xref: /openbmc/linux/drivers/crypto/n2_core.c (revision e1cd7b80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29 
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32 
33 #include "n2_core.h"
34 
35 #define DRV_MODULE_NAME		"n2_crypto"
36 #define DRV_MODULE_VERSION	"0.2"
37 #define DRV_MODULE_RELDATE	"July 28, 2011"
38 
39 static const char version[] =
40 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41 
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46 
47 #define N2_CRA_PRIORITY		200
48 
49 static DEFINE_MUTEX(spu_lock);
50 
51 struct spu_queue {
52 	cpumask_t		sharing;
53 	unsigned long		qhandle;
54 
55 	spinlock_t		lock;
56 	u8			q_type;
57 	void			*q;
58 	unsigned long		head;
59 	unsigned long		tail;
60 	struct list_head	jobs;
61 
62 	unsigned long		devino;
63 
64 	char			irq_name[32];
65 	unsigned int		irq;
66 
67 	struct list_head	list;
68 };
69 
70 struct spu_qreg {
71 	struct spu_queue	*queue;
72 	unsigned long		type;
73 };
74 
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77 
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80 	if (q->q_type == HV_NCS_QTYPE_MAU) {
81 		off += MAU_ENTRY_SIZE;
82 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 			off = 0;
84 	} else {
85 		off += CWQ_ENTRY_SIZE;
86 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 			off = 0;
88 	}
89 	return off;
90 }
91 
92 struct n2_request_common {
93 	struct list_head	entry;
94 	unsigned int		offset;
95 };
96 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
97 
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 				unsigned long old_head, unsigned long new_head)
104 {
105 	if (old_head <= new_head) {
106 		if (offset > old_head && offset <= new_head)
107 			return true;
108 	} else {
109 		if (offset > old_head || offset <= new_head)
110 			return true;
111 	}
112 	return false;
113 }
114 
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122 	unsigned long off, new_head, hv_ret;
123 	struct spu_queue *q = dev_id;
124 
125 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 	       smp_processor_id(), q->qhandle);
127 
128 	spin_lock(&q->lock);
129 
130 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131 
132 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 	       smp_processor_id(), new_head, hv_ret);
134 
135 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 		/* XXX ... XXX */
137 	}
138 
139 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 	if (hv_ret == HV_EOK)
141 		q->head = new_head;
142 
143 	spin_unlock(&q->lock);
144 
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150 	struct spu_queue *q = dev_id;
151 	unsigned long head, hv_ret;
152 
153 	spin_lock(&q->lock);
154 
155 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 	       smp_processor_id(), q->qhandle);
157 
158 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159 
160 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 	       smp_processor_id(), head, hv_ret);
162 
163 	sun4v_ncs_sethead_marker(q->qhandle, head);
164 
165 	spin_unlock(&q->lock);
166 
167 	return IRQ_HANDLED;
168 }
169 
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172 	return q->q + spu_next_offset(q, cur - q->q);
173 }
174 
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177 	unsigned long head = q->head;
178 	unsigned long tail = q->tail;
179 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 	unsigned long diff;
181 
182 	if (head > tail)
183 		diff = head - tail;
184 	else
185 		diff = (end - tail) + head;
186 
187 	return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189 
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192 	int avail = spu_queue_num_free(q);
193 
194 	if (avail >= num_entries)
195 		return q->q + q->tail;
196 
197 	return NULL;
198 }
199 
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202 	unsigned long hv_ret, new_tail;
203 
204 	new_tail = spu_next_offset(q, last - q->q);
205 
206 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 	if (hv_ret == HV_EOK)
208 		q->tail = new_tail;
209 	return hv_ret;
210 }
211 
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 			     int enc_type, int auth_type,
214 			     unsigned int hash_len,
215 			     bool sfas, bool sob, bool eob, bool encrypt,
216 			     int opcode)
217 {
218 	u64 word = (len - 1) & CONTROL_LEN;
219 
220 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 	if (sfas)
224 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 	if (sob)
226 		word |= CONTROL_START_OF_BLOCK;
227 	if (eob)
228 		word |= CONTROL_END_OF_BLOCK;
229 	if (encrypt)
230 		word |= CONTROL_ENCRYPT;
231 	if (hmac_key_len)
232 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 	if (hash_len)
234 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235 
236 	return word;
237 }
238 
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242 	if (this_len >= 64 ||
243 	    qp->head != qp->tail)
244 		return true;
245 	return false;
246 }
247 #endif
248 
249 struct n2_ahash_alg {
250 	struct list_head	entry;
251 	const u8		*hash_zero;
252 	const u32		*hash_init;
253 	u8			hw_op_hashsz;
254 	u8			digest_size;
255 	u8			auth_type;
256 	u8			hmac_type;
257 	struct ahash_alg	alg;
258 };
259 
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262 	struct crypto_alg *alg = tfm->__crt_alg;
263 	struct ahash_alg *ahash_alg;
264 
265 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266 
267 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269 
270 struct n2_hmac_alg {
271 	const char		*child_alg;
272 	struct n2_ahash_alg	derived;
273 };
274 
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277 	struct crypto_alg *alg = tfm->__crt_alg;
278 	struct ahash_alg *ahash_alg;
279 
280 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281 
282 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284 
285 struct n2_hash_ctx {
286 	struct crypto_ahash		*fallback_tfm;
287 };
288 
289 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
290 
291 struct n2_hmac_ctx {
292 	struct n2_hash_ctx		base;
293 
294 	struct crypto_shash		*child_shash;
295 
296 	int				hash_key_len;
297 	unsigned char			hash_key[N2_HASH_KEY_MAX];
298 };
299 
300 struct n2_hash_req_ctx {
301 	union {
302 		struct md5_state	md5;
303 		struct sha1_state	sha1;
304 		struct sha256_state	sha256;
305 	} u;
306 
307 	struct ahash_request		fallback_req;
308 };
309 
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315 
316 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318 
319 	return crypto_ahash_init(&rctx->fallback_req);
320 }
321 
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327 
328 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 	rctx->fallback_req.nbytes = req->nbytes;
331 	rctx->fallback_req.src = req->src;
332 
333 	return crypto_ahash_update(&rctx->fallback_req);
334 }
335 
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341 
342 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 	rctx->fallback_req.result = req->result;
345 
346 	return crypto_ahash_final(&rctx->fallback_req);
347 }
348 
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354 
355 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 	rctx->fallback_req.nbytes = req->nbytes;
358 	rctx->fallback_req.src = req->src;
359 	rctx->fallback_req.result = req->result;
360 
361 	return crypto_ahash_finup(&rctx->fallback_req);
362 }
363 
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366 	return -ENOSYS;
367 }
368 
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371 	return -ENOSYS;
372 }
373 
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 	struct crypto_ahash *fallback_tfm;
380 	int err;
381 
382 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 					  CRYPTO_ALG_NEED_FALLBACK);
384 	if (IS_ERR(fallback_tfm)) {
385 		pr_warn("Fallback driver '%s' could not be loaded!\n",
386 			fallback_driver_name);
387 		err = PTR_ERR(fallback_tfm);
388 		goto out;
389 	}
390 
391 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 					 crypto_ahash_reqsize(fallback_tfm)));
393 
394 	ctx->fallback_tfm = fallback_tfm;
395 	return 0;
396 
397 out:
398 	return err;
399 }
400 
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405 
406 	crypto_free_ahash(ctx->fallback_tfm);
407 }
408 
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 	struct crypto_ahash *fallback_tfm;
416 	struct crypto_shash *child_shash;
417 	int err;
418 
419 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 					  CRYPTO_ALG_NEED_FALLBACK);
421 	if (IS_ERR(fallback_tfm)) {
422 		pr_warn("Fallback driver '%s' could not be loaded!\n",
423 			fallback_driver_name);
424 		err = PTR_ERR(fallback_tfm);
425 		goto out;
426 	}
427 
428 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 	if (IS_ERR(child_shash)) {
430 		pr_warn("Child shash '%s' could not be loaded!\n",
431 			n2alg->child_alg);
432 		err = PTR_ERR(child_shash);
433 		goto out_free_fallback;
434 	}
435 
436 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 					 crypto_ahash_reqsize(fallback_tfm)));
438 
439 	ctx->child_shash = child_shash;
440 	ctx->base.fallback_tfm = fallback_tfm;
441 	return 0;
442 
443 out_free_fallback:
444 	crypto_free_ahash(fallback_tfm);
445 
446 out:
447 	return err;
448 }
449 
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454 
455 	crypto_free_ahash(ctx->base.fallback_tfm);
456 	crypto_free_shash(ctx->child_shash);
457 }
458 
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 				unsigned int keylen)
461 {
462 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 	struct crypto_shash *child_shash = ctx->child_shash;
464 	struct crypto_ahash *fallback_tfm;
465 	SHASH_DESC_ON_STACK(shash, child_shash);
466 	int err, bs, ds;
467 
468 	fallback_tfm = ctx->base.fallback_tfm;
469 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470 	if (err)
471 		return err;
472 
473 	shash->tfm = child_shash;
474 
475 	bs = crypto_shash_blocksize(child_shash);
476 	ds = crypto_shash_digestsize(child_shash);
477 	BUG_ON(ds > N2_HASH_KEY_MAX);
478 	if (keylen > bs) {
479 		err = crypto_shash_digest(shash, key, keylen,
480 					  ctx->hash_key);
481 		if (err)
482 			return err;
483 		keylen = ds;
484 	} else if (keylen <= N2_HASH_KEY_MAX)
485 		memcpy(ctx->hash_key, key, keylen);
486 
487 	ctx->hash_key_len = keylen;
488 
489 	return err;
490 }
491 
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494 	unsigned long head, hv_ret;
495 
496 	do {
497 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 		if (hv_ret != HV_EOK) {
499 			pr_err("Hypervisor error on gethead\n");
500 			break;
501 		}
502 		if (head == qp->tail) {
503 			qp->head = head;
504 			break;
505 		}
506 	} while (1);
507 	return hv_ret;
508 }
509 
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 					      struct cwq_initial_entry *ent)
512 {
513 	unsigned long hv_ret = spu_queue_submit(qp, ent);
514 
515 	if (hv_ret == HV_EOK)
516 		hv_ret = wait_for_tail(qp);
517 
518 	return hv_ret;
519 }
520 
521 static int n2_do_async_digest(struct ahash_request *req,
522 			      unsigned int auth_type, unsigned int digest_size,
523 			      unsigned int result_size, void *hash_loc,
524 			      unsigned long auth_key, unsigned int auth_key_len)
525 {
526 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 	struct cwq_initial_entry *ent;
528 	struct crypto_hash_walk walk;
529 	struct spu_queue *qp;
530 	unsigned long flags;
531 	int err = -ENODEV;
532 	int nbytes, cpu;
533 
534 	/* The total effective length of the operation may not
535 	 * exceed 2^16.
536 	 */
537 	if (unlikely(req->nbytes > (1 << 16))) {
538 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 
541 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 		rctx->fallback_req.base.flags =
543 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 		rctx->fallback_req.nbytes = req->nbytes;
545 		rctx->fallback_req.src = req->src;
546 		rctx->fallback_req.result = req->result;
547 
548 		return crypto_ahash_digest(&rctx->fallback_req);
549 	}
550 
551 	nbytes = crypto_hash_walk_first(req, &walk);
552 
553 	cpu = get_cpu();
554 	qp = cpu_to_cwq[cpu];
555 	if (!qp)
556 		goto out;
557 
558 	spin_lock_irqsave(&qp->lock, flags);
559 
560 	/* XXX can do better, improve this later by doing a by-hand scatterlist
561 	 * XXX walk, etc.
562 	 */
563 	ent = qp->q + qp->tail;
564 
565 	ent->control = control_word_base(nbytes, auth_key_len, 0,
566 					 auth_type, digest_size,
567 					 false, true, false, false,
568 					 OPCODE_INPLACE_BIT |
569 					 OPCODE_AUTH_MAC);
570 	ent->src_addr = __pa(walk.data);
571 	ent->auth_key_addr = auth_key;
572 	ent->auth_iv_addr = __pa(hash_loc);
573 	ent->final_auth_state_addr = 0UL;
574 	ent->enc_key_addr = 0UL;
575 	ent->enc_iv_addr = 0UL;
576 	ent->dest_addr = __pa(hash_loc);
577 
578 	nbytes = crypto_hash_walk_done(&walk, 0);
579 	while (nbytes > 0) {
580 		ent = spu_queue_next(qp, ent);
581 
582 		ent->control = (nbytes - 1);
583 		ent->src_addr = __pa(walk.data);
584 		ent->auth_key_addr = 0UL;
585 		ent->auth_iv_addr = 0UL;
586 		ent->final_auth_state_addr = 0UL;
587 		ent->enc_key_addr = 0UL;
588 		ent->enc_iv_addr = 0UL;
589 		ent->dest_addr = 0UL;
590 
591 		nbytes = crypto_hash_walk_done(&walk, 0);
592 	}
593 	ent->control |= CONTROL_END_OF_BLOCK;
594 
595 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 		err = -EINVAL;
597 	else
598 		err = 0;
599 
600 	spin_unlock_irqrestore(&qp->lock, flags);
601 
602 	if (!err)
603 		memcpy(req->result, hash_loc, result_size);
604 out:
605 	put_cpu();
606 
607 	return err;
608 }
609 
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 	int ds;
615 
616 	ds = n2alg->digest_size;
617 	if (unlikely(req->nbytes == 0)) {
618 		memcpy(req->result, n2alg->hash_zero, ds);
619 		return 0;
620 	}
621 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 
623 	return n2_do_async_digest(req, n2alg->auth_type,
624 				  n2alg->hw_op_hashsz, ds,
625 				  &rctx->u, 0UL, 0);
626 }
627 
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 	int ds;
635 
636 	ds = n2alg->derived.digest_size;
637 	if (unlikely(req->nbytes == 0) ||
638 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 
642 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 		rctx->fallback_req.base.flags =
644 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 		rctx->fallback_req.nbytes = req->nbytes;
646 		rctx->fallback_req.src = req->src;
647 		rctx->fallback_req.result = req->result;
648 
649 		return crypto_ahash_digest(&rctx->fallback_req);
650 	}
651 	memcpy(&rctx->u, n2alg->derived.hash_init,
652 	       n2alg->derived.hw_op_hashsz);
653 
654 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 				  n2alg->derived.hw_op_hashsz, ds,
656 				  &rctx->u,
657 				  __pa(&ctx->hash_key),
658 				  ctx->hash_key_len);
659 }
660 
661 struct n2_skcipher_context {
662 	int			key_len;
663 	int			enc_type;
664 	union {
665 		u8		aes[AES_MAX_KEY_SIZE];
666 		u8		des[DES_KEY_SIZE];
667 		u8		des3[3 * DES_KEY_SIZE];
668 		u8		arc4[258]; /* S-box, X, Y */
669 	} key;
670 };
671 
672 #define N2_CHUNK_ARR_LEN	16
673 
674 struct n2_crypto_chunk {
675 	struct list_head	entry;
676 	unsigned long		iv_paddr : 44;
677 	unsigned long		arr_len : 20;
678 	unsigned long		dest_paddr;
679 	unsigned long		dest_final;
680 	struct {
681 		unsigned long	src_paddr : 44;
682 		unsigned long	src_len : 20;
683 	} arr[N2_CHUNK_ARR_LEN];
684 };
685 
686 struct n2_request_context {
687 	struct skcipher_walk	walk;
688 	struct list_head	chunk_list;
689 	struct n2_crypto_chunk	chunk;
690 	u8			temp_iv[16];
691 };
692 
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *	0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *	0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711 
712 struct n2_skcipher_alg {
713 	struct list_head	entry;
714 	u8			enc_type;
715 	struct skcipher_alg	skcipher;
716 };
717 
718 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
719 {
720 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
721 
722 	return container_of(alg, struct n2_skcipher_alg, skcipher);
723 }
724 
725 struct n2_skcipher_request_context {
726 	struct skcipher_walk	walk;
727 };
728 
729 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
730 			 unsigned int keylen)
731 {
732 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
733 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
734 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
735 
736 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 
738 	switch (keylen) {
739 	case AES_KEYSIZE_128:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 		break;
742 	case AES_KEYSIZE_192:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 		break;
745 	case AES_KEYSIZE_256:
746 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 		break;
748 	default:
749 		crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750 		return -EINVAL;
751 	}
752 
753 	ctx->key_len = keylen;
754 	memcpy(ctx->key.aes, key, keylen);
755 	return 0;
756 }
757 
758 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
759 			 unsigned int keylen)
760 {
761 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
762 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
763 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
764 	int err;
765 
766 	err = verify_skcipher_des_key(skcipher, key);
767 	if (err)
768 		return err;
769 
770 	ctx->enc_type = n2alg->enc_type;
771 
772 	ctx->key_len = keylen;
773 	memcpy(ctx->key.des, key, keylen);
774 	return 0;
775 }
776 
777 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
778 			  unsigned int keylen)
779 {
780 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
781 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
782 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
783 	int err;
784 
785 	err = verify_skcipher_des3_key(skcipher, key);
786 	if (err)
787 		return err;
788 
789 	ctx->enc_type = n2alg->enc_type;
790 
791 	ctx->key_len = keylen;
792 	memcpy(ctx->key.des3, key, keylen);
793 	return 0;
794 }
795 
796 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
797 			  unsigned int keylen)
798 {
799 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
800 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
801 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
802 	u8 *s = ctx->key.arc4;
803 	u8 *x = s + 256;
804 	u8 *y = x + 1;
805 	int i, j, k;
806 
807 	ctx->enc_type = n2alg->enc_type;
808 
809 	j = k = 0;
810 	*x = 0;
811 	*y = 0;
812 	for (i = 0; i < 256; i++)
813 		s[i] = i;
814 	for (i = 0; i < 256; i++) {
815 		u8 a = s[i];
816 		j = (j + key[k] + a) & 0xff;
817 		s[i] = s[j];
818 		s[j] = a;
819 		if (++k >= keylen)
820 			k = 0;
821 	}
822 
823 	return 0;
824 }
825 
826 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
827 {
828 	int this_len = nbytes;
829 
830 	this_len -= (nbytes & (block_size - 1));
831 	return this_len > (1 << 16) ? (1 << 16) : this_len;
832 }
833 
834 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
835 			    struct n2_crypto_chunk *cp,
836 			    struct spu_queue *qp, bool encrypt)
837 {
838 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
839 	struct cwq_initial_entry *ent;
840 	bool in_place;
841 	int i;
842 
843 	ent = spu_queue_alloc(qp, cp->arr_len);
844 	if (!ent) {
845 		pr_info("queue_alloc() of %d fails\n",
846 			cp->arr_len);
847 		return -EBUSY;
848 	}
849 
850 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
851 
852 	ent->control = control_word_base(cp->arr[0].src_len,
853 					 0, ctx->enc_type, 0, 0,
854 					 false, true, false, encrypt,
855 					 OPCODE_ENCRYPT |
856 					 (in_place ? OPCODE_INPLACE_BIT : 0));
857 	ent->src_addr = cp->arr[0].src_paddr;
858 	ent->auth_key_addr = 0UL;
859 	ent->auth_iv_addr = 0UL;
860 	ent->final_auth_state_addr = 0UL;
861 	ent->enc_key_addr = __pa(&ctx->key);
862 	ent->enc_iv_addr = cp->iv_paddr;
863 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
864 
865 	for (i = 1; i < cp->arr_len; i++) {
866 		ent = spu_queue_next(qp, ent);
867 
868 		ent->control = cp->arr[i].src_len - 1;
869 		ent->src_addr = cp->arr[i].src_paddr;
870 		ent->auth_key_addr = 0UL;
871 		ent->auth_iv_addr = 0UL;
872 		ent->final_auth_state_addr = 0UL;
873 		ent->enc_key_addr = 0UL;
874 		ent->enc_iv_addr = 0UL;
875 		ent->dest_addr = 0UL;
876 	}
877 	ent->control |= CONTROL_END_OF_BLOCK;
878 
879 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
880 }
881 
882 static int n2_compute_chunks(struct skcipher_request *req)
883 {
884 	struct n2_request_context *rctx = skcipher_request_ctx(req);
885 	struct skcipher_walk *walk = &rctx->walk;
886 	struct n2_crypto_chunk *chunk;
887 	unsigned long dest_prev;
888 	unsigned int tot_len;
889 	bool prev_in_place;
890 	int err, nbytes;
891 
892 	err = skcipher_walk_async(walk, req);
893 	if (err)
894 		return err;
895 
896 	INIT_LIST_HEAD(&rctx->chunk_list);
897 
898 	chunk = &rctx->chunk;
899 	INIT_LIST_HEAD(&chunk->entry);
900 
901 	chunk->iv_paddr = 0UL;
902 	chunk->arr_len = 0;
903 	chunk->dest_paddr = 0UL;
904 
905 	prev_in_place = false;
906 	dest_prev = ~0UL;
907 	tot_len = 0;
908 
909 	while ((nbytes = walk->nbytes) != 0) {
910 		unsigned long dest_paddr, src_paddr;
911 		bool in_place;
912 		int this_len;
913 
914 		src_paddr = (page_to_phys(walk->src.phys.page) +
915 			     walk->src.phys.offset);
916 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
917 			      walk->dst.phys.offset);
918 		in_place = (src_paddr == dest_paddr);
919 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
920 
921 		if (chunk->arr_len != 0) {
922 			if (in_place != prev_in_place ||
923 			    (!prev_in_place &&
924 			     dest_paddr != dest_prev) ||
925 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
926 			    tot_len + this_len > (1 << 16)) {
927 				chunk->dest_final = dest_prev;
928 				list_add_tail(&chunk->entry,
929 					      &rctx->chunk_list);
930 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
931 				if (!chunk) {
932 					err = -ENOMEM;
933 					break;
934 				}
935 				INIT_LIST_HEAD(&chunk->entry);
936 			}
937 		}
938 		if (chunk->arr_len == 0) {
939 			chunk->dest_paddr = dest_paddr;
940 			tot_len = 0;
941 		}
942 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
943 		chunk->arr[chunk->arr_len].src_len = this_len;
944 		chunk->arr_len++;
945 
946 		dest_prev = dest_paddr + this_len;
947 		prev_in_place = in_place;
948 		tot_len += this_len;
949 
950 		err = skcipher_walk_done(walk, nbytes - this_len);
951 		if (err)
952 			break;
953 	}
954 	if (!err && chunk->arr_len != 0) {
955 		chunk->dest_final = dest_prev;
956 		list_add_tail(&chunk->entry, &rctx->chunk_list);
957 	}
958 
959 	return err;
960 }
961 
962 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
963 {
964 	struct n2_request_context *rctx = skcipher_request_ctx(req);
965 	struct n2_crypto_chunk *c, *tmp;
966 
967 	if (final_iv)
968 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
969 
970 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
971 		list_del(&c->entry);
972 		if (unlikely(c != &rctx->chunk))
973 			kfree(c);
974 	}
975 
976 }
977 
978 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
979 {
980 	struct n2_request_context *rctx = skcipher_request_ctx(req);
981 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
982 	int err = n2_compute_chunks(req);
983 	struct n2_crypto_chunk *c, *tmp;
984 	unsigned long flags, hv_ret;
985 	struct spu_queue *qp;
986 
987 	if (err)
988 		return err;
989 
990 	qp = cpu_to_cwq[get_cpu()];
991 	err = -ENODEV;
992 	if (!qp)
993 		goto out;
994 
995 	spin_lock_irqsave(&qp->lock, flags);
996 
997 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
998 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
999 		if (err)
1000 			break;
1001 		list_del(&c->entry);
1002 		if (unlikely(c != &rctx->chunk))
1003 			kfree(c);
1004 	}
1005 	if (!err) {
1006 		hv_ret = wait_for_tail(qp);
1007 		if (hv_ret != HV_EOK)
1008 			err = -EINVAL;
1009 	}
1010 
1011 	spin_unlock_irqrestore(&qp->lock, flags);
1012 
1013 out:
1014 	put_cpu();
1015 
1016 	n2_chunk_complete(req, NULL);
1017 	return err;
1018 }
1019 
1020 static int n2_encrypt_ecb(struct skcipher_request *req)
1021 {
1022 	return n2_do_ecb(req, true);
1023 }
1024 
1025 static int n2_decrypt_ecb(struct skcipher_request *req)
1026 {
1027 	return n2_do_ecb(req, false);
1028 }
1029 
1030 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1031 {
1032 	struct n2_request_context *rctx = skcipher_request_ctx(req);
1033 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1034 	unsigned long flags, hv_ret, iv_paddr;
1035 	int err = n2_compute_chunks(req);
1036 	struct n2_crypto_chunk *c, *tmp;
1037 	struct spu_queue *qp;
1038 	void *final_iv_addr;
1039 
1040 	final_iv_addr = NULL;
1041 
1042 	if (err)
1043 		return err;
1044 
1045 	qp = cpu_to_cwq[get_cpu()];
1046 	err = -ENODEV;
1047 	if (!qp)
1048 		goto out;
1049 
1050 	spin_lock_irqsave(&qp->lock, flags);
1051 
1052 	if (encrypt) {
1053 		iv_paddr = __pa(rctx->walk.iv);
1054 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055 					 entry) {
1056 			c->iv_paddr = iv_paddr;
1057 			err = __n2_crypt_chunk(tfm, c, qp, true);
1058 			if (err)
1059 				break;
1060 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1061 			list_del(&c->entry);
1062 			if (unlikely(c != &rctx->chunk))
1063 				kfree(c);
1064 		}
1065 		final_iv_addr = __va(iv_paddr);
1066 	} else {
1067 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068 						 entry) {
1069 			if (c == &rctx->chunk) {
1070 				iv_paddr = __pa(rctx->walk.iv);
1071 			} else {
1072 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073 					    tmp->arr[tmp->arr_len-1].src_len -
1074 					    rctx->walk.blocksize);
1075 			}
1076 			if (!final_iv_addr) {
1077 				unsigned long pa;
1078 
1079 				pa = (c->arr[c->arr_len-1].src_paddr +
1080 				      c->arr[c->arr_len-1].src_len -
1081 				      rctx->walk.blocksize);
1082 				final_iv_addr = rctx->temp_iv;
1083 				memcpy(rctx->temp_iv, __va(pa),
1084 				       rctx->walk.blocksize);
1085 			}
1086 			c->iv_paddr = iv_paddr;
1087 			err = __n2_crypt_chunk(tfm, c, qp, false);
1088 			if (err)
1089 				break;
1090 			list_del(&c->entry);
1091 			if (unlikely(c != &rctx->chunk))
1092 				kfree(c);
1093 		}
1094 	}
1095 	if (!err) {
1096 		hv_ret = wait_for_tail(qp);
1097 		if (hv_ret != HV_EOK)
1098 			err = -EINVAL;
1099 	}
1100 
1101 	spin_unlock_irqrestore(&qp->lock, flags);
1102 
1103 out:
1104 	put_cpu();
1105 
1106 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107 	return err;
1108 }
1109 
1110 static int n2_encrypt_chaining(struct skcipher_request *req)
1111 {
1112 	return n2_do_chaining(req, true);
1113 }
1114 
1115 static int n2_decrypt_chaining(struct skcipher_request *req)
1116 {
1117 	return n2_do_chaining(req, false);
1118 }
1119 
1120 struct n2_skcipher_tmpl {
1121 	const char		*name;
1122 	const char		*drv_name;
1123 	u8			block_size;
1124 	u8			enc_type;
1125 	struct skcipher_alg	skcipher;
1126 };
1127 
1128 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1129 	/* ARC4: only ECB is supported (chaining bits ignored) */
1130 	{	.name		= "ecb(arc4)",
1131 		.drv_name	= "ecb-arc4",
1132 		.block_size	= 1,
1133 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1134 				   ENC_TYPE_CHAINING_ECB),
1135 		.skcipher	= {
1136 			.min_keysize	= 1,
1137 			.max_keysize	= 256,
1138 			.setkey		= n2_arc4_setkey,
1139 			.encrypt	= n2_encrypt_ecb,
1140 			.decrypt	= n2_decrypt_ecb,
1141 		},
1142 	},
1143 
1144 	/* DES: ECB CBC and CFB are supported */
1145 	{	.name		= "ecb(des)",
1146 		.drv_name	= "ecb-des",
1147 		.block_size	= DES_BLOCK_SIZE,
1148 		.enc_type	= (ENC_TYPE_ALG_DES |
1149 				   ENC_TYPE_CHAINING_ECB),
1150 		.skcipher	= {
1151 			.min_keysize	= DES_KEY_SIZE,
1152 			.max_keysize	= DES_KEY_SIZE,
1153 			.setkey		= n2_des_setkey,
1154 			.encrypt	= n2_encrypt_ecb,
1155 			.decrypt	= n2_decrypt_ecb,
1156 		},
1157 	},
1158 	{	.name		= "cbc(des)",
1159 		.drv_name	= "cbc-des",
1160 		.block_size	= DES_BLOCK_SIZE,
1161 		.enc_type	= (ENC_TYPE_ALG_DES |
1162 				   ENC_TYPE_CHAINING_CBC),
1163 		.skcipher	= {
1164 			.ivsize		= DES_BLOCK_SIZE,
1165 			.min_keysize	= DES_KEY_SIZE,
1166 			.max_keysize	= DES_KEY_SIZE,
1167 			.setkey		= n2_des_setkey,
1168 			.encrypt	= n2_encrypt_chaining,
1169 			.decrypt	= n2_decrypt_chaining,
1170 		},
1171 	},
1172 	{	.name		= "cfb(des)",
1173 		.drv_name	= "cfb-des",
1174 		.block_size	= DES_BLOCK_SIZE,
1175 		.enc_type	= (ENC_TYPE_ALG_DES |
1176 				   ENC_TYPE_CHAINING_CFB),
1177 		.skcipher	= {
1178 			.min_keysize	= DES_KEY_SIZE,
1179 			.max_keysize	= DES_KEY_SIZE,
1180 			.setkey		= n2_des_setkey,
1181 			.encrypt	= n2_encrypt_chaining,
1182 			.decrypt	= n2_decrypt_chaining,
1183 		},
1184 	},
1185 
1186 	/* 3DES: ECB CBC and CFB are supported */
1187 	{	.name		= "ecb(des3_ede)",
1188 		.drv_name	= "ecb-3des",
1189 		.block_size	= DES_BLOCK_SIZE,
1190 		.enc_type	= (ENC_TYPE_ALG_3DES |
1191 				   ENC_TYPE_CHAINING_ECB),
1192 		.skcipher	= {
1193 			.min_keysize	= 3 * DES_KEY_SIZE,
1194 			.max_keysize	= 3 * DES_KEY_SIZE,
1195 			.setkey		= n2_3des_setkey,
1196 			.encrypt	= n2_encrypt_ecb,
1197 			.decrypt	= n2_decrypt_ecb,
1198 		},
1199 	},
1200 	{	.name		= "cbc(des3_ede)",
1201 		.drv_name	= "cbc-3des",
1202 		.block_size	= DES_BLOCK_SIZE,
1203 		.enc_type	= (ENC_TYPE_ALG_3DES |
1204 				   ENC_TYPE_CHAINING_CBC),
1205 		.skcipher	= {
1206 			.ivsize		= DES_BLOCK_SIZE,
1207 			.min_keysize	= 3 * DES_KEY_SIZE,
1208 			.max_keysize	= 3 * DES_KEY_SIZE,
1209 			.setkey		= n2_3des_setkey,
1210 			.encrypt	= n2_encrypt_chaining,
1211 			.decrypt	= n2_decrypt_chaining,
1212 		},
1213 	},
1214 	{	.name		= "cfb(des3_ede)",
1215 		.drv_name	= "cfb-3des",
1216 		.block_size	= DES_BLOCK_SIZE,
1217 		.enc_type	= (ENC_TYPE_ALG_3DES |
1218 				   ENC_TYPE_CHAINING_CFB),
1219 		.skcipher	= {
1220 			.min_keysize	= 3 * DES_KEY_SIZE,
1221 			.max_keysize	= 3 * DES_KEY_SIZE,
1222 			.setkey		= n2_3des_setkey,
1223 			.encrypt	= n2_encrypt_chaining,
1224 			.decrypt	= n2_decrypt_chaining,
1225 		},
1226 	},
1227 	/* AES: ECB CBC and CTR are supported */
1228 	{	.name		= "ecb(aes)",
1229 		.drv_name	= "ecb-aes",
1230 		.block_size	= AES_BLOCK_SIZE,
1231 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1232 				   ENC_TYPE_CHAINING_ECB),
1233 		.skcipher	= {
1234 			.min_keysize	= AES_MIN_KEY_SIZE,
1235 			.max_keysize	= AES_MAX_KEY_SIZE,
1236 			.setkey		= n2_aes_setkey,
1237 			.encrypt	= n2_encrypt_ecb,
1238 			.decrypt	= n2_decrypt_ecb,
1239 		},
1240 	},
1241 	{	.name		= "cbc(aes)",
1242 		.drv_name	= "cbc-aes",
1243 		.block_size	= AES_BLOCK_SIZE,
1244 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1245 				   ENC_TYPE_CHAINING_CBC),
1246 		.skcipher	= {
1247 			.ivsize		= AES_BLOCK_SIZE,
1248 			.min_keysize	= AES_MIN_KEY_SIZE,
1249 			.max_keysize	= AES_MAX_KEY_SIZE,
1250 			.setkey		= n2_aes_setkey,
1251 			.encrypt	= n2_encrypt_chaining,
1252 			.decrypt	= n2_decrypt_chaining,
1253 		},
1254 	},
1255 	{	.name		= "ctr(aes)",
1256 		.drv_name	= "ctr-aes",
1257 		.block_size	= AES_BLOCK_SIZE,
1258 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1259 				   ENC_TYPE_CHAINING_COUNTER),
1260 		.skcipher	= {
1261 			.ivsize		= AES_BLOCK_SIZE,
1262 			.min_keysize	= AES_MIN_KEY_SIZE,
1263 			.max_keysize	= AES_MAX_KEY_SIZE,
1264 			.setkey		= n2_aes_setkey,
1265 			.encrypt	= n2_encrypt_chaining,
1266 			.decrypt	= n2_encrypt_chaining,
1267 		},
1268 	},
1269 
1270 };
1271 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1272 
1273 static LIST_HEAD(skcipher_algs);
1274 
1275 struct n2_hash_tmpl {
1276 	const char	*name;
1277 	const u8	*hash_zero;
1278 	const u32	*hash_init;
1279 	u8		hw_op_hashsz;
1280 	u8		digest_size;
1281 	u8		block_size;
1282 	u8		auth_type;
1283 	u8		hmac_type;
1284 };
1285 
1286 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1287 	cpu_to_le32(MD5_H0),
1288 	cpu_to_le32(MD5_H1),
1289 	cpu_to_le32(MD5_H2),
1290 	cpu_to_le32(MD5_H3),
1291 };
1292 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1293 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1294 };
1295 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1296 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1297 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1298 };
1299 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1300 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1301 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1302 };
1303 
1304 static const struct n2_hash_tmpl hash_tmpls[] = {
1305 	{ .name		= "md5",
1306 	  .hash_zero	= md5_zero_message_hash,
1307 	  .hash_init	= n2_md5_init,
1308 	  .auth_type	= AUTH_TYPE_MD5,
1309 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1310 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1311 	  .digest_size	= MD5_DIGEST_SIZE,
1312 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1313 	{ .name		= "sha1",
1314 	  .hash_zero	= sha1_zero_message_hash,
1315 	  .hash_init	= n2_sha1_init,
1316 	  .auth_type	= AUTH_TYPE_SHA1,
1317 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1318 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1319 	  .digest_size	= SHA1_DIGEST_SIZE,
1320 	  .block_size	= SHA1_BLOCK_SIZE },
1321 	{ .name		= "sha256",
1322 	  .hash_zero	= sha256_zero_message_hash,
1323 	  .hash_init	= n2_sha256_init,
1324 	  .auth_type	= AUTH_TYPE_SHA256,
1325 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1326 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1327 	  .digest_size	= SHA256_DIGEST_SIZE,
1328 	  .block_size	= SHA256_BLOCK_SIZE },
1329 	{ .name		= "sha224",
1330 	  .hash_zero	= sha224_zero_message_hash,
1331 	  .hash_init	= n2_sha224_init,
1332 	  .auth_type	= AUTH_TYPE_SHA256,
1333 	  .hmac_type	= AUTH_TYPE_RESERVED,
1334 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1335 	  .digest_size	= SHA224_DIGEST_SIZE,
1336 	  .block_size	= SHA224_BLOCK_SIZE },
1337 };
1338 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1339 
1340 static LIST_HEAD(ahash_algs);
1341 static LIST_HEAD(hmac_algs);
1342 
1343 static int algs_registered;
1344 
1345 static void __n2_unregister_algs(void)
1346 {
1347 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1348 	struct n2_ahash_alg *alg, *alg_tmp;
1349 	struct n2_hmac_alg *hmac, *hmac_tmp;
1350 
1351 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1352 		crypto_unregister_skcipher(&skcipher->skcipher);
1353 		list_del(&skcipher->entry);
1354 		kfree(skcipher);
1355 	}
1356 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1357 		crypto_unregister_ahash(&hmac->derived.alg);
1358 		list_del(&hmac->derived.entry);
1359 		kfree(hmac);
1360 	}
1361 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1362 		crypto_unregister_ahash(&alg->alg);
1363 		list_del(&alg->entry);
1364 		kfree(alg);
1365 	}
1366 }
1367 
1368 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1369 {
1370 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1371 	return 0;
1372 }
1373 
1374 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1375 {
1376 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1377 	struct skcipher_alg *alg;
1378 	int err;
1379 
1380 	if (!p)
1381 		return -ENOMEM;
1382 
1383 	alg = &p->skcipher;
1384 	*alg = tmpl->skcipher;
1385 
1386 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1387 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1388 	alg->base.cra_priority = N2_CRA_PRIORITY;
1389 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1390 	alg->base.cra_blocksize = tmpl->block_size;
1391 	p->enc_type = tmpl->enc_type;
1392 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1393 	alg->base.cra_module = THIS_MODULE;
1394 	alg->init = n2_skcipher_init_tfm;
1395 
1396 	list_add(&p->entry, &skcipher_algs);
1397 	err = crypto_register_skcipher(alg);
1398 	if (err) {
1399 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1400 		list_del(&p->entry);
1401 		kfree(p);
1402 	} else {
1403 		pr_info("%s alg registered\n", alg->base.cra_name);
1404 	}
1405 	return err;
1406 }
1407 
1408 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1409 {
1410 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1411 	struct ahash_alg *ahash;
1412 	struct crypto_alg *base;
1413 	int err;
1414 
1415 	if (!p)
1416 		return -ENOMEM;
1417 
1418 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1419 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1420 	INIT_LIST_HEAD(&p->derived.entry);
1421 
1422 	ahash = &p->derived.alg;
1423 	ahash->digest = n2_hmac_async_digest;
1424 	ahash->setkey = n2_hmac_async_setkey;
1425 
1426 	base = &ahash->halg.base;
1427 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1428 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1429 
1430 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1431 	base->cra_init = n2_hmac_cra_init;
1432 	base->cra_exit = n2_hmac_cra_exit;
1433 
1434 	list_add(&p->derived.entry, &hmac_algs);
1435 	err = crypto_register_ahash(ahash);
1436 	if (err) {
1437 		pr_err("%s alg registration failed\n", base->cra_name);
1438 		list_del(&p->derived.entry);
1439 		kfree(p);
1440 	} else {
1441 		pr_info("%s alg registered\n", base->cra_name);
1442 	}
1443 	return err;
1444 }
1445 
1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1447 {
1448 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1449 	struct hash_alg_common *halg;
1450 	struct crypto_alg *base;
1451 	struct ahash_alg *ahash;
1452 	int err;
1453 
1454 	if (!p)
1455 		return -ENOMEM;
1456 
1457 	p->hash_zero = tmpl->hash_zero;
1458 	p->hash_init = tmpl->hash_init;
1459 	p->auth_type = tmpl->auth_type;
1460 	p->hmac_type = tmpl->hmac_type;
1461 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1462 	p->digest_size = tmpl->digest_size;
1463 
1464 	ahash = &p->alg;
1465 	ahash->init = n2_hash_async_init;
1466 	ahash->update = n2_hash_async_update;
1467 	ahash->final = n2_hash_async_final;
1468 	ahash->finup = n2_hash_async_finup;
1469 	ahash->digest = n2_hash_async_digest;
1470 	ahash->export = n2_hash_async_noexport;
1471 	ahash->import = n2_hash_async_noimport;
1472 
1473 	halg = &ahash->halg;
1474 	halg->digestsize = tmpl->digest_size;
1475 
1476 	base = &halg->base;
1477 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1478 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1479 	base->cra_priority = N2_CRA_PRIORITY;
1480 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1481 			  CRYPTO_ALG_NEED_FALLBACK;
1482 	base->cra_blocksize = tmpl->block_size;
1483 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1484 	base->cra_module = THIS_MODULE;
1485 	base->cra_init = n2_hash_cra_init;
1486 	base->cra_exit = n2_hash_cra_exit;
1487 
1488 	list_add(&p->entry, &ahash_algs);
1489 	err = crypto_register_ahash(ahash);
1490 	if (err) {
1491 		pr_err("%s alg registration failed\n", base->cra_name);
1492 		list_del(&p->entry);
1493 		kfree(p);
1494 	} else {
1495 		pr_info("%s alg registered\n", base->cra_name);
1496 	}
1497 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1498 		err = __n2_register_one_hmac(p);
1499 	return err;
1500 }
1501 
1502 static int n2_register_algs(void)
1503 {
1504 	int i, err = 0;
1505 
1506 	mutex_lock(&spu_lock);
1507 	if (algs_registered++)
1508 		goto out;
1509 
1510 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1511 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1512 		if (err) {
1513 			__n2_unregister_algs();
1514 			goto out;
1515 		}
1516 	}
1517 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1518 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1519 		if (err) {
1520 			__n2_unregister_algs();
1521 			goto out;
1522 		}
1523 	}
1524 
1525 out:
1526 	mutex_unlock(&spu_lock);
1527 	return err;
1528 }
1529 
1530 static void n2_unregister_algs(void)
1531 {
1532 	mutex_lock(&spu_lock);
1533 	if (!--algs_registered)
1534 		__n2_unregister_algs();
1535 	mutex_unlock(&spu_lock);
1536 }
1537 
1538 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1539  * a devino.  This isn't very useful to us because all of the
1540  * interrupts listed in the device_node have been translated to
1541  * Linux virtual IRQ cookie numbers.
1542  *
1543  * So we have to back-translate, going through the 'intr' and 'ino'
1544  * property tables of the n2cp MDESC node, matching it with the OF
1545  * 'interrupts' property entries, in order to to figure out which
1546  * devino goes to which already-translated IRQ.
1547  */
1548 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1549 			     unsigned long dev_ino)
1550 {
1551 	const unsigned int *dev_intrs;
1552 	unsigned int intr;
1553 	int i;
1554 
1555 	for (i = 0; i < ip->num_intrs; i++) {
1556 		if (ip->ino_table[i].ino == dev_ino)
1557 			break;
1558 	}
1559 	if (i == ip->num_intrs)
1560 		return -ENODEV;
1561 
1562 	intr = ip->ino_table[i].intr;
1563 
1564 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1565 	if (!dev_intrs)
1566 		return -ENODEV;
1567 
1568 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1569 		if (dev_intrs[i] == intr)
1570 			return i;
1571 	}
1572 
1573 	return -ENODEV;
1574 }
1575 
1576 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1577 		       const char *irq_name, struct spu_queue *p,
1578 		       irq_handler_t handler)
1579 {
1580 	unsigned long herr;
1581 	int index;
1582 
1583 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1584 	if (herr)
1585 		return -EINVAL;
1586 
1587 	index = find_devino_index(dev, ip, p->devino);
1588 	if (index < 0)
1589 		return index;
1590 
1591 	p->irq = dev->archdata.irqs[index];
1592 
1593 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1594 
1595 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1596 }
1597 
1598 static struct kmem_cache *queue_cache[2];
1599 
1600 static void *new_queue(unsigned long q_type)
1601 {
1602 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1603 }
1604 
1605 static void free_queue(void *p, unsigned long q_type)
1606 {
1607 	kmem_cache_free(queue_cache[q_type - 1], p);
1608 }
1609 
1610 static int queue_cache_init(void)
1611 {
1612 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1613 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1614 			kmem_cache_create("mau_queue",
1615 					  (MAU_NUM_ENTRIES *
1616 					   MAU_ENTRY_SIZE),
1617 					  MAU_ENTRY_SIZE, 0, NULL);
1618 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1619 		return -ENOMEM;
1620 
1621 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1622 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1623 			kmem_cache_create("cwq_queue",
1624 					  (CWQ_NUM_ENTRIES *
1625 					   CWQ_ENTRY_SIZE),
1626 					  CWQ_ENTRY_SIZE, 0, NULL);
1627 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1628 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1629 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1630 		return -ENOMEM;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static void queue_cache_destroy(void)
1636 {
1637 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1638 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1639 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1640 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1641 }
1642 
1643 static long spu_queue_register_workfn(void *arg)
1644 {
1645 	struct spu_qreg *qr = arg;
1646 	struct spu_queue *p = qr->queue;
1647 	unsigned long q_type = qr->type;
1648 	unsigned long hv_ret;
1649 
1650 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1651 				 CWQ_NUM_ENTRIES, &p->qhandle);
1652 	if (!hv_ret)
1653 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1654 
1655 	return hv_ret ? -EINVAL : 0;
1656 }
1657 
1658 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1659 {
1660 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1661 	struct spu_qreg qr = { .queue = p, .type = q_type };
1662 
1663 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1664 }
1665 
1666 static int spu_queue_setup(struct spu_queue *p)
1667 {
1668 	int err;
1669 
1670 	p->q = new_queue(p->q_type);
1671 	if (!p->q)
1672 		return -ENOMEM;
1673 
1674 	err = spu_queue_register(p, p->q_type);
1675 	if (err) {
1676 		free_queue(p->q, p->q_type);
1677 		p->q = NULL;
1678 	}
1679 
1680 	return err;
1681 }
1682 
1683 static void spu_queue_destroy(struct spu_queue *p)
1684 {
1685 	unsigned long hv_ret;
1686 
1687 	if (!p->q)
1688 		return;
1689 
1690 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1691 
1692 	if (!hv_ret)
1693 		free_queue(p->q, p->q_type);
1694 }
1695 
1696 static void spu_list_destroy(struct list_head *list)
1697 {
1698 	struct spu_queue *p, *n;
1699 
1700 	list_for_each_entry_safe(p, n, list, list) {
1701 		int i;
1702 
1703 		for (i = 0; i < NR_CPUS; i++) {
1704 			if (cpu_to_cwq[i] == p)
1705 				cpu_to_cwq[i] = NULL;
1706 		}
1707 
1708 		if (p->irq) {
1709 			free_irq(p->irq, p);
1710 			p->irq = 0;
1711 		}
1712 		spu_queue_destroy(p);
1713 		list_del(&p->list);
1714 		kfree(p);
1715 	}
1716 }
1717 
1718 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1719  * gathering cpu membership information.
1720  */
1721 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1722 			       struct platform_device *dev,
1723 			       u64 node, struct spu_queue *p,
1724 			       struct spu_queue **table)
1725 {
1726 	u64 arc;
1727 
1728 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1729 		u64 tgt = mdesc_arc_target(mdesc, arc);
1730 		const char *name = mdesc_node_name(mdesc, tgt);
1731 		const u64 *id;
1732 
1733 		if (strcmp(name, "cpu"))
1734 			continue;
1735 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1736 		if (table[*id] != NULL) {
1737 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1738 				dev->dev.of_node);
1739 			return -EINVAL;
1740 		}
1741 		cpumask_set_cpu(*id, &p->sharing);
1742 		table[*id] = p;
1743 	}
1744 	return 0;
1745 }
1746 
1747 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1748 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1749 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1750 			    u64 node, const char *iname, unsigned long q_type,
1751 			    irq_handler_t handler, struct spu_queue **table)
1752 {
1753 	struct spu_queue *p;
1754 	int err;
1755 
1756 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1757 	if (!p) {
1758 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1759 			dev->dev.of_node);
1760 		return -ENOMEM;
1761 	}
1762 
1763 	cpumask_clear(&p->sharing);
1764 	spin_lock_init(&p->lock);
1765 	p->q_type = q_type;
1766 	INIT_LIST_HEAD(&p->jobs);
1767 	list_add(&p->list, list);
1768 
1769 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1770 	if (err)
1771 		return err;
1772 
1773 	err = spu_queue_setup(p);
1774 	if (err)
1775 		return err;
1776 
1777 	return spu_map_ino(dev, ip, iname, p, handler);
1778 }
1779 
1780 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1781 			  struct spu_mdesc_info *ip, struct list_head *list,
1782 			  const char *exec_name, unsigned long q_type,
1783 			  irq_handler_t handler, struct spu_queue **table)
1784 {
1785 	int err = 0;
1786 	u64 node;
1787 
1788 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1789 		const char *type;
1790 
1791 		type = mdesc_get_property(mdesc, node, "type", NULL);
1792 		if (!type || strcmp(type, exec_name))
1793 			continue;
1794 
1795 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1796 				       exec_name, q_type, handler, table);
1797 		if (err) {
1798 			spu_list_destroy(list);
1799 			break;
1800 		}
1801 	}
1802 
1803 	return err;
1804 }
1805 
1806 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1807 			 struct spu_mdesc_info *ip)
1808 {
1809 	const u64 *ino;
1810 	int ino_len;
1811 	int i;
1812 
1813 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1814 	if (!ino) {
1815 		printk("NO 'ino'\n");
1816 		return -ENODEV;
1817 	}
1818 
1819 	ip->num_intrs = ino_len / sizeof(u64);
1820 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1821 				 ip->num_intrs),
1822 				GFP_KERNEL);
1823 	if (!ip->ino_table)
1824 		return -ENOMEM;
1825 
1826 	for (i = 0; i < ip->num_intrs; i++) {
1827 		struct ino_blob *b = &ip->ino_table[i];
1828 		b->intr = i + 1;
1829 		b->ino = ino[i];
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1836 				struct platform_device *dev,
1837 				struct spu_mdesc_info *ip,
1838 				const char *node_name)
1839 {
1840 	const unsigned int *reg;
1841 	u64 node;
1842 
1843 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1844 	if (!reg)
1845 		return -ENODEV;
1846 
1847 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1848 		const char *name;
1849 		const u64 *chdl;
1850 
1851 		name = mdesc_get_property(mdesc, node, "name", NULL);
1852 		if (!name || strcmp(name, node_name))
1853 			continue;
1854 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1855 		if (!chdl || (*chdl != *reg))
1856 			continue;
1857 		ip->cfg_handle = *chdl;
1858 		return get_irq_props(mdesc, node, ip);
1859 	}
1860 
1861 	return -ENODEV;
1862 }
1863 
1864 static unsigned long n2_spu_hvapi_major;
1865 static unsigned long n2_spu_hvapi_minor;
1866 
1867 static int n2_spu_hvapi_register(void)
1868 {
1869 	int err;
1870 
1871 	n2_spu_hvapi_major = 2;
1872 	n2_spu_hvapi_minor = 0;
1873 
1874 	err = sun4v_hvapi_register(HV_GRP_NCS,
1875 				   n2_spu_hvapi_major,
1876 				   &n2_spu_hvapi_minor);
1877 
1878 	if (!err)
1879 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1880 			n2_spu_hvapi_major,
1881 			n2_spu_hvapi_minor);
1882 
1883 	return err;
1884 }
1885 
1886 static void n2_spu_hvapi_unregister(void)
1887 {
1888 	sun4v_hvapi_unregister(HV_GRP_NCS);
1889 }
1890 
1891 static int global_ref;
1892 
1893 static int grab_global_resources(void)
1894 {
1895 	int err = 0;
1896 
1897 	mutex_lock(&spu_lock);
1898 
1899 	if (global_ref++)
1900 		goto out;
1901 
1902 	err = n2_spu_hvapi_register();
1903 	if (err)
1904 		goto out;
1905 
1906 	err = queue_cache_init();
1907 	if (err)
1908 		goto out_hvapi_release;
1909 
1910 	err = -ENOMEM;
1911 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1912 			     GFP_KERNEL);
1913 	if (!cpu_to_cwq)
1914 		goto out_queue_cache_destroy;
1915 
1916 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1917 			     GFP_KERNEL);
1918 	if (!cpu_to_mau)
1919 		goto out_free_cwq_table;
1920 
1921 	err = 0;
1922 
1923 out:
1924 	if (err)
1925 		global_ref--;
1926 	mutex_unlock(&spu_lock);
1927 	return err;
1928 
1929 out_free_cwq_table:
1930 	kfree(cpu_to_cwq);
1931 	cpu_to_cwq = NULL;
1932 
1933 out_queue_cache_destroy:
1934 	queue_cache_destroy();
1935 
1936 out_hvapi_release:
1937 	n2_spu_hvapi_unregister();
1938 	goto out;
1939 }
1940 
1941 static void release_global_resources(void)
1942 {
1943 	mutex_lock(&spu_lock);
1944 	if (!--global_ref) {
1945 		kfree(cpu_to_cwq);
1946 		cpu_to_cwq = NULL;
1947 
1948 		kfree(cpu_to_mau);
1949 		cpu_to_mau = NULL;
1950 
1951 		queue_cache_destroy();
1952 		n2_spu_hvapi_unregister();
1953 	}
1954 	mutex_unlock(&spu_lock);
1955 }
1956 
1957 static struct n2_crypto *alloc_n2cp(void)
1958 {
1959 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1960 
1961 	if (np)
1962 		INIT_LIST_HEAD(&np->cwq_list);
1963 
1964 	return np;
1965 }
1966 
1967 static void free_n2cp(struct n2_crypto *np)
1968 {
1969 	kfree(np->cwq_info.ino_table);
1970 	np->cwq_info.ino_table = NULL;
1971 
1972 	kfree(np);
1973 }
1974 
1975 static void n2_spu_driver_version(void)
1976 {
1977 	static int n2_spu_version_printed;
1978 
1979 	if (n2_spu_version_printed++ == 0)
1980 		pr_info("%s", version);
1981 }
1982 
1983 static int n2_crypto_probe(struct platform_device *dev)
1984 {
1985 	struct mdesc_handle *mdesc;
1986 	struct n2_crypto *np;
1987 	int err;
1988 
1989 	n2_spu_driver_version();
1990 
1991 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1992 
1993 	np = alloc_n2cp();
1994 	if (!np) {
1995 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1996 			dev->dev.of_node);
1997 		return -ENOMEM;
1998 	}
1999 
2000 	err = grab_global_resources();
2001 	if (err) {
2002 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2003 			dev->dev.of_node);
2004 		goto out_free_n2cp;
2005 	}
2006 
2007 	mdesc = mdesc_grab();
2008 
2009 	if (!mdesc) {
2010 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2011 			dev->dev.of_node);
2012 		err = -ENODEV;
2013 		goto out_free_global;
2014 	}
2015 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2016 	if (err) {
2017 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2018 			dev->dev.of_node);
2019 		mdesc_release(mdesc);
2020 		goto out_free_global;
2021 	}
2022 
2023 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2024 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2025 			     cpu_to_cwq);
2026 	mdesc_release(mdesc);
2027 
2028 	if (err) {
2029 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2030 			dev->dev.of_node);
2031 		goto out_free_global;
2032 	}
2033 
2034 	err = n2_register_algs();
2035 	if (err) {
2036 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2037 			dev->dev.of_node);
2038 		goto out_free_spu_list;
2039 	}
2040 
2041 	dev_set_drvdata(&dev->dev, np);
2042 
2043 	return 0;
2044 
2045 out_free_spu_list:
2046 	spu_list_destroy(&np->cwq_list);
2047 
2048 out_free_global:
2049 	release_global_resources();
2050 
2051 out_free_n2cp:
2052 	free_n2cp(np);
2053 
2054 	return err;
2055 }
2056 
2057 static int n2_crypto_remove(struct platform_device *dev)
2058 {
2059 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2060 
2061 	n2_unregister_algs();
2062 
2063 	spu_list_destroy(&np->cwq_list);
2064 
2065 	release_global_resources();
2066 
2067 	free_n2cp(np);
2068 
2069 	return 0;
2070 }
2071 
2072 static struct n2_mau *alloc_ncp(void)
2073 {
2074 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2075 
2076 	if (mp)
2077 		INIT_LIST_HEAD(&mp->mau_list);
2078 
2079 	return mp;
2080 }
2081 
2082 static void free_ncp(struct n2_mau *mp)
2083 {
2084 	kfree(mp->mau_info.ino_table);
2085 	mp->mau_info.ino_table = NULL;
2086 
2087 	kfree(mp);
2088 }
2089 
2090 static int n2_mau_probe(struct platform_device *dev)
2091 {
2092 	struct mdesc_handle *mdesc;
2093 	struct n2_mau *mp;
2094 	int err;
2095 
2096 	n2_spu_driver_version();
2097 
2098 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2099 
2100 	mp = alloc_ncp();
2101 	if (!mp) {
2102 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2103 			dev->dev.of_node);
2104 		return -ENOMEM;
2105 	}
2106 
2107 	err = grab_global_resources();
2108 	if (err) {
2109 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2110 			dev->dev.of_node);
2111 		goto out_free_ncp;
2112 	}
2113 
2114 	mdesc = mdesc_grab();
2115 
2116 	if (!mdesc) {
2117 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2118 			dev->dev.of_node);
2119 		err = -ENODEV;
2120 		goto out_free_global;
2121 	}
2122 
2123 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2124 	if (err) {
2125 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2126 			dev->dev.of_node);
2127 		mdesc_release(mdesc);
2128 		goto out_free_global;
2129 	}
2130 
2131 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2132 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2133 			     cpu_to_mau);
2134 	mdesc_release(mdesc);
2135 
2136 	if (err) {
2137 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2138 			dev->dev.of_node);
2139 		goto out_free_global;
2140 	}
2141 
2142 	dev_set_drvdata(&dev->dev, mp);
2143 
2144 	return 0;
2145 
2146 out_free_global:
2147 	release_global_resources();
2148 
2149 out_free_ncp:
2150 	free_ncp(mp);
2151 
2152 	return err;
2153 }
2154 
2155 static int n2_mau_remove(struct platform_device *dev)
2156 {
2157 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2158 
2159 	spu_list_destroy(&mp->mau_list);
2160 
2161 	release_global_resources();
2162 
2163 	free_ncp(mp);
2164 
2165 	return 0;
2166 }
2167 
2168 static const struct of_device_id n2_crypto_match[] = {
2169 	{
2170 		.name = "n2cp",
2171 		.compatible = "SUNW,n2-cwq",
2172 	},
2173 	{
2174 		.name = "n2cp",
2175 		.compatible = "SUNW,vf-cwq",
2176 	},
2177 	{
2178 		.name = "n2cp",
2179 		.compatible = "SUNW,kt-cwq",
2180 	},
2181 	{},
2182 };
2183 
2184 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2185 
2186 static struct platform_driver n2_crypto_driver = {
2187 	.driver = {
2188 		.name		=	"n2cp",
2189 		.of_match_table	=	n2_crypto_match,
2190 	},
2191 	.probe		=	n2_crypto_probe,
2192 	.remove		=	n2_crypto_remove,
2193 };
2194 
2195 static const struct of_device_id n2_mau_match[] = {
2196 	{
2197 		.name = "ncp",
2198 		.compatible = "SUNW,n2-mau",
2199 	},
2200 	{
2201 		.name = "ncp",
2202 		.compatible = "SUNW,vf-mau",
2203 	},
2204 	{
2205 		.name = "ncp",
2206 		.compatible = "SUNW,kt-mau",
2207 	},
2208 	{},
2209 };
2210 
2211 MODULE_DEVICE_TABLE(of, n2_mau_match);
2212 
2213 static struct platform_driver n2_mau_driver = {
2214 	.driver = {
2215 		.name		=	"ncp",
2216 		.of_match_table	=	n2_mau_match,
2217 	},
2218 	.probe		=	n2_mau_probe,
2219 	.remove		=	n2_mau_remove,
2220 };
2221 
2222 static struct platform_driver * const drivers[] = {
2223 	&n2_crypto_driver,
2224 	&n2_mau_driver,
2225 };
2226 
2227 static int __init n2_init(void)
2228 {
2229 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2230 }
2231 
2232 static void __exit n2_exit(void)
2233 {
2234 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2235 }
2236 
2237 module_init(n2_init);
2238 module_exit(n2_exit);
2239