IRQ_HANDLED; 139 } 140 141 static irqreturn_t mau_intr(int irq, void *dev_id) 142 { 143 struct spu_queue *q = dev_id; 144 unsigned long head, hv_ret; 145 146 spin_lock(&q->lock); 147 148 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 149 smp_processor_id(), q->qhandle); 150 151 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 152 153 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 154 smp_processor_id(), head, hv_ret); 155 156 sun4v_ncs_sethead_marker(q->qhandle, head); 157 158 spin_unlock(&q->lock); 159 160 return IRQ_HANDLED; 161 } 162 163 static void *spu_queue_next(struct spu_queue *q, void *cur) 164 { 165 return q->q + spu_next_offset(q, cur - q->q); 166 } 167 168 static int spu_queue_num_free(struct spu_queue *q) 169 { 170 unsigned long head = q->head; 171 unsigned long tail = q->tail; 172 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 173 unsigned long diff; 174 175 if (head > tail) 176 diff = head - tail; 177 else 178 diff = (end - tail) + head; 179 180 return (diff / CWQ_ENTRY_SIZE) - 1; 181 } 182 183 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 184 { 185 int avail = spu_queue_num_free(q); 186 187 if (avail >= num_entries) 188 return q->q + q->tail; 189 190 return NULL; 191 } 192 193 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 194 { 195 unsigned long hv_ret, new_tail; 196 197 new_tail = spu_next_offset(q, last - q->q); 198 199 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 200 if (hv_ret == HV_EOK) 201 q->tail = new_tail; 202 return hv_ret; 203 } 204 205 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 206 int enc_type, int auth_type, 207 unsigned int hash_len, 208 bool sfas, bool sob, bool eob, bool encrypt, 209 int opcode) 210 { 211 u64 word = (len - 1) & CONTROL_LEN; 212 213 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 214 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 215 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 216 if (sfas) 217 word |= CONTROL_STORE_FINAL_AUTH_STATE; 218 if (sob) 219 word |= CONTROL_START_OF_BLOCK; 220 if (eob) 221 word |= CONTROL_END_OF_BLOCK; 222 if (encrypt) 223 word |= CONTROL_ENCRYPT; 224 if (hmac_key_len) 225 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 226 if (hash_len) 227 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 228 229 return word; 230 } 231 232 #if 0 233 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 234 { 235 if (this_len >= 64 || 236 qp->head != qp->tail) 237 return true; 238 return false; 239 } 240 #endif 241 242 struct n2_ahash_alg { 243 struct list_head entry; 244 const char *hash_zero; 245 const u32 *hash_init; 246 u8 hw_op_hashsz; 247 u8 digest_size; 248 u8 auth_type; 249 u8 hmac_type; 250 struct ahash_alg alg; 251 }; 252 253 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 254 { 255 struct crypto_alg *alg = tfm->__crt_alg; 256 struct ahash_alg *ahash_alg; 257 258 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 259 260 return container_of(ahash_alg, struct n2_ahash_alg, alg); 261 } 262 263 struct n2_hmac_alg { 264 const char *child_alg; 265 struct n2_ahash_alg derived; 266 }; 267 268 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 269 { 270 struct crypto_alg *alg = tfm->__crt_alg; 271 struct ahash_alg *ahash_alg; 272 273 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 274 275 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 276 } 277 278 struct n2_hash_ctx { 279 struct crypto_ahash *fallback_tfm; 280 }; 281 282 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 283 284 struct n2_hmac_ctx { 285 struct n2_hash_ctx base; 286 287 struct crypto_shash *child_shash; 288 289 int hash_key_len; 290 unsigned char hash_key[N2_HASH_KEY_MAX]; 291 }; 292 293 struct n2_hash_req_ctx { 294 union { 295 struct md5_state md5; 296 struct sha1_state sha1; 297 struct sha256_state sha256; 298 } u; 299 300 struct ahash_request fallback_req; 301 }; 302 303 static int n2_hash_async_init(struct ahash_request *req) 304 { 305 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 306 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 307 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 308 309 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 310 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 311 312 return crypto_ahash_init(&rctx->fallback_req); 313 } 314 315 static int n2_hash_async_update(struct ahash_request *req) 316 { 317 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 318 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 319 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 320 321 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 322 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 323 rctx->fallback_req.nbytes = req->nbytes; 324 rctx->fallback_req.src = req->src; 325 326 return crypto_ahash_update(&rctx->fallback_req); 327 } 328 329 static int n2_hash_async_final(struct ahash_request *req) 330 { 331 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 332 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 333 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 334 335 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 336 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 337 rctx->fallback_req.result = req->result; 338 339 return crypto_ahash_final(&rctx->fallback_req); 340 } 341 342 static int n2_hash_async_finup(struct ahash_request *req) 343 { 344 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 345 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 346 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 347 348 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 349 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 350 rctx->fallback_req.nbytes = req->nbytes; 351 rctx->fallback_req.src = req->src; 352 rctx->fallback_req.result = req->result; 353 354 return crypto_ahash_finup(&rctx->fallback_req); 355 } 356 357 static int n2_hash_cra_init(struct crypto_tfm *tfm) 358 { 359 const char *fallback_driver_name = tfm->__crt_alg->cra_name; 360 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 361 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 362 struct crypto_ahash *fallback_tfm; 363 int err; 364 365 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 366 CRYPTO_ALG_NEED_FALLBACK); 367 if (IS_ERR(fallback_tfm)) { 368 pr_warning("Fallback driver '%s' could not be loaded!\n", 369 fallback_driver_name); 370 err = PTR_ERR(fallback_tfm); 371 goto out; 372 } 373 374 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 375 crypto_ahash_reqsize(fallback_tfm))); 376 377 ctx->fallback_tfm = fallback_tfm; 378 return 0; 379 380 out: 381 return err; 382 } 383 384 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 385 { 386 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 387 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 388 389 crypto_free_ahash(ctx->fallback_tfm); 390 } 391 392 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 393 { 394 const char *fallback_driver_name = tfm->__crt_alg->cra_name; 395 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 396 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 397 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 398 struct crypto_ahash *fallback_tfm; 399 struct crypto_shash *child_shash; 400 int err; 401 402 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 403 CRYPTO_ALG_NEED_FALLBACK); 404 if (IS_ERR(fallback_tfm)) { 405 pr_warning("Fallback driver '%s' could not be loaded!\n", 406 fallback_driver_name); 407 err = PTR_ERR(fallback_tfm); 408 goto out; 409 } 410 411 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 412 if (IS_ERR(child_shash)) { 413 pr_warning("Child shash '%s' could not be loaded!\n", 414 n2alg->child_alg); 415 err = PTR_ERR(child_shash); 416 goto out_free_fallback; 417 } 418 419 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 420 crypto_ahash_reqsize(fallback_tfm))); 421 422 ctx->child_shash = child_shash; 423 ctx->base.fallback_tfm = fallback_tfm; 424 return 0; 425 426 out_free_fallback: 427 crypto_free_ahash(fallback_tfm); 428 429 out: 430 return err; 431 } 432 433 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 434 { 435 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 436 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 437 438 crypto_free_ahash(ctx->base.fallback_tfm); 439 crypto_free_shash(ctx->child_shash); 440 } 441 442 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 443 unsigned int keylen) 444 { 445 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 446 struct crypto_shash *child_shash = ctx->child_shash; 447 struct crypto_ahash *fallback_tfm; 448 struct { 449 struct shash_desc shash; 450 char ctx[crypto_shash_descsize(child_shash)]; 451 } desc; 452 int err, bs, ds; 453 454 fallback_tfm = ctx->base.fallback_tfm; 455 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 456 if (err) 457 return err; 458 459 desc.shash.tfm = child_shash; 460 desc.shash.flags = crypto_ahash_get_flags(tfm) & 461 CRYPTO_TFM_REQ_MAY_SLEEP; 462 463 bs = crypto_shash_blocksize(child_shash); 464 ds = crypto_shash_digestsize(child_shash); 465 BUG_ON(ds > N2_HASH_KEY_MAX); 466 if (keylen > bs) { 467 err = crypto_shash_digest(&desc.shash, key, keylen, 468 ctx->hash_key); 469 if (err) 470 return err; 471 keylen = ds; 472 } else if (keylen <= N2_HASH_KEY_MAX) 473 memcpy(ctx->hash_key, key, keylen); 474 475 ctx->hash_key_len = keylen; 476 477 return err; 478 } 479 480 static unsigned long wait_for_tail(struct spu_queue *qp) 481 { 482 unsigned long head, hv_ret; 483 484 do { 485 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 486 if (hv_ret != HV_EOK) { 487 pr_err("Hypervisor error on gethead\n"); 488 break; 489 } 490 if (head == qp->tail) { 491 qp->head = head; 492 break; 493 } 494 } while (1); 495 return hv_ret; 496 } 497 498 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 499 struct cwq_initial_entry *ent) 500 { 501 unsigned long hv_ret = spu_queue_submit(qp, ent); 502 503 if (hv_ret == HV_EOK) 504 hv_ret = wait_for_tail(qp); 505 506 return hv_ret; 507 } 508 509 static int n2_do_async_digest(struct ahash_request *req, 510 unsigned int auth_type, unsigned int digest_size, 511 unsigned int result_size, void *hash_loc, 512 unsigned long auth_key, unsigned int auth_key_len) 513 { 514 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 515 struct cwq_initial_entry *ent; 516 struct crypto_hash_walk walk; 517 struct spu_queue *qp; 518 unsigned long flags; 519 int err = -ENODEV; 520 int nbytes, cpu; 521 522 /* The total effective length of the operation may not 523 * exceed 2^16. 524 */ 525 if (unlikely(req->nbytes > (1 << 16))) { 526 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 527 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 528 529 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 530 rctx->fallback_req.base.flags = 531 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 532 rctx->fallback_req.nbytes = req->nbytes; 533 rctx->fallback_req.src = req->src; 534 rctx->fallback_req.result = req->result; 535 536 return crypto_ahash_digest(&rctx->fallback_req); 537 } 538 539 nbytes = crypto_hash_walk_first(req, &walk); 540 541 cpu = get_cpu(); 542 qp = cpu_to_cwq[cpu]; 543 if (!qp) 544 goto out; 545 546 spin_lock_irqsave(&qp->lock, flags); 547 548 /* XXX can do better, improve this later by doing a by-hand scatterlist 549 * XXX walk, etc. 550 */ 551 ent = qp->q + qp->tail; 552 553 ent->control = control_word_base(nbytes, auth_key_len, 0, 554 auth_type, digest_size, 555 false, true, false, false, 556 OPCODE_INPLACE_BIT | 557 OPCODE_AUTH_MAC); 558 ent->src_addr = __pa(walk.data); 559 ent->auth_key_addr = auth_key; 560 ent->auth_iv_addr = __pa(hash_loc); 561 ent->final_auth_state_addr = 0UL; 562 ent->enc_key_addr = 0UL; 563 ent->enc_iv_addr = 0UL; 564 ent->dest_addr = __pa(hash_loc); 565 566 nbytes = crypto_hash_walk_done(&walk, 0); 567 while (nbytes > 0) { 568 ent = spu_queue_next(qp, ent); 569 570 ent->control = (nbytes - 1); 571 ent->src_addr = __pa(walk.data); 572 ent->auth_key_addr = 0UL; 573 ent->auth_iv_addr = 0UL; 574 ent->final_auth_state_addr = 0UL; 575 ent->enc_key_addr = 0UL; 576 ent->enc_iv_addr = 0UL; 577 ent->dest_addr = 0UL; 578 579 nbytes = crypto_hash_walk_done(&walk, 0); 580 } 581 ent->control |= CONTROL_END_OF_BLOCK; 582 583 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 584 err = -EINVAL; 585 else 586 err = 0; 587 588 spin_unlock_irqrestore(&qp->lock, flags); 589 590 if (!err) 591 memcpy(req->result, hash_loc, result_size); 592 out: 593 put_cpu(); 594 595 return err; 596 } 597 598 static int n2_hash_async_digest(struct ahash_request *req) 599 { 600 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 601 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 602 int ds; 603 604 ds = n2alg->digest_size; 605 if (unlikely(req->nbytes == 0)) { 606 memcpy(req->result, n2alg->hash_zero, ds); 607 return 0; 608 } 609 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 610 611 return n2_do_async_digest(req, n2alg->auth_type, 612 n2alg->hw_op_hashsz, ds, 613 &rctx->u, 0UL, 0); 614 } 615 616 static int n2_hmac_async_digest(struct ahash_request *req) 617 { 618 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 619 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 621 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 622 int ds; 623 624 ds = n2alg->derived.digest_size; 625 if (unlikely(req->nbytes == 0) || 626 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 627 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 628 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 629 630 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 631 rctx->fallback_req.base.flags = 632 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 633 rctx->fallback_req.nbytes = req->nbytes; 634 rctx->fallback_req.src = req->src; 635 rctx->fallback_req.result = req->result; 636 637 return crypto_ahash_digest(&rctx->fallback_req); 638 } 639 memcpy(&rctx->u, n2alg->derived.hash_init, 640 n2alg->derived.hw_op_hashsz); 641 642 return n2_do_async_digest(req, n2alg->derived.hmac_type, 643 n2alg->derived.hw_op_hashsz, ds, 644 &rctx->u, 645 __pa(&ctx->hash_key), 646 ctx->hash_key_len); 647 } 648 649 struct n2_cipher_context { 650 int key_len; 651 int enc_type; 652 union { 653 u8 aes[AES_MAX_KEY_SIZE]; 654 u8 des[DES_KEY_SIZE]; 655 u8 des3[3 * DES_KEY_SIZE]; 656 u8 arc4[258]; /* S-box, X, Y */ 657 } key; 658 }; 659 660 #define N2_CHUNK_ARR_LEN 16 661 662 struct n2_crypto_chunk { 663 struct list_head entry; 664 unsigned long iv_paddr : 44; 665 unsigned long arr_len : 20; 666 unsigned long dest_paddr; 667 unsigned long dest_final; 668 struct { 669 unsigned long src_paddr : 44; 670 unsigned long src_len : 20; 671 } arr[N2_CHUNK_ARR_LEN]; 672 }; 673 674 struct n2_request_context { 675 struct ablkcipher_walk walk; 676 struct list_head chunk_list; 677 struct n2_crypto_chunk chunk; 678 u8 temp_iv[16]; 679 }; 680 681 /* The SPU allows some level of flexibility for partial cipher blocks 682 * being specified in a descriptor. 683 * 684 * It merely requires that every descriptor's length field is at least 685 * as large as the cipher block size. This means that a cipher block 686 * can span at most 2 descriptors. However, this does not allow a 687 * partial block to span into the final descriptor as that would 688 * violate the rule (since every descriptor's length must be at lest 689 * the block size). So, for example, assuming an 8 byte block size: 690 * 691 * 0xe --> 0xa --> 0x8 692 * 693 * is a valid length sequence, whereas: 694 * 695 * 0xe --> 0xb --> 0x7 696 * 697 * is not a valid sequence. 698 */ 699 700 struct n2_cipher_alg { 701 struct list_head entry; 702 u8 enc_type; 703 struct crypto_alg alg; 704 }; 705 706 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm) 707 { 708 struct crypto_alg *alg = tfm->__crt_alg; 709 710 return container_of(alg, struct n2_cipher_alg, alg); 711 } 712 713 struct n2_cipher_request_context { 714 struct ablkcipher_walk walk; 715 }; 716 717 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 718 unsigned int keylen) 719 { 720 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 721 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); 722 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); 723 724 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 725 726 switch (keylen) { 727 case AES_KEYSIZE_128: 728 ctx->enc_type |= ENC_TYPE_ALG_AES128; 729 break; 730 case AES_KEYSIZE_192: 731 ctx->enc_type |= ENC_TYPE_ALG_AES192; 732 break; 733 case AES_KEYSIZE_256: 734 ctx->enc_type |= ENC_TYPE_ALG_AES256; 735 break; 736 default: 737 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 738 return -EINVAL; 739 } 740 741 ctx->key_len = keylen; 742 memcpy(ctx->key.aes, key, keylen); 743 return 0; 744 } 745 746 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 747 unsigned int keylen) 748 { 749 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 750 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); 751 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); 752 u32 tmp[DES_EXPKEY_WORDS]; 753 int err; 754 755 ctx->enc_type = n2alg->enc_type; 756 757 if (keylen != DES_KEY_SIZE) { 758 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 759 return -EINVAL; 760 } 761 762 err = des_ekey(tmp, key); 763 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { 764 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 765 return -EINVAL; 766 } 767 768 ctx->key_len = keylen; 769 memcpy(ctx->key.des, key, keylen); 770 return 0; 771 } 772 773 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 774 unsigned int keylen) 775 { 776 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 777 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); 778 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); 779 780 ctx->enc_type = n2alg->enc_type; 781 782 if (keylen != (3 * DES_KEY_SIZE)) { 783 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 784 return -EINVAL; 785 } 786 ctx->key_len = keylen; 787 memcpy(ctx->key.des3, key, keylen); 788 return 0; 789 } 790 791 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 792 unsigned int keylen) 793 { 794 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 795 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); 796 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); 797 u8 *s = ctx->key.arc4; 798 u8 *x = s + 256; 799 u8 *y = x + 1; 800 int i, j, k; 801 802 ctx->enc_type = n2alg->enc_type; 803 804 j = k = 0; 805 *x = 0; 806 *y = 0; 807 for (i = 0; i < 256; i++) 808 s[i] = i; 809 for (i = 0; i < 256; i++) { 810 u8 a = s[i]; 811 j = (j + key[k] + a) & 0xff; 812 s[i] = s[j]; 813 s[j] = a; 814 if (++k >= keylen) 815 k = 0; 816 } 817 818 return 0; 819 } 820 821 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size) 822 { 823 int this_len = nbytes; 824 825 this_len -= (nbytes & (block_size - 1)); 826 return this_len > (1 << 16) ? (1 << 16) : this_len; 827 } 828 829 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp, 830 struct spu_queue *qp, bool encrypt) 831 { 832 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); 833 struct cwq_initial_entry *ent; 834 bool in_place; 835 int i; 836 837 ent = spu_queue_alloc(qp, cp->arr_len); 838 if (!ent) { 839 pr_info("queue_alloc() of %d fails\n", 840 cp->arr_len); 841 return -EBUSY; 842 } 843 844 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 845 846 ent->control = control_word_base(cp->arr[0].src_len, 847 0, ctx->enc_type, 0, 0, 848 false, true, false, encrypt, 849 OPCODE_ENCRYPT | 850 (in_place ? OPCODE_INPLACE_BIT : 0)); 851 ent->src_addr = cp->arr[0].src_paddr; 852 ent->auth_key_addr = 0UL; 853 ent->auth_iv_addr = 0UL; 854 ent->final_auth_state_addr = 0UL; 855 ent->enc_key_addr = __pa(&ctx->key); 856 ent->enc_iv_addr = cp->iv_paddr; 857 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 858 859 for (i = 1; i < cp->arr_len; i++) { 860 ent = spu_queue_next(qp, ent); 861 862 ent->control = cp->arr[i].src_len - 1; 863 ent->src_addr = cp->arr[i].src_paddr; 864 ent->auth_key_addr = 0UL; 865 ent->auth_iv_addr = 0UL; 866 ent->final_auth_state_addr = 0UL; 867 ent->enc_key_addr = 0UL; 868 ent->enc_iv_addr = 0UL; 869 ent->dest_addr = 0UL; 870 } 871 ent->control |= CONTROL_END_OF_BLOCK; 872 873 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 874 } 875 876 static int n2_compute_chunks(struct ablkcipher_request *req) 877 { 878 struct n2_request_context *rctx = ablkcipher_request_ctx(req); 879 struct ablkcipher_walk *walk = &rctx->walk; 880 struct n2_crypto_chunk *chunk; 881 unsigned long dest_prev; 882 unsigned int tot_len; 883 bool prev_in_place; 884 int err, nbytes; 885 886 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes); 887 err = ablkcipher_walk_phys(req, walk); 888 if (err) 889 return err; 890 891 INIT_LIST_HEAD(&rctx->chunk_list); 892 893 chunk = &rctx->chunk; 894 INIT_LIST_HEAD(&chunk->entry); 895 896 chunk->iv_paddr = 0UL; 897 chunk->arr_len = 0; 898 chunk->dest_paddr = 0UL; 899 900 prev_in_place = false; 901 dest_prev = ~0UL; 902 tot_len = 0; 903 904 while ((nbytes = walk->nbytes) != 0) { 905 unsigned long dest_paddr, src_paddr; 906 bool in_place; 907 int this_len; 908 909 src_paddr = (page_to_phys(walk->src.page) + 910 walk->src.offset); 911 dest_paddr = (page_to_phys(walk->dst.page) + 912 walk->dst.offset); 913 in_place = (src_paddr == dest_paddr); 914 this_len = cipher_descriptor_len(nbytes, walk->blocksize); 915 916 if (chunk->arr_len != 0) { 917 if (in_place != prev_in_place || 918 (!prev_in_place && 919 dest_paddr != dest_prev) || 920 chunk->arr_len == N2_CHUNK_ARR_LEN || 921 tot_len + this_len > (1 << 16)) { 922 chunk->dest_final = dest_prev; 923 list_add_tail(&chunk->entry, 924 &rctx->chunk_list); 925 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 926 if (!chunk) { 927 err = -ENOMEM; 928 break; 929 } 930 INIT_LIST_HEAD(&chunk->entry); 931 } 932 } 933 if (chunk->arr_len == 0) { 934 chunk->dest_paddr = dest_paddr; 935 tot_len = 0; 936 } 937 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 938 chunk->arr[chunk->arr_len].src_len = this_len; 939 chunk->arr_len++; 940 941 dest_prev = dest_paddr + this_len; 942 prev_in_place = in_place; 943 tot_len += this_len; 944 945 err = ablkcipher_walk_done(req, walk, nbytes - this_len); 946 if (err) 947 break; 948 } 949 if (!err && chunk->arr_len != 0) { 950 chunk->dest_final = dest_prev; 951 list_add_tail(&chunk->entry, &rctx->chunk_list); 952 } 953 954 return err; 955 } 956 957 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv) 958 { 959 struct n2_request_context *rctx = ablkcipher_request_ctx(req); 960 struct n2_crypto_chunk *c, *tmp; 961 962 if (final_iv) 963 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 964 965 ablkcipher_walk_complete(&rctx->walk); 966 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 967 list_del(&c->entry); 968 if (unlikely(c != &rctx->chunk)) 969 kfree(c); 970 } 971 972 } 973 974 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt) 975 { 976 struct n2_request_context *rctx = ablkcipher_request_ctx(req); 977 struct crypto_tfm *tfm = req->base.tfm; 978 int err = n2_compute_chunks(req); 979 struct n2_crypto_chunk *c, *tmp; 980 unsigned long flags, hv_ret; 981 struct spu_queue *qp; 982 983 if (err) 984 return err; 985 986 qp = cpu_to_cwq[get_cpu()]; 987 err = -ENODEV; 988 if (!qp) 989 goto out; 990 991 spin_lock_irqsave(&qp->lock, flags); 992 993 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 994 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 995 if (err) 996 break; 997 list_del(&c->entry); 998 if (unlikely(c != &rctx->chunk)) 999 kfree(c); 1000 } 1001 if (!err) { 1002 hv_ret = wait_for_tail(qp); 1003 if (hv_ret != HV_EOK) 1004 err = -EINVAL; 1005 } 1006 1007 spin_unlock_irqrestore(&qp->lock, flags); 1008 1009 out: 1010 put_cpu(); 1011 1012 n2_chunk_complete(req, NULL); 1013 return err; 1014 } 1015 1016 static int n2_encrypt_ecb(struct ablkcipher_request *req) 1017 { 1018 return n2_do_ecb(req, true); 1019 } 1020 1021 static int n2_decrypt_ecb(struct ablkcipher_request *req) 1022 { 1023 return n2_do_ecb(req, false); 1024 } 1025 1026 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt) 1027 { 1028 struct n2_request_context *rctx = ablkcipher_request_ctx(req); 1029 struct crypto_tfm *tfm = req->base.tfm; 1030 unsigned long flags, hv_ret, iv_paddr; 1031 int err = n2_compute_chunks(req); 1032 struct n2_crypto_chunk *c, *tmp; 1033 struct spu_queue *qp; 1034 void *final_iv_addr; 1035 1036 final_iv_addr = NULL; 1037 1038 if (err) 1039 return err; 1040 1041 qp = cpu_to_cwq[get_cpu()]; 1042 err = -ENODEV; 1043 if (!qp) 1044 goto out; 1045 1046 spin_lock_irqsave(&qp->lock, flags); 1047 1048 if (encrypt) { 1049 iv_paddr = __pa(rctx->walk.iv); 1050 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1051 entry) { 1052 c->iv_paddr = iv_paddr; 1053 err = __n2_crypt_chunk(tfm, c, qp, true); 1054 if (err) 1055 break; 1056 iv_paddr = c->dest_final - rctx->walk.blocksize; 1057 list_del(&c->entry); 1058 if (unlikely(c != &rctx->chunk)) 1059 kfree(c); 1060 } 1061 final_iv_addr = __va(iv_paddr); 1062 } else { 1063 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1064 entry) { 1065 if (c == &rctx->chunk) { 1066 iv_paddr = __pa(rctx->walk.iv); 1067 } else { 1068 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1069 tmp->arr[tmp->arr_len-1].src_len - 1070 rctx->walk.blocksize); 1071 } 1072 if (!final_iv_addr) { 1073 unsigned long pa; 1074 1075 pa = (c->arr[c->arr_len-1].src_paddr + 1076 c->arr[c->arr_len-1].src_len - 1077 rctx->walk.blocksize); 1078 final_iv_addr = rctx->temp_iv; 1079 memcpy(rctx->temp_iv, __va(pa), 1080 rctx->walk.blocksize); 1081 } 1082 c->iv_paddr = iv_paddr; 1083 err = __n2_crypt_chunk(tfm, c, qp, false); 1084 if (err) 1085 break; 1086 list_del(&c->entry); 1087 if (unlikely(c != &rctx->chunk)) 1088 kfree(c); 1089 } 1090 } 1091 if (!err) { 1092 hv_ret = wait_for_tail(qp); 1093 if (hv_ret != HV_EOK) 1094 err = -EINVAL; 1095 } 1096 1097 spin_unlock_irqrestore(&qp->lock, flags); 1098 1099 out: 1100 put_cpu(); 1101 1102 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1103 return err; 1104 } 1105 1106 static int n2_encrypt_chaining(struct ablkcipher_request *req) 1107 { 1108 return n2_do_chaining(req, true); 1109 } 1110 1111 static int n2_decrypt_chaining(struct ablkcipher_request *req) 1112 { 1113 return n2_do_chaining(req, false); 1114 } 1115 1116 struct n2_cipher_tmpl { 1117 const char *name; 1118 const char *drv_name; 1119 u8 block_size; 1120 u8 enc_type; 1121 struct ablkcipher_alg ablkcipher; 1122 }; 1123 1124 static const struct n2_cipher_tmpl cipher_tmpls[] = { 1125 /* ARC4: only ECB is supported (chaining bits ignored) */ 1126 { .name = "ecb(arc4)", 1127 .drv_name = "ecb-arc4", 1128 .block_size = 1, 1129 .enc_type = (ENC_TYPE_ALG_RC4_STREAM | 1130 ENC_TYPE_CHAINING_ECB), 1131 .ablkcipher = { 1132 .min_keysize = 1, 1133 .max_keysize = 256, 1134 .setkey = n2_arc4_setkey, 1135 .encrypt = n2_encrypt_ecb, 1136 .decrypt = n2_decrypt_ecb, 1137 }, 1138 }, 1139 1140 /* DES: ECB CBC and CFB are supported */ 1141 { .name = "ecb(des)", 1142 .drv_name = "ecb-des", 1143 .block_size = DES_BLOCK_SIZE, 1144 .enc_type = (ENC_TYPE_ALG_DES | 1145 ENC_TYPE_CHAINING_ECB), 1146 .ablkcipher = { 1147 .min_keysize = DES_KEY_SIZE, 1148 .max_keysize = DES_KEY_SIZE, 1149 .setkey = n2_des_setkey, 1150 .encrypt = n2_encrypt_ecb, 1151 .decrypt = n2_decrypt_ecb, 1152 }, 1153 }, 1154 { .name = "cbc(des)", 1155 .drv_name = "cbc-des", 1156 .block_size = DES_BLOCK_SIZE, 1157 .enc_type = (ENC_TYPE_ALG_DES | 1158 ENC_TYPE_CHAINING_CBC), 1159 .ablkcipher = { 1160 .ivsize = DES_BLOCK_SIZE, 1161 .min_keysize = DES_KEY_SIZE, 1162 .max_keysize = DES_KEY_SIZE, 1163 .setkey = n2_des_setkey, 1164 .encrypt = n2_encrypt_chaining, 1165 .decrypt = n2_decrypt_chaining, 1166 }, 1167 }, 1168 { .name = "cfb(des)", 1169 .drv_name = "cfb-des", 1170 .block_size = DES_BLOCK_SIZE, 1171 .enc_type = (ENC_TYPE_ALG_DES | 1172 ENC_TYPE_CHAINING_CFB), 1173 .ablkcipher = { 1174 .min_keysize = DES_KEY_SIZE, 1175 .max_keysize = DES_KEY_SIZE, 1176 .setkey = n2_des_setkey, 1177 .encrypt = n2_encrypt_chaining, 1178 .decrypt = n2_decrypt_chaining, 1179 }, 1180 }, 1181 1182 /* 3DES: ECB CBC and CFB are supported */ 1183 { .name = "ecb(des3_ede)", 1184 .drv_name = "ecb-3des", 1185 .block_size = DES_BLOCK_SIZE, 1186 .enc_type = (ENC_TYPE_ALG_3DES | 1187 ENC_TYPE_CHAINING_ECB), 1188 .ablkcipher = { 1189 .min_keysize = 3 * DES_KEY_SIZE, 1190 .max_keysize = 3 * DES_KEY_SIZE, 1191 .setkey = n2_3des_setkey, 1192 .encrypt = n2_encrypt_ecb, 1193 .decrypt = n2_decrypt_ecb, 1194 }, 1195 }, 1196 { .name = "cbc(des3_ede)", 1197 .drv_name = "cbc-3des", 1198 .block_size = DES_BLOCK_SIZE, 1199 .enc_type = (ENC_TYPE_ALG_3DES | 1200 ENC_TYPE_CHAINING_CBC), 1201 .ablkcipher = { 1202 .ivsize = DES_BLOCK_SIZE, 1203 .min_keysize = 3 * DES_KEY_SIZE, 1204 .max_keysize = 3 * DES_KEY_SIZE, 1205 .setkey = n2_3des_setkey, 1206 .encrypt = n2_encrypt_chaining, 1207 .decrypt = n2_decrypt_chaining, 1208 }, 1209 }, 1210 { .name = "cfb(des3_ede)", 1211 .drv_name = "cfb-3des", 1212 .block_size = DES_BLOCK_SIZE, 1213 .enc_type = (ENC_TYPE_ALG_3DES | 1214 ENC_TYPE_CHAINING_CFB), 1215 .ablkcipher = { 1216 .min_keysize = 3 * DES_KEY_SIZE, 1217 .max_keysize = 3 * DES_KEY_SIZE, 1218 .setkey = n2_3des_setkey, 1219 .encrypt = n2_encrypt_chaining, 1220 .decrypt = n2_decrypt_chaining, 1221 }, 1222 }, 1223 /* AES: ECB CBC and CTR are supported */ 1224 { .name = "ecb(aes)", 1225 .drv_name = "ecb-aes", 1226 .block_size = AES_BLOCK_SIZE, 1227 .enc_type = (ENC_TYPE_ALG_AES128 | 1228 ENC_TYPE_CHAINING_ECB), 1229 .ablkcipher = { 1230 .min_keysize = AES_MIN_KEY_SIZE, 1231 .max_keysize = AES_MAX_KEY_SIZE, 1232 .setkey = n2_aes_setkey, 1233 .encrypt = n2_encrypt_ecb, 1234 .decrypt = n2_decrypt_ecb, 1235 }, 1236 }, 1237 { .name = "cbc(aes)", 1238 .drv_name = "cbc-aes", 1239 .block_size = AES_BLOCK_SIZE, 1240 .enc_type = (ENC_TYPE_ALG_AES128 | 1241 ENC_TYPE_CHAINING_CBC), 1242 .ablkcipher = { 1243 .ivsize = AES_BLOCK_SIZE, 1244 .min_keysize = AES_MIN_KEY_SIZE, 1245 .max_keysize = AES_MAX_KEY_SIZE, 1246 .setkey = n2_aes_setkey, 1247 .encrypt = n2_encrypt_chaining, 1248 .decrypt = n2_decrypt_chaining, 1249 }, 1250 }, 1251 { .name = "ctr(aes)", 1252 .drv_name = "ctr-aes", 1253 .block_size = AES_BLOCK_SIZE, 1254 .enc_type = (ENC_TYPE_ALG_AES128 | 1255 ENC_TYPE_CHAINING_COUNTER), 1256 .ablkcipher = { 1257 .ivsize = AES_BLOCK_SIZE, 1258 .min_keysize = AES_MIN_KEY_SIZE, 1259 .max_keysize = AES_MAX_KEY_SIZE, 1260 .setkey = n2_aes_setkey, 1261 .encrypt = n2_encrypt_chaining, 1262 .decrypt = n2_encrypt_chaining, 1263 }, 1264 }, 1265 1266 }; 1267 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls) 1268 1269 static LIST_HEAD(cipher_algs); 1270 1271 struct n2_hash_tmpl { 1272 const char *name; 1273 const char *hash_zero; 1274 const u32 *hash_init; 1275 u8 hw_op_hashsz; 1276 u8 digest_size; 1277 u8 block_size; 1278 u8 auth_type; 1279 u8 hmac_type; 1280 }; 1281 1282 static const char md5_zero[MD5_DIGEST_SIZE] = { 1283 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 1284 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e, 1285 }; 1286 static const u32 md5_init[MD5_HASH_WORDS] = { 1287 cpu_to_le32(0x67452301), 1288 cpu_to_le32(0xefcdab89), 1289 cpu_to_le32(0x98badcfe), 1290 cpu_to_le32(0x10325476), 1291 }; 1292 static const char sha1_zero[SHA1_DIGEST_SIZE] = { 1293 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 1294 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 1295 0x07, 0x09 1296 }; 1297 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = { 1298 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1299 }; 1300 static const char sha256_zero[SHA256_DIGEST_SIZE] = { 1301 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 1302 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 1303 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 1304 0x1b, 0x78, 0x52, 0xb8, 0x55 1305 }; 1306 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = { 1307 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1308 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1309 }; 1310 static const char sha224_zero[SHA224_DIGEST_SIZE] = { 1311 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47, 1312 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2, 1313 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4, 1314 0x2f 1315 }; 1316 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = { 1317 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1318 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1319 }; 1320 1321 static const struct n2_hash_tmpl hash_tmpls[] = { 1322 { .name = "md5", 1323 .hash_zero = md5_zero, 1324 .hash_init = md5_init, 1325 .auth_type = AUTH_TYPE_MD5, 1326 .hmac_type = AUTH_TYPE_HMAC_MD5, 1327 .hw_op_hashsz = MD5_DIGEST_SIZE, 1328 .digest_size = MD5_DIGEST_SIZE, 1329 .block_size = MD5_HMAC_BLOCK_SIZE }, 1330 { .name = "sha1", 1331 .hash_zero = sha1_zero, 1332 .hash_init = sha1_init, 1333 .auth_type = AUTH_TYPE_SHA1, 1334 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1335 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1336 .digest_size = SHA1_DIGEST_SIZE, 1337 .block_size = SHA1_BLOCK_SIZE }, 1338 { .name = "sha256", 1339 .hash_zero = sha256_zero, 1340 .hash_init = sha256_init, 1341 .auth_type = AUTH_TYPE_SHA256, 1342 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1343 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1344 .digest_size = SHA256_DIGEST_SIZE, 1345 .block_size = SHA256_BLOCK_SIZE }, 1346 { .name = "sha224", 1347 .hash_zero = sha224_zero, 1348 .hash_init = sha224_init, 1349 .auth_type = AUTH_TYPE_SHA256, 1350 .hmac_type = AUTH_TYPE_RESERVED, 1351 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1352 .digest_size = SHA224_DIGEST_SIZE, 1353 .block_size = SHA224_BLOCK_SIZE }, 1354 }; 1355 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1356 1357 static LIST_HEAD(ahash_algs); 1358 static LIST_HEAD(hmac_algs); 1359 1360 static int algs_registered; 1361 1362 static void __n2_unregister_algs(void) 1363 { 1364 struct n2_cipher_alg *cipher, *cipher_tmp; 1365 struct n2_ahash_alg *alg, *alg_tmp; 1366 struct n2_hmac_alg *hmac, *hmac_tmp; 1367 1368 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) { 1369 crypto_unregister_alg(&cipher->alg); 1370 list_del(&cipher->entry); 1371 kfree(cipher); 1372 } 1373 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1374 crypto_unregister_ahash(&hmac->derived.alg); 1375 list_del(&hmac->derived.entry); 1376 kfree(hmac); 1377 } 1378 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1379 crypto_unregister_ahash(&alg->alg); 1380 list_del(&alg->entry); 1381 kfree(alg); 1382 } 1383 } 1384 1385 static int n2_cipher_cra_init(struct crypto_tfm *tfm) 1386 { 1387 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context); 1388 return 0; 1389 } 1390 1391 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl) 1392 { 1393 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1394 struct crypto_alg *alg; 1395 int err; 1396 1397 if (!p) 1398 return -ENOMEM; 1399 1400 alg = &p->alg; 1401 1402 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1403 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1404 alg->cra_priority = N2_CRA_PRIORITY; 1405 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 1406 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; 1407 alg->cra_blocksize = tmpl->block_size; 1408 p->enc_type = tmpl->enc_type; 1409 alg->cra_ctxsize = sizeof(struct n2_cipher_context); 1410 alg->cra_type = &crypto_ablkcipher_type; 1411 alg->cra_u.ablkcipher = tmpl->ablkcipher; 1412 alg->cra_init = n2_cipher_cra_init; 1413 alg->cra_module = THIS_MODULE; 1414 1415 list_add(&p->entry, &cipher_algs); 1416 err = crypto_register_alg(alg); 1417 if (err) { 1418 pr_err("%s alg registration failed\n", alg->cra_name); 1419 list_del(&p->entry); 1420 kfree(p); 1421 } else { 1422 pr_info("%s alg registered\n", alg->cra_name); 1423 } 1424 return err; 1425 } 1426 1427 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1428 { 1429 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1430 struct ahash_alg *ahash; 1431 struct crypto_alg *base; 1432 int err; 1433 1434 if (!p) 1435 return -ENOMEM; 1436 1437 p->child_alg = n2ahash->alg.halg.base.cra_name; 1438 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1439 INIT_LIST_HEAD(&p->derived.entry); 1440 1441 ahash = &p->derived.alg; 1442 ahash->digest = n2_hmac_async_digest; 1443 ahash->setkey = n2_hmac_async_setkey; 1444 1445 base = &ahash->halg.base; 1446 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); 1447 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); 1448 1449 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1450 base->cra_init = n2_hmac_cra_init; 1451 base->cra_exit = n2_hmac_cra_exit; 1452 1453 list_add(&p->derived.entry, &hmac_algs); 1454 err = crypto_register_ahash(ahash); 1455 if (err) { 1456 pr_err("%s alg registration failed\n", base->cra_name); 1457 list_del(&p->derived.entry); 1458 kfree(p); 1459 } else { 1460 pr_info("%s alg registered\n", base->cra_name); 1461 } 1462 return err; 1463 } 1464 1465 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1466 { 1467 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1468 struct hash_alg_common *halg; 1469 struct crypto_alg *base; 1470 struct ahash_alg *ahash; 1471 int err; 1472 1473 if (!p) 1474 return -ENOMEM; 1475 1476 p->hash_zero = tmpl->hash_zero; 1477 p->hash_init = tmpl->hash_init; 1478 p->auth_type = tmpl->auth_type; 1479 p->hmac_type = tmpl->hmac_type; 1480 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1481 p->digest_size = tmpl->digest_size; 1482 1483 ahash = &p->alg; 1484 ahash->init = n2_hash_async_init; 1485 ahash->update = n2_hash_async_update; 1486 ahash->final = n2_hash_async_final; 1487 ahash->finup = n2_hash_async_finup; 1488 ahash->digest = n2_hash_async_digest; 1489 1490 halg = &ahash->halg; 1491 halg->digestsize = tmpl->digest_size; 1492 1493 base = &halg->base; 1494 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1495 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1496 base->cra_priority = N2_CRA_PRIORITY; 1497 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | 1498 CRYPTO_ALG_KERN_DRIVER_ONLY | 1499 CRYPTO_ALG_NEED_FALLBACK; 1500 base->cra_blocksize = tmpl->block_size; 1501 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1502 base->cra_module = THIS_MODULE; 1503 base->cra_init = n2_hash_cra_init; 1504 base->cra_exit = n2_hash_cra_exit; 1505 1506 list_add(&p->entry, &ahash_algs); 1507 err = crypto_register_ahash(ahash); 1508 if (err) { 1509 pr_err("%s alg registration failed\n", base->cra_name); 1510 list_del(&p->entry); 1511 kfree(p); 1512 } else { 1513 pr_info("%s alg registered\n", base->cra_name); 1514 } 1515 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1516 err = __n2_register_one_hmac(p); 1517 return err; 1518 } 1519 1520 static int n2_register_algs(void) 1521 { 1522 int i, err = 0; 1523 1524 mutex_lock(&spu_lock); 1525 if (algs_registered++) 1526 goto out; 1527 1528 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1529 err = __n2_register_one_ahash(&hash_tmpls[i]); 1530 if (err) { 1531 __n2_unregister_algs(); 1532 goto out; 1533 } 1534 } 1535 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1536 err = __n2_register_one_cipher(&cipher_tmpls[i]); 1537 if (err) { 1538 __n2_unregister_algs(); 1539 goto out; 1540 } 1541 } 1542 1543 out: 1544 mutex_unlock(&spu_lock); 1545 return err; 1546 } 1547 1548 static void n2_unregister_algs(void) 1549 { 1550 mutex_lock(&spu_lock); 1551 if (!--algs_registered) 1552 __n2_unregister_algs(); 1553 mutex_unlock(&spu_lock); 1554 } 1555 1556 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1557 * a devino. This isn't very useful to us because all of the 1558 * interrupts listed in the device_node have been translated to 1559 * Linux virtual IRQ cookie numbers. 1560 * 1561 * So we have to back-translate, going through the 'intr' and 'ino' 1562 * property tables of the n2cp MDESC node, matching it with the OF 1563 * 'interrupts' property entries, in order to to figure out which 1564 * devino goes to which already-translated IRQ. 1565 */ 1566 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1567 unsigned long dev_ino) 1568 { 1569 const unsigned int *dev_intrs; 1570 unsigned int intr; 1571 int i; 1572 1573 for (i = 0; i < ip->num_intrs; i++) { 1574 if (ip->ino_table[i].ino == dev_ino) 1575 break; 1576 } 1577 if (i == ip->num_intrs) 1578 return -ENODEV; 1579 1580 intr = ip->ino_table[i].intr; 1581 1582 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1583 if (!dev_intrs) 1584 return -ENODEV; 1585 1586 for (i = 0; i < dev->archdata.num_irqs; i++) { 1587 if (dev_intrs[i] == intr) 1588 return i; 1589 } 1590 1591 return -ENODEV; 1592 } 1593 1594 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1595 const char *irq_name, struct spu_queue *p, 1596 irq_handler_t handler) 1597 { 1598 unsigned long herr; 1599 int index; 1600 1601 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1602 if (herr) 1603 return -EINVAL; 1604 1605 index = find_devino_index(dev, ip, p->devino); 1606 if (index < 0) 1607 return index; 1608 1609 p->irq = dev->archdata.irqs[index]; 1610 1611 sprintf(p->irq_name, "%s-%d", irq_name, index); 1612 1613 return request_irq(p->irq, handler, 0, p->irq_name, p); 1614 } 1615 1616 static struct kmem_cache *queue_cache[2]; 1617 1618 static void *new_queue(unsigned long q_type) 1619 { 1620 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1621 } 1622 1623 static void free_queue(void *p, unsigned long q_type) 1624 { 1625 return kmem_cache_free(queue_cache[q_type - 1], p); 1626 } 1627 1628 static int queue_cache_init(void) 1629 { 1630 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1631 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1632 kmem_cache_create("mau_queue", 1633 (MAU_NUM_ENTRIES * 1634 MAU_ENTRY_SIZE), 1635 MAU_ENTRY_SIZE, 0, NULL); 1636 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1637 return -ENOMEM; 1638 1639 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1640 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1641 kmem_cache_create("cwq_queue", 1642 (CWQ_NUM_ENTRIES * 1643 CWQ_ENTRY_SIZE), 1644 CWQ_ENTRY_SIZE, 0, NULL); 1645 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1646 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1647 return -ENOMEM; 1648 } 1649 return 0; 1650 } 1651 1652 static void queue_cache_destroy(void) 1653 { 1654 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1655 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1656 } 1657 1658 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1659 { 1660 cpumask_var_t old_allowed; 1661 unsigned long hv_ret; 1662 1663 if (cpumask_empty(&p->sharing)) 1664 return -EINVAL; 1665 1666 if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) 1667 return -ENOMEM; 1668 1669 cpumask_copy(old_allowed, ¤t->cpus_allowed); 1670 1671 set_cpus_allowed_ptr(current, &p->sharing); 1672 1673 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1674 CWQ_NUM_ENTRIES, &p->qhandle); 1675 if (!hv_ret) 1676 sun4v_ncs_sethead_marker(p->qhandle, 0); 1677 1678 set_cpus_allowed_ptr(current, old_allowed); 1679 1680 free_cpumask_var(old_allowed); 1681 1682 return (hv_ret ? -EINVAL : 0); 1683 } 1684 1685 static int spu_queue_setup(struct spu_queue *p) 1686 { 1687 int err; 1688 1689 p->q = new_queue(p->q_type); 1690 if (!p->q) 1691 return -ENOMEM; 1692 1693 err = spu_queue_register(p, p->q_type); 1694 if (err) { 1695 free_queue(p->q, p->q_type); 1696 p->q = NULL; 1697 } 1698 1699 return err; 1700 } 1701 1702 static void spu_queue_destroy(struct spu_queue *p) 1703 { 1704 unsigned long hv_ret; 1705 1706 if (!p->q) 1707 return; 1708 1709 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1710 1711 if (!hv_ret) 1712 free_queue(p->q, p->q_type); 1713 } 1714 1715 static void spu_list_destroy(struct list_head *list) 1716 { 1717 struct spu_queue *p, *n; 1718 1719 list_for_each_entry_safe(p, n, list, list) { 1720 int i; 1721 1722 for (i = 0; i < NR_CPUS; i++) { 1723 if (cpu_to_cwq[i] == p) 1724 cpu_to_cwq[i] = NULL; 1725 } 1726 1727 if (p->irq) { 1728 free_irq(p->irq, p); 1729 p->irq = 0; 1730 } 1731 spu_queue_destroy(p); 1732 list_del(&p->list); 1733 kfree(p); 1734 } 1735 } 1736 1737 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1738 * gathering cpu membership information. 1739 */ 1740 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1741 struct platform_device *dev, 1742 u64 node, struct spu_queue *p, 1743 struct spu_queue **table) 1744 { 1745 u64 arc; 1746 1747 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1748 u64 tgt = mdesc_arc_target(mdesc, arc); 1749 const char *name = mdesc_node_name(mdesc, tgt); 1750 const u64 *id; 1751 1752 if (strcmp(name, "cpu")) 1753 continue; 1754 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1755 if (table[*id] != NULL) { 1756 dev_err(&dev->dev, "%s: SPU cpu slot already set.\n", 1757 dev->dev.of_node->full_name); 1758 return -EINVAL; 1759 } 1760 cpu_set(*id, p->sharing); 1761 table[*id] = p; 1762 } 1763 return 0; 1764 } 1765 1766 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1767 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1768 struct platform_device *dev, struct mdesc_handle *mdesc, 1769 u64 node, const char *iname, unsigned long q_type, 1770 irq_handler_t handler, struct spu_queue **table) 1771 { 1772 struct spu_queue *p; 1773 int err; 1774 1775 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1776 if (!p) { 1777 dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n", 1778 dev->dev.of_node->full_name); 1779 return -ENOMEM; 1780 } 1781 1782 cpus_clear(p->sharing); 1783 spin_lock_init(&p->lock); 1784 p->q_type = q_type; 1785 INIT_LIST_HEAD(&p->jobs); 1786 list_add(&p->list, list); 1787 1788 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1789 if (err) 1790 return err; 1791 1792 err = spu_queue_setup(p); 1793 if (err) 1794 return err; 1795 1796 return spu_map_ino(dev, ip, iname, p, handler); 1797 } 1798 1799 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1800 struct spu_mdesc_info *ip, struct list_head *list, 1801 const char *exec_name, unsigned long q_type, 1802 irq_handler_t handler, struct spu_queue **table) 1803 { 1804 int err = 0; 1805 u64 node; 1806 1807 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1808 const char *type; 1809 1810 type = mdesc_get_property(mdesc, node, "type", NULL); 1811 if (!type || strcmp(type, exec_name)) 1812 continue; 1813 1814 err = handle_exec_unit(ip, list, dev, mdesc, node, 1815 exec_name, q_type, handler, table); 1816 if (err) { 1817 spu_list_destroy(list); 1818 break; 1819 } 1820 } 1821 1822 return err; 1823 } 1824 1825 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1826 struct spu_mdesc_info *ip) 1827 { 1828 const u64 *ino; 1829 int ino_len; 1830 int i; 1831 1832 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1833 if (!ino) { 1834 printk("NO 'ino'\n"); 1835 return -ENODEV; 1836 } 1837 1838 ip->num_intrs = ino_len / sizeof(u64); 1839 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1840 ip->num_intrs), 1841 GFP_KERNEL); 1842 if (!ip->ino_table) 1843 return -ENOMEM; 1844 1845 for (i = 0; i < ip->num_intrs; i++) { 1846 struct ino_blob *b = &ip->ino_table[i]; 1847 b->intr = i + 1; 1848 b->ino = ino[i]; 1849 } 1850 1851 return 0; 1852 } 1853 1854 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1855 struct platform_device *dev, 1856 struct spu_mdesc_info *ip, 1857 const char *node_name) 1858 { 1859 const unsigned int *reg; 1860 u64 node; 1861 1862 reg = of_get_property(dev->dev.of_node, "reg", NULL); 1863 if (!reg) 1864 return -ENODEV; 1865 1866 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1867 const char *name; 1868 const u64 *chdl; 1869 1870 name = mdesc_get_property(mdesc, node, "name", NULL); 1871 if (!name || strcmp(name, node_name)) 1872 continue; 1873 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1874 if (!chdl || (*chdl != *reg)) 1875 continue; 1876 ip->cfg_handle = *chdl; 1877 return get_irq_props(mdesc, node, ip); 1878 } 1879 1880 return -ENODEV; 1881 } 1882 1883 static unsigned long n2_spu_hvapi_major; 1884 static unsigned long n2_spu_hvapi_minor; 1885 1886 static int n2_spu_hvapi_register(void) 1887 { 1888 int err; 1889 1890 n2_spu_hvapi_major = 2; 1891 n2_spu_hvapi_minor = 0; 1892 1893 err = sun4v_hvapi_register(HV_GRP_NCS, 1894 n2_spu_hvapi_major, 1895 &n2_spu_hvapi_minor); 1896 1897 if (!err) 1898 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1899 n2_spu_hvapi_major, 1900 n2_spu_hvapi_minor); 1901 1902 return err; 1903 } 1904 1905 static void n2_spu_hvapi_unregister(void) 1906 { 1907 sun4v_hvapi_unregister(HV_GRP_NCS); 1908 } 1909 1910 static int global_ref; 1911 1912 static int grab_global_resources(void) 1913 { 1914 int err = 0; 1915 1916 mutex_lock(&spu_lock); 1917 1918 if (global_ref++) 1919 goto out; 1920 1921 err = n2_spu_hvapi_register(); 1922 if (err) 1923 goto out; 1924 1925 err = queue_cache_init(); 1926 if (err) 1927 goto out_hvapi_release; 1928 1929 err = -ENOMEM; 1930 cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, 1931 GFP_KERNEL); 1932 if (!cpu_to_cwq) 1933 goto out_queue_cache_destroy; 1934 1935 cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, 1936 GFP_KERNEL); 1937 if (!cpu_to_mau) 1938 goto out_free_cwq_table; 1939 1940 err = 0; 1941 1942 out: 1943 if (err) 1944 global_ref--; 1945 mutex_unlock(&spu_lock); 1946 return err; 1947 1948 out_free_cwq_table: 1949 kfree(cpu_to_cwq); 1950 cpu_to_cwq = NULL; 1951 1952 out_queue_cache_destroy: 1953 queue_cache_destroy(); 1954 1955 out_hvapi_release: 1956 n2_spu_hvapi_unregister(); 1957 goto out; 1958 } 1959 1960 static void release_global_resources(void) 1961 { 1962 mutex_lock(&spu_lock); 1963 if (!--global_ref) { 1964 kfree(cpu_to_cwq); 1965 cpu_to_cwq = NULL; 1966 1967 kfree(cpu_to_mau); 1968 cpu_to_mau = NULL; 1969 1970 queue_cache_destroy(); 1971 n2_spu_hvapi_unregister(); 1972 } 1973 mutex_unlock(&spu_lock); 1974 } 1975 1976 static struct n2_crypto *alloc_n2cp(void) 1977 { 1978 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1979 1980 if (np) 1981 INIT_LIST_HEAD(&np->cwq_list); 1982 1983 return np; 1984 } 1985 1986 static void free_n2cp(struct n2_crypto *np) 1987 { 1988 if (np->cwq_info.ino_table) { 1989 kfree(np->cwq_info.ino_table); 1990 np->cwq_info.ino_table = NULL; 1991 } 1992 1993 kfree(np); 1994 } 1995 1996 static void n2_spu_driver_version(void) 1997 { 1998 static int n2_spu_version_printed; 1999 2000 if (n2_spu_version_printed++ == 0) 2001 pr_info("%s", version); 2002 } 2003 2004 static int n2_crypto_probe(struct platform_device *dev) 2005 { 2006 struct mdesc_handle *mdesc; 2007 const char *full_name; 2008 struct n2_crypto *np; 2009 int err; 2010 2011 n2_spu_driver_version(); 2012 2013 full_name = dev->dev.of_node->full_name; 2014 pr_info("Found N2CP at %s\n", full_name); 2015 2016 np = alloc_n2cp(); 2017 if (!np) { 2018 dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n", 2019 full_name); 2020 return -ENOMEM; 2021 } 2022 2023 err = grab_global_resources(); 2024 if (err) { 2025 dev_err(&dev->dev, "%s: Unable to grab " 2026 "global resources.\n", full_name); 2027 goto out_free_n2cp; 2028 } 2029 2030 mdesc = mdesc_grab(); 2031 2032 if (!mdesc) { 2033 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", 2034 full_name); 2035 err = -ENODEV; 2036 goto out_free_global; 2037 } 2038 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 2039 if (err) { 2040 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", 2041 full_name); 2042 mdesc_release(mdesc); 2043 goto out_free_global; 2044 } 2045 2046 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 2047 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 2048 cpu_to_cwq); 2049 mdesc_release(mdesc); 2050 2051 if (err) { 2052 dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n", 2053 full_name); 2054 goto out_free_global; 2055 } 2056 2057 err = n2_register_algs(); 2058 if (err) { 2059 dev_err(&dev->dev, "%s: Unable to register algorithms.\n", 2060 full_name); 2061 goto out_free_spu_list; 2062 } 2063 2064 dev_set_drvdata(&dev->dev, np); 2065 2066 return 0; 2067 2068 out_free_spu_list: 2069 spu_list_destroy(&np->cwq_list); 2070 2071 out_free_global: 2072 release_global_resources(); 2073 2074 out_free_n2cp: 2075 free_n2cp(np); 2076 2077 return err; 2078 } 2079 2080 static int n2_crypto_remove(struct platform_device *dev) 2081 { 2082 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 2083 2084 n2_unregister_algs(); 2085 2086 spu_list_destroy(&np->cwq_list); 2087 2088 release_global_resources(); 2089 2090 free_n2cp(np); 2091 2092 return 0; 2093 } 2094 2095 static struct n2_mau *alloc_ncp(void) 2096 { 2097 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2098 2099 if (mp) 2100 INIT_LIST_HEAD(&mp->mau_list); 2101 2102 return mp; 2103 } 2104 2105 static void free_ncp(struct n2_mau *mp) 2106 { 2107 if (mp->mau_info.ino_table) { 2108 kfree(mp->mau_info.ino_table); 2109 mp->mau_info.ino_table = NULL; 2110 } 2111 2112 kfree(mp); 2113 } 2114 2115 static int n2_mau_probe(struct platform_device *dev) 2116 { 2117 struct mdesc_handle *mdesc; 2118 const char *full_name; 2119 struct n2_mau *mp; 2120 int err; 2121 2122 n2_spu_driver_version(); 2123 2124 full_name = dev->dev.of_node->full_name; 2125 pr_info("Found NCP at %s\n", full_name); 2126 2127 mp = alloc_ncp(); 2128 if (!mp) { 2129 dev_err(&dev->dev, "%s: Unable to allocate ncp.\n", 2130 full_name); 2131 return -ENOMEM; 2132 } 2133 2134 err = grab_global_resources(); 2135 if (err) { 2136 dev_err(&dev->dev, "%s: Unable to grab " 2137 "global resources.\n", full_name); 2138 goto out_free_ncp; 2139 } 2140 2141 mdesc = mdesc_grab(); 2142 2143 if (!mdesc) { 2144 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", 2145 full_name); 2146 err = -ENODEV; 2147 goto out_free_global; 2148 } 2149 2150 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2151 if (err) { 2152 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", 2153 full_name); 2154 mdesc_release(mdesc); 2155 goto out_free_global; 2156 } 2157 2158 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2159 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2160 cpu_to_mau); 2161 mdesc_release(mdesc); 2162 2163 if (err) { 2164 dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n", 2165 full_name); 2166 goto out_free_global; 2167 } 2168 2169 dev_set_drvdata(&dev->dev, mp); 2170 2171 return 0; 2172 2173 out_free_global: 2174 release_global_resources(); 2175 2176 out_free_ncp: 2177 free_ncp(mp); 2178 2179 return err; 2180 } 2181 2182 static int n2_mau_remove(struct platform_device *dev) 2183 { 2184 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2185 2186 spu_list_destroy(&mp->mau_list); 2187 2188 release_global_resources(); 2189 2190 free_ncp(mp); 2191 2192 return 0; 2193 } 2194 2195 static struct of_device_id n2_crypto_match[] = { 2196 { 2197 .name = "n2cp", 2198 .compatible = "SUNW,n2-cwq", 2199 }, 2200 { 2201 .name = "n2cp", 2202 .compatible = "SUNW,vf-cwq", 2203 }, 2204 { 2205 .name = "n2cp", 2206 .compatible = "SUNW,kt-cwq", 2207 }, 2208 {}, 2209 }; 2210 2211 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2212 2213 static struct platform_driver n2_crypto_driver = { 2214 .driver = { 2215 .name = "n2cp", 2216 .owner = THIS_MODULE, 2217 .of_match_table = n2_crypto_match, 2218 }, 2219 .probe = n2_crypto_probe, 2220 .remove = n2_crypto_remove, 2221 }; 2222 2223 static struct of_device_id n2_mau_match[] = { 2224 { 2225 .name = "ncp", 2226 .compatible = "SUNW,n2-mau", 2227 }, 2228 { 2229 .name = "ncp", 2230 .compatible = "SUNW,vf-mau", 2231 }, 2232 { 2233 .name = "ncp", 2234 .compatible = "SUNW,kt-mau", 2235 }, 2236 {}, 2237 }; 2238 2239 MODULE_DEVICE_TABLE(of, n2_mau_match); 2240 2241 static struct platform_driver n2_mau_driver = { 2242 .driver = { 2243 .name = "ncp", 2244 .owner = THIS_MODULE, 2245 .of_match_table = n2_mau_match, 2246 }, 2247 .probe = n2_mau_probe, 2248 .remove = n2_mau_remove, 2249 }; 2250 2251 static int __init n2_init(void) 2252 { 2253 int err = platform_driver_register(&n2_crypto_driver); 2254 2255 if (!err) { 2256 err = platform_driver_register(&n2_mau_driver); 2257 if (err) 2258 platform_driver_unregister(&n2_crypto_driver); 2259 } 2260 return err; 2261 } 2262 2263 static void __exit n2_exit(void) 2264 { 2265 platform_driver_unregister(&n2_mau_driver); 2266 platform_driver_unregister(&n2_crypto_driver); 2267 } 2268 2269 module_init(n2_init); 2270 module_exit(n2_exit); 2271