1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_device.h> 13 #include <linux/cpumask.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/crypto.h> 17 #include <crypto/md5.h> 18 #include <crypto/sha.h> 19 #include <crypto/aes.h> 20 #include <crypto/internal/des.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/sched.h> 24 25 #include <crypto/internal/hash.h> 26 #include <crypto/internal/skcipher.h> 27 #include <crypto/scatterwalk.h> 28 #include <crypto/algapi.h> 29 30 #include <asm/hypervisor.h> 31 #include <asm/mdesc.h> 32 33 #include "n2_core.h" 34 35 #define DRV_MODULE_NAME "n2_crypto" 36 #define DRV_MODULE_VERSION "0.2" 37 #define DRV_MODULE_RELDATE "July 28, 2011" 38 39 static const char version[] = 40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 41 42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 43 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 44 MODULE_LICENSE("GPL"); 45 MODULE_VERSION(DRV_MODULE_VERSION); 46 47 #define N2_CRA_PRIORITY 200 48 49 static DEFINE_MUTEX(spu_lock); 50 51 struct spu_queue { 52 cpumask_t sharing; 53 unsigned long qhandle; 54 55 spinlock_t lock; 56 u8 q_type; 57 void *q; 58 unsigned long head; 59 unsigned long tail; 60 struct list_head jobs; 61 62 unsigned long devino; 63 64 char irq_name[32]; 65 unsigned int irq; 66 67 struct list_head list; 68 }; 69 70 struct spu_qreg { 71 struct spu_queue *queue; 72 unsigned long type; 73 }; 74 75 static struct spu_queue **cpu_to_cwq; 76 static struct spu_queue **cpu_to_mau; 77 78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 79 { 80 if (q->q_type == HV_NCS_QTYPE_MAU) { 81 off += MAU_ENTRY_SIZE; 82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 83 off = 0; 84 } else { 85 off += CWQ_ENTRY_SIZE; 86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 87 off = 0; 88 } 89 return off; 90 } 91 92 struct n2_request_common { 93 struct list_head entry; 94 unsigned int offset; 95 }; 96 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 97 98 /* An async job request records the final tail value it used in 99 * n2_request_common->offset, test to see if that offset is in 100 * the range old_head, new_head, inclusive. 101 */ 102 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 103 unsigned long old_head, unsigned long new_head) 104 { 105 if (old_head <= new_head) { 106 if (offset > old_head && offset <= new_head) 107 return true; 108 } else { 109 if (offset > old_head || offset <= new_head) 110 return true; 111 } 112 return false; 113 } 114 115 /* When the HEAD marker is unequal to the actual HEAD, we get 116 * a virtual device INO interrupt. We should process the 117 * completed CWQ entries and adjust the HEAD marker to clear 118 * the IRQ. 119 */ 120 static irqreturn_t cwq_intr(int irq, void *dev_id) 121 { 122 unsigned long off, new_head, hv_ret; 123 struct spu_queue *q = dev_id; 124 125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 126 smp_processor_id(), q->qhandle); 127 128 spin_lock(&q->lock); 129 130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 131 132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 133 smp_processor_id(), new_head, hv_ret); 134 135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 136 /* XXX ... XXX */ 137 } 138 139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 140 if (hv_ret == HV_EOK) 141 q->head = new_head; 142 143 spin_unlock(&q->lock); 144 145 return IRQ_HANDLED; 146 } 147 148 static irqreturn_t mau_intr(int irq, void *dev_id) 149 { 150 struct spu_queue *q = dev_id; 151 unsigned long head, hv_ret; 152 153 spin_lock(&q->lock); 154 155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 156 smp_processor_id(), q->qhandle); 157 158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 159 160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 161 smp_processor_id(), head, hv_ret); 162 163 sun4v_ncs_sethead_marker(q->qhandle, head); 164 165 spin_unlock(&q->lock); 166 167 return IRQ_HANDLED; 168 } 169 170 static void *spu_queue_next(struct spu_queue *q, void *cur) 171 { 172 return q->q + spu_next_offset(q, cur - q->q); 173 } 174 175 static int spu_queue_num_free(struct spu_queue *q) 176 { 177 unsigned long head = q->head; 178 unsigned long tail = q->tail; 179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 180 unsigned long diff; 181 182 if (head > tail) 183 diff = head - tail; 184 else 185 diff = (end - tail) + head; 186 187 return (diff / CWQ_ENTRY_SIZE) - 1; 188 } 189 190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 191 { 192 int avail = spu_queue_num_free(q); 193 194 if (avail >= num_entries) 195 return q->q + q->tail; 196 197 return NULL; 198 } 199 200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 201 { 202 unsigned long hv_ret, new_tail; 203 204 new_tail = spu_next_offset(q, last - q->q); 205 206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 207 if (hv_ret == HV_EOK) 208 q->tail = new_tail; 209 return hv_ret; 210 } 211 212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 213 int enc_type, int auth_type, 214 unsigned int hash_len, 215 bool sfas, bool sob, bool eob, bool encrypt, 216 int opcode) 217 { 218 u64 word = (len - 1) & CONTROL_LEN; 219 220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 223 if (sfas) 224 word |= CONTROL_STORE_FINAL_AUTH_STATE; 225 if (sob) 226 word |= CONTROL_START_OF_BLOCK; 227 if (eob) 228 word |= CONTROL_END_OF_BLOCK; 229 if (encrypt) 230 word |= CONTROL_ENCRYPT; 231 if (hmac_key_len) 232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 233 if (hash_len) 234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 235 236 return word; 237 } 238 239 #if 0 240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 241 { 242 if (this_len >= 64 || 243 qp->head != qp->tail) 244 return true; 245 return false; 246 } 247 #endif 248 249 struct n2_ahash_alg { 250 struct list_head entry; 251 const u8 *hash_zero; 252 const u8 *hash_init; 253 u8 hw_op_hashsz; 254 u8 digest_size; 255 u8 auth_type; 256 u8 hmac_type; 257 struct ahash_alg alg; 258 }; 259 260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 261 { 262 struct crypto_alg *alg = tfm->__crt_alg; 263 struct ahash_alg *ahash_alg; 264 265 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 266 267 return container_of(ahash_alg, struct n2_ahash_alg, alg); 268 } 269 270 struct n2_hmac_alg { 271 const char *child_alg; 272 struct n2_ahash_alg derived; 273 }; 274 275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 276 { 277 struct crypto_alg *alg = tfm->__crt_alg; 278 struct ahash_alg *ahash_alg; 279 280 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 281 282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 283 } 284 285 struct n2_hash_ctx { 286 struct crypto_ahash *fallback_tfm; 287 }; 288 289 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 290 291 struct n2_hmac_ctx { 292 struct n2_hash_ctx base; 293 294 struct crypto_shash *child_shash; 295 296 int hash_key_len; 297 unsigned char hash_key[N2_HASH_KEY_MAX]; 298 }; 299 300 struct n2_hash_req_ctx { 301 union { 302 struct md5_state md5; 303 struct sha1_state sha1; 304 struct sha256_state sha256; 305 } u; 306 307 struct ahash_request fallback_req; 308 }; 309 310 static int n2_hash_async_init(struct ahash_request *req) 311 { 312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 315 316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 318 319 return crypto_ahash_init(&rctx->fallback_req); 320 } 321 322 static int n2_hash_async_update(struct ahash_request *req) 323 { 324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 327 328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 330 rctx->fallback_req.nbytes = req->nbytes; 331 rctx->fallback_req.src = req->src; 332 333 return crypto_ahash_update(&rctx->fallback_req); 334 } 335 336 static int n2_hash_async_final(struct ahash_request *req) 337 { 338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 341 342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 344 rctx->fallback_req.result = req->result; 345 346 return crypto_ahash_final(&rctx->fallback_req); 347 } 348 349 static int n2_hash_async_finup(struct ahash_request *req) 350 { 351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 354 355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 357 rctx->fallback_req.nbytes = req->nbytes; 358 rctx->fallback_req.src = req->src; 359 rctx->fallback_req.result = req->result; 360 361 return crypto_ahash_finup(&rctx->fallback_req); 362 } 363 364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 365 { 366 return -ENOSYS; 367 } 368 369 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 370 { 371 return -ENOSYS; 372 } 373 374 static int n2_hash_cra_init(struct crypto_tfm *tfm) 375 { 376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 379 struct crypto_ahash *fallback_tfm; 380 int err; 381 382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 383 CRYPTO_ALG_NEED_FALLBACK); 384 if (IS_ERR(fallback_tfm)) { 385 pr_warn("Fallback driver '%s' could not be loaded!\n", 386 fallback_driver_name); 387 err = PTR_ERR(fallback_tfm); 388 goto out; 389 } 390 391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 392 crypto_ahash_reqsize(fallback_tfm))); 393 394 ctx->fallback_tfm = fallback_tfm; 395 return 0; 396 397 out: 398 return err; 399 } 400 401 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 402 { 403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 405 406 crypto_free_ahash(ctx->fallback_tfm); 407 } 408 409 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 410 { 411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 415 struct crypto_ahash *fallback_tfm; 416 struct crypto_shash *child_shash; 417 int err; 418 419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 420 CRYPTO_ALG_NEED_FALLBACK); 421 if (IS_ERR(fallback_tfm)) { 422 pr_warn("Fallback driver '%s' could not be loaded!\n", 423 fallback_driver_name); 424 err = PTR_ERR(fallback_tfm); 425 goto out; 426 } 427 428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 429 if (IS_ERR(child_shash)) { 430 pr_warn("Child shash '%s' could not be loaded!\n", 431 n2alg->child_alg); 432 err = PTR_ERR(child_shash); 433 goto out_free_fallback; 434 } 435 436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 437 crypto_ahash_reqsize(fallback_tfm))); 438 439 ctx->child_shash = child_shash; 440 ctx->base.fallback_tfm = fallback_tfm; 441 return 0; 442 443 out_free_fallback: 444 crypto_free_ahash(fallback_tfm); 445 446 out: 447 return err; 448 } 449 450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 451 { 452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 454 455 crypto_free_ahash(ctx->base.fallback_tfm); 456 crypto_free_shash(ctx->child_shash); 457 } 458 459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 460 unsigned int keylen) 461 { 462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 463 struct crypto_shash *child_shash = ctx->child_shash; 464 struct crypto_ahash *fallback_tfm; 465 int err, bs, ds; 466 467 fallback_tfm = ctx->base.fallback_tfm; 468 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 469 if (err) 470 return err; 471 472 bs = crypto_shash_blocksize(child_shash); 473 ds = crypto_shash_digestsize(child_shash); 474 BUG_ON(ds > N2_HASH_KEY_MAX); 475 if (keylen > bs) { 476 err = crypto_shash_tfm_digest(child_shash, key, keylen, 477 ctx->hash_key); 478 if (err) 479 return err; 480 keylen = ds; 481 } else if (keylen <= N2_HASH_KEY_MAX) 482 memcpy(ctx->hash_key, key, keylen); 483 484 ctx->hash_key_len = keylen; 485 486 return err; 487 } 488 489 static unsigned long wait_for_tail(struct spu_queue *qp) 490 { 491 unsigned long head, hv_ret; 492 493 do { 494 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 495 if (hv_ret != HV_EOK) { 496 pr_err("Hypervisor error on gethead\n"); 497 break; 498 } 499 if (head == qp->tail) { 500 qp->head = head; 501 break; 502 } 503 } while (1); 504 return hv_ret; 505 } 506 507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 508 struct cwq_initial_entry *ent) 509 { 510 unsigned long hv_ret = spu_queue_submit(qp, ent); 511 512 if (hv_ret == HV_EOK) 513 hv_ret = wait_for_tail(qp); 514 515 return hv_ret; 516 } 517 518 static int n2_do_async_digest(struct ahash_request *req, 519 unsigned int auth_type, unsigned int digest_size, 520 unsigned int result_size, void *hash_loc, 521 unsigned long auth_key, unsigned int auth_key_len) 522 { 523 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 524 struct cwq_initial_entry *ent; 525 struct crypto_hash_walk walk; 526 struct spu_queue *qp; 527 unsigned long flags; 528 int err = -ENODEV; 529 int nbytes, cpu; 530 531 /* The total effective length of the operation may not 532 * exceed 2^16. 533 */ 534 if (unlikely(req->nbytes > (1 << 16))) { 535 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 536 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 537 538 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 539 rctx->fallback_req.base.flags = 540 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 541 rctx->fallback_req.nbytes = req->nbytes; 542 rctx->fallback_req.src = req->src; 543 rctx->fallback_req.result = req->result; 544 545 return crypto_ahash_digest(&rctx->fallback_req); 546 } 547 548 nbytes = crypto_hash_walk_first(req, &walk); 549 550 cpu = get_cpu(); 551 qp = cpu_to_cwq[cpu]; 552 if (!qp) 553 goto out; 554 555 spin_lock_irqsave(&qp->lock, flags); 556 557 /* XXX can do better, improve this later by doing a by-hand scatterlist 558 * XXX walk, etc. 559 */ 560 ent = qp->q + qp->tail; 561 562 ent->control = control_word_base(nbytes, auth_key_len, 0, 563 auth_type, digest_size, 564 false, true, false, false, 565 OPCODE_INPLACE_BIT | 566 OPCODE_AUTH_MAC); 567 ent->src_addr = __pa(walk.data); 568 ent->auth_key_addr = auth_key; 569 ent->auth_iv_addr = __pa(hash_loc); 570 ent->final_auth_state_addr = 0UL; 571 ent->enc_key_addr = 0UL; 572 ent->enc_iv_addr = 0UL; 573 ent->dest_addr = __pa(hash_loc); 574 575 nbytes = crypto_hash_walk_done(&walk, 0); 576 while (nbytes > 0) { 577 ent = spu_queue_next(qp, ent); 578 579 ent->control = (nbytes - 1); 580 ent->src_addr = __pa(walk.data); 581 ent->auth_key_addr = 0UL; 582 ent->auth_iv_addr = 0UL; 583 ent->final_auth_state_addr = 0UL; 584 ent->enc_key_addr = 0UL; 585 ent->enc_iv_addr = 0UL; 586 ent->dest_addr = 0UL; 587 588 nbytes = crypto_hash_walk_done(&walk, 0); 589 } 590 ent->control |= CONTROL_END_OF_BLOCK; 591 592 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 593 err = -EINVAL; 594 else 595 err = 0; 596 597 spin_unlock_irqrestore(&qp->lock, flags); 598 599 if (!err) 600 memcpy(req->result, hash_loc, result_size); 601 out: 602 put_cpu(); 603 604 return err; 605 } 606 607 static int n2_hash_async_digest(struct ahash_request *req) 608 { 609 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 610 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 611 int ds; 612 613 ds = n2alg->digest_size; 614 if (unlikely(req->nbytes == 0)) { 615 memcpy(req->result, n2alg->hash_zero, ds); 616 return 0; 617 } 618 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 619 620 return n2_do_async_digest(req, n2alg->auth_type, 621 n2alg->hw_op_hashsz, ds, 622 &rctx->u, 0UL, 0); 623 } 624 625 static int n2_hmac_async_digest(struct ahash_request *req) 626 { 627 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 628 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 629 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 630 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 631 int ds; 632 633 ds = n2alg->derived.digest_size; 634 if (unlikely(req->nbytes == 0) || 635 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 636 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 637 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 638 639 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 640 rctx->fallback_req.base.flags = 641 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 642 rctx->fallback_req.nbytes = req->nbytes; 643 rctx->fallback_req.src = req->src; 644 rctx->fallback_req.result = req->result; 645 646 return crypto_ahash_digest(&rctx->fallback_req); 647 } 648 memcpy(&rctx->u, n2alg->derived.hash_init, 649 n2alg->derived.hw_op_hashsz); 650 651 return n2_do_async_digest(req, n2alg->derived.hmac_type, 652 n2alg->derived.hw_op_hashsz, ds, 653 &rctx->u, 654 __pa(&ctx->hash_key), 655 ctx->hash_key_len); 656 } 657 658 struct n2_skcipher_context { 659 int key_len; 660 int enc_type; 661 union { 662 u8 aes[AES_MAX_KEY_SIZE]; 663 u8 des[DES_KEY_SIZE]; 664 u8 des3[3 * DES_KEY_SIZE]; 665 } key; 666 }; 667 668 #define N2_CHUNK_ARR_LEN 16 669 670 struct n2_crypto_chunk { 671 struct list_head entry; 672 unsigned long iv_paddr : 44; 673 unsigned long arr_len : 20; 674 unsigned long dest_paddr; 675 unsigned long dest_final; 676 struct { 677 unsigned long src_paddr : 44; 678 unsigned long src_len : 20; 679 } arr[N2_CHUNK_ARR_LEN]; 680 }; 681 682 struct n2_request_context { 683 struct skcipher_walk walk; 684 struct list_head chunk_list; 685 struct n2_crypto_chunk chunk; 686 u8 temp_iv[16]; 687 }; 688 689 /* The SPU allows some level of flexibility for partial cipher blocks 690 * being specified in a descriptor. 691 * 692 * It merely requires that every descriptor's length field is at least 693 * as large as the cipher block size. This means that a cipher block 694 * can span at most 2 descriptors. However, this does not allow a 695 * partial block to span into the final descriptor as that would 696 * violate the rule (since every descriptor's length must be at lest 697 * the block size). So, for example, assuming an 8 byte block size: 698 * 699 * 0xe --> 0xa --> 0x8 700 * 701 * is a valid length sequence, whereas: 702 * 703 * 0xe --> 0xb --> 0x7 704 * 705 * is not a valid sequence. 706 */ 707 708 struct n2_skcipher_alg { 709 struct list_head entry; 710 u8 enc_type; 711 struct skcipher_alg skcipher; 712 }; 713 714 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 715 { 716 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 717 718 return container_of(alg, struct n2_skcipher_alg, skcipher); 719 } 720 721 struct n2_skcipher_request_context { 722 struct skcipher_walk walk; 723 }; 724 725 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 726 unsigned int keylen) 727 { 728 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 729 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 730 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 731 732 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 733 734 switch (keylen) { 735 case AES_KEYSIZE_128: 736 ctx->enc_type |= ENC_TYPE_ALG_AES128; 737 break; 738 case AES_KEYSIZE_192: 739 ctx->enc_type |= ENC_TYPE_ALG_AES192; 740 break; 741 case AES_KEYSIZE_256: 742 ctx->enc_type |= ENC_TYPE_ALG_AES256; 743 break; 744 default: 745 return -EINVAL; 746 } 747 748 ctx->key_len = keylen; 749 memcpy(ctx->key.aes, key, keylen); 750 return 0; 751 } 752 753 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 754 unsigned int keylen) 755 { 756 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 757 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 758 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 759 int err; 760 761 err = verify_skcipher_des_key(skcipher, key); 762 if (err) 763 return err; 764 765 ctx->enc_type = n2alg->enc_type; 766 767 ctx->key_len = keylen; 768 memcpy(ctx->key.des, key, keylen); 769 return 0; 770 } 771 772 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 773 unsigned int keylen) 774 { 775 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 776 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 777 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 778 int err; 779 780 err = verify_skcipher_des3_key(skcipher, key); 781 if (err) 782 return err; 783 784 ctx->enc_type = n2alg->enc_type; 785 786 ctx->key_len = keylen; 787 memcpy(ctx->key.des3, key, keylen); 788 return 0; 789 } 790 791 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 792 { 793 int this_len = nbytes; 794 795 this_len -= (nbytes & (block_size - 1)); 796 return this_len > (1 << 16) ? (1 << 16) : this_len; 797 } 798 799 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 800 struct n2_crypto_chunk *cp, 801 struct spu_queue *qp, bool encrypt) 802 { 803 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 804 struct cwq_initial_entry *ent; 805 bool in_place; 806 int i; 807 808 ent = spu_queue_alloc(qp, cp->arr_len); 809 if (!ent) { 810 pr_info("queue_alloc() of %d fails\n", 811 cp->arr_len); 812 return -EBUSY; 813 } 814 815 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 816 817 ent->control = control_word_base(cp->arr[0].src_len, 818 0, ctx->enc_type, 0, 0, 819 false, true, false, encrypt, 820 OPCODE_ENCRYPT | 821 (in_place ? OPCODE_INPLACE_BIT : 0)); 822 ent->src_addr = cp->arr[0].src_paddr; 823 ent->auth_key_addr = 0UL; 824 ent->auth_iv_addr = 0UL; 825 ent->final_auth_state_addr = 0UL; 826 ent->enc_key_addr = __pa(&ctx->key); 827 ent->enc_iv_addr = cp->iv_paddr; 828 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 829 830 for (i = 1; i < cp->arr_len; i++) { 831 ent = spu_queue_next(qp, ent); 832 833 ent->control = cp->arr[i].src_len - 1; 834 ent->src_addr = cp->arr[i].src_paddr; 835 ent->auth_key_addr = 0UL; 836 ent->auth_iv_addr = 0UL; 837 ent->final_auth_state_addr = 0UL; 838 ent->enc_key_addr = 0UL; 839 ent->enc_iv_addr = 0UL; 840 ent->dest_addr = 0UL; 841 } 842 ent->control |= CONTROL_END_OF_BLOCK; 843 844 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 845 } 846 847 static int n2_compute_chunks(struct skcipher_request *req) 848 { 849 struct n2_request_context *rctx = skcipher_request_ctx(req); 850 struct skcipher_walk *walk = &rctx->walk; 851 struct n2_crypto_chunk *chunk; 852 unsigned long dest_prev; 853 unsigned int tot_len; 854 bool prev_in_place; 855 int err, nbytes; 856 857 err = skcipher_walk_async(walk, req); 858 if (err) 859 return err; 860 861 INIT_LIST_HEAD(&rctx->chunk_list); 862 863 chunk = &rctx->chunk; 864 INIT_LIST_HEAD(&chunk->entry); 865 866 chunk->iv_paddr = 0UL; 867 chunk->arr_len = 0; 868 chunk->dest_paddr = 0UL; 869 870 prev_in_place = false; 871 dest_prev = ~0UL; 872 tot_len = 0; 873 874 while ((nbytes = walk->nbytes) != 0) { 875 unsigned long dest_paddr, src_paddr; 876 bool in_place; 877 int this_len; 878 879 src_paddr = (page_to_phys(walk->src.phys.page) + 880 walk->src.phys.offset); 881 dest_paddr = (page_to_phys(walk->dst.phys.page) + 882 walk->dst.phys.offset); 883 in_place = (src_paddr == dest_paddr); 884 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 885 886 if (chunk->arr_len != 0) { 887 if (in_place != prev_in_place || 888 (!prev_in_place && 889 dest_paddr != dest_prev) || 890 chunk->arr_len == N2_CHUNK_ARR_LEN || 891 tot_len + this_len > (1 << 16)) { 892 chunk->dest_final = dest_prev; 893 list_add_tail(&chunk->entry, 894 &rctx->chunk_list); 895 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 896 if (!chunk) { 897 err = -ENOMEM; 898 break; 899 } 900 INIT_LIST_HEAD(&chunk->entry); 901 } 902 } 903 if (chunk->arr_len == 0) { 904 chunk->dest_paddr = dest_paddr; 905 tot_len = 0; 906 } 907 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 908 chunk->arr[chunk->arr_len].src_len = this_len; 909 chunk->arr_len++; 910 911 dest_prev = dest_paddr + this_len; 912 prev_in_place = in_place; 913 tot_len += this_len; 914 915 err = skcipher_walk_done(walk, nbytes - this_len); 916 if (err) 917 break; 918 } 919 if (!err && chunk->arr_len != 0) { 920 chunk->dest_final = dest_prev; 921 list_add_tail(&chunk->entry, &rctx->chunk_list); 922 } 923 924 return err; 925 } 926 927 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 928 { 929 struct n2_request_context *rctx = skcipher_request_ctx(req); 930 struct n2_crypto_chunk *c, *tmp; 931 932 if (final_iv) 933 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 934 935 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 936 list_del(&c->entry); 937 if (unlikely(c != &rctx->chunk)) 938 kfree(c); 939 } 940 941 } 942 943 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 944 { 945 struct n2_request_context *rctx = skcipher_request_ctx(req); 946 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 947 int err = n2_compute_chunks(req); 948 struct n2_crypto_chunk *c, *tmp; 949 unsigned long flags, hv_ret; 950 struct spu_queue *qp; 951 952 if (err) 953 return err; 954 955 qp = cpu_to_cwq[get_cpu()]; 956 err = -ENODEV; 957 if (!qp) 958 goto out; 959 960 spin_lock_irqsave(&qp->lock, flags); 961 962 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 963 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 964 if (err) 965 break; 966 list_del(&c->entry); 967 if (unlikely(c != &rctx->chunk)) 968 kfree(c); 969 } 970 if (!err) { 971 hv_ret = wait_for_tail(qp); 972 if (hv_ret != HV_EOK) 973 err = -EINVAL; 974 } 975 976 spin_unlock_irqrestore(&qp->lock, flags); 977 978 out: 979 put_cpu(); 980 981 n2_chunk_complete(req, NULL); 982 return err; 983 } 984 985 static int n2_encrypt_ecb(struct skcipher_request *req) 986 { 987 return n2_do_ecb(req, true); 988 } 989 990 static int n2_decrypt_ecb(struct skcipher_request *req) 991 { 992 return n2_do_ecb(req, false); 993 } 994 995 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 996 { 997 struct n2_request_context *rctx = skcipher_request_ctx(req); 998 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 999 unsigned long flags, hv_ret, iv_paddr; 1000 int err = n2_compute_chunks(req); 1001 struct n2_crypto_chunk *c, *tmp; 1002 struct spu_queue *qp; 1003 void *final_iv_addr; 1004 1005 final_iv_addr = NULL; 1006 1007 if (err) 1008 return err; 1009 1010 qp = cpu_to_cwq[get_cpu()]; 1011 err = -ENODEV; 1012 if (!qp) 1013 goto out; 1014 1015 spin_lock_irqsave(&qp->lock, flags); 1016 1017 if (encrypt) { 1018 iv_paddr = __pa(rctx->walk.iv); 1019 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1020 entry) { 1021 c->iv_paddr = iv_paddr; 1022 err = __n2_crypt_chunk(tfm, c, qp, true); 1023 if (err) 1024 break; 1025 iv_paddr = c->dest_final - rctx->walk.blocksize; 1026 list_del(&c->entry); 1027 if (unlikely(c != &rctx->chunk)) 1028 kfree(c); 1029 } 1030 final_iv_addr = __va(iv_paddr); 1031 } else { 1032 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1033 entry) { 1034 if (c == &rctx->chunk) { 1035 iv_paddr = __pa(rctx->walk.iv); 1036 } else { 1037 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1038 tmp->arr[tmp->arr_len-1].src_len - 1039 rctx->walk.blocksize); 1040 } 1041 if (!final_iv_addr) { 1042 unsigned long pa; 1043 1044 pa = (c->arr[c->arr_len-1].src_paddr + 1045 c->arr[c->arr_len-1].src_len - 1046 rctx->walk.blocksize); 1047 final_iv_addr = rctx->temp_iv; 1048 memcpy(rctx->temp_iv, __va(pa), 1049 rctx->walk.blocksize); 1050 } 1051 c->iv_paddr = iv_paddr; 1052 err = __n2_crypt_chunk(tfm, c, qp, false); 1053 if (err) 1054 break; 1055 list_del(&c->entry); 1056 if (unlikely(c != &rctx->chunk)) 1057 kfree(c); 1058 } 1059 } 1060 if (!err) { 1061 hv_ret = wait_for_tail(qp); 1062 if (hv_ret != HV_EOK) 1063 err = -EINVAL; 1064 } 1065 1066 spin_unlock_irqrestore(&qp->lock, flags); 1067 1068 out: 1069 put_cpu(); 1070 1071 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1072 return err; 1073 } 1074 1075 static int n2_encrypt_chaining(struct skcipher_request *req) 1076 { 1077 return n2_do_chaining(req, true); 1078 } 1079 1080 static int n2_decrypt_chaining(struct skcipher_request *req) 1081 { 1082 return n2_do_chaining(req, false); 1083 } 1084 1085 struct n2_skcipher_tmpl { 1086 const char *name; 1087 const char *drv_name; 1088 u8 block_size; 1089 u8 enc_type; 1090 struct skcipher_alg skcipher; 1091 }; 1092 1093 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1094 /* DES: ECB CBC and CFB are supported */ 1095 { .name = "ecb(des)", 1096 .drv_name = "ecb-des", 1097 .block_size = DES_BLOCK_SIZE, 1098 .enc_type = (ENC_TYPE_ALG_DES | 1099 ENC_TYPE_CHAINING_ECB), 1100 .skcipher = { 1101 .min_keysize = DES_KEY_SIZE, 1102 .max_keysize = DES_KEY_SIZE, 1103 .setkey = n2_des_setkey, 1104 .encrypt = n2_encrypt_ecb, 1105 .decrypt = n2_decrypt_ecb, 1106 }, 1107 }, 1108 { .name = "cbc(des)", 1109 .drv_name = "cbc-des", 1110 .block_size = DES_BLOCK_SIZE, 1111 .enc_type = (ENC_TYPE_ALG_DES | 1112 ENC_TYPE_CHAINING_CBC), 1113 .skcipher = { 1114 .ivsize = DES_BLOCK_SIZE, 1115 .min_keysize = DES_KEY_SIZE, 1116 .max_keysize = DES_KEY_SIZE, 1117 .setkey = n2_des_setkey, 1118 .encrypt = n2_encrypt_chaining, 1119 .decrypt = n2_decrypt_chaining, 1120 }, 1121 }, 1122 { .name = "cfb(des)", 1123 .drv_name = "cfb-des", 1124 .block_size = DES_BLOCK_SIZE, 1125 .enc_type = (ENC_TYPE_ALG_DES | 1126 ENC_TYPE_CHAINING_CFB), 1127 .skcipher = { 1128 .min_keysize = DES_KEY_SIZE, 1129 .max_keysize = DES_KEY_SIZE, 1130 .setkey = n2_des_setkey, 1131 .encrypt = n2_encrypt_chaining, 1132 .decrypt = n2_decrypt_chaining, 1133 }, 1134 }, 1135 1136 /* 3DES: ECB CBC and CFB are supported */ 1137 { .name = "ecb(des3_ede)", 1138 .drv_name = "ecb-3des", 1139 .block_size = DES_BLOCK_SIZE, 1140 .enc_type = (ENC_TYPE_ALG_3DES | 1141 ENC_TYPE_CHAINING_ECB), 1142 .skcipher = { 1143 .min_keysize = 3 * DES_KEY_SIZE, 1144 .max_keysize = 3 * DES_KEY_SIZE, 1145 .setkey = n2_3des_setkey, 1146 .encrypt = n2_encrypt_ecb, 1147 .decrypt = n2_decrypt_ecb, 1148 }, 1149 }, 1150 { .name = "cbc(des3_ede)", 1151 .drv_name = "cbc-3des", 1152 .block_size = DES_BLOCK_SIZE, 1153 .enc_type = (ENC_TYPE_ALG_3DES | 1154 ENC_TYPE_CHAINING_CBC), 1155 .skcipher = { 1156 .ivsize = DES_BLOCK_SIZE, 1157 .min_keysize = 3 * DES_KEY_SIZE, 1158 .max_keysize = 3 * DES_KEY_SIZE, 1159 .setkey = n2_3des_setkey, 1160 .encrypt = n2_encrypt_chaining, 1161 .decrypt = n2_decrypt_chaining, 1162 }, 1163 }, 1164 { .name = "cfb(des3_ede)", 1165 .drv_name = "cfb-3des", 1166 .block_size = DES_BLOCK_SIZE, 1167 .enc_type = (ENC_TYPE_ALG_3DES | 1168 ENC_TYPE_CHAINING_CFB), 1169 .skcipher = { 1170 .min_keysize = 3 * DES_KEY_SIZE, 1171 .max_keysize = 3 * DES_KEY_SIZE, 1172 .setkey = n2_3des_setkey, 1173 .encrypt = n2_encrypt_chaining, 1174 .decrypt = n2_decrypt_chaining, 1175 }, 1176 }, 1177 /* AES: ECB CBC and CTR are supported */ 1178 { .name = "ecb(aes)", 1179 .drv_name = "ecb-aes", 1180 .block_size = AES_BLOCK_SIZE, 1181 .enc_type = (ENC_TYPE_ALG_AES128 | 1182 ENC_TYPE_CHAINING_ECB), 1183 .skcipher = { 1184 .min_keysize = AES_MIN_KEY_SIZE, 1185 .max_keysize = AES_MAX_KEY_SIZE, 1186 .setkey = n2_aes_setkey, 1187 .encrypt = n2_encrypt_ecb, 1188 .decrypt = n2_decrypt_ecb, 1189 }, 1190 }, 1191 { .name = "cbc(aes)", 1192 .drv_name = "cbc-aes", 1193 .block_size = AES_BLOCK_SIZE, 1194 .enc_type = (ENC_TYPE_ALG_AES128 | 1195 ENC_TYPE_CHAINING_CBC), 1196 .skcipher = { 1197 .ivsize = AES_BLOCK_SIZE, 1198 .min_keysize = AES_MIN_KEY_SIZE, 1199 .max_keysize = AES_MAX_KEY_SIZE, 1200 .setkey = n2_aes_setkey, 1201 .encrypt = n2_encrypt_chaining, 1202 .decrypt = n2_decrypt_chaining, 1203 }, 1204 }, 1205 { .name = "ctr(aes)", 1206 .drv_name = "ctr-aes", 1207 .block_size = AES_BLOCK_SIZE, 1208 .enc_type = (ENC_TYPE_ALG_AES128 | 1209 ENC_TYPE_CHAINING_COUNTER), 1210 .skcipher = { 1211 .ivsize = AES_BLOCK_SIZE, 1212 .min_keysize = AES_MIN_KEY_SIZE, 1213 .max_keysize = AES_MAX_KEY_SIZE, 1214 .setkey = n2_aes_setkey, 1215 .encrypt = n2_encrypt_chaining, 1216 .decrypt = n2_encrypt_chaining, 1217 }, 1218 }, 1219 1220 }; 1221 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1222 1223 static LIST_HEAD(skcipher_algs); 1224 1225 struct n2_hash_tmpl { 1226 const char *name; 1227 const u8 *hash_zero; 1228 const u8 *hash_init; 1229 u8 hw_op_hashsz; 1230 u8 digest_size; 1231 u8 block_size; 1232 u8 auth_type; 1233 u8 hmac_type; 1234 }; 1235 1236 static const __le32 n2_md5_init[MD5_HASH_WORDS] = { 1237 cpu_to_le32(MD5_H0), 1238 cpu_to_le32(MD5_H1), 1239 cpu_to_le32(MD5_H2), 1240 cpu_to_le32(MD5_H3), 1241 }; 1242 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1243 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1244 }; 1245 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1246 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1247 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1248 }; 1249 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1250 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1251 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1252 }; 1253 1254 static const struct n2_hash_tmpl hash_tmpls[] = { 1255 { .name = "md5", 1256 .hash_zero = md5_zero_message_hash, 1257 .hash_init = (u8 *)n2_md5_init, 1258 .auth_type = AUTH_TYPE_MD5, 1259 .hmac_type = AUTH_TYPE_HMAC_MD5, 1260 .hw_op_hashsz = MD5_DIGEST_SIZE, 1261 .digest_size = MD5_DIGEST_SIZE, 1262 .block_size = MD5_HMAC_BLOCK_SIZE }, 1263 { .name = "sha1", 1264 .hash_zero = sha1_zero_message_hash, 1265 .hash_init = (u8 *)n2_sha1_init, 1266 .auth_type = AUTH_TYPE_SHA1, 1267 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1268 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1269 .digest_size = SHA1_DIGEST_SIZE, 1270 .block_size = SHA1_BLOCK_SIZE }, 1271 { .name = "sha256", 1272 .hash_zero = sha256_zero_message_hash, 1273 .hash_init = (u8 *)n2_sha256_init, 1274 .auth_type = AUTH_TYPE_SHA256, 1275 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1276 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1277 .digest_size = SHA256_DIGEST_SIZE, 1278 .block_size = SHA256_BLOCK_SIZE }, 1279 { .name = "sha224", 1280 .hash_zero = sha224_zero_message_hash, 1281 .hash_init = (u8 *)n2_sha224_init, 1282 .auth_type = AUTH_TYPE_SHA256, 1283 .hmac_type = AUTH_TYPE_RESERVED, 1284 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1285 .digest_size = SHA224_DIGEST_SIZE, 1286 .block_size = SHA224_BLOCK_SIZE }, 1287 }; 1288 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1289 1290 static LIST_HEAD(ahash_algs); 1291 static LIST_HEAD(hmac_algs); 1292 1293 static int algs_registered; 1294 1295 static void __n2_unregister_algs(void) 1296 { 1297 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1298 struct n2_ahash_alg *alg, *alg_tmp; 1299 struct n2_hmac_alg *hmac, *hmac_tmp; 1300 1301 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1302 crypto_unregister_skcipher(&skcipher->skcipher); 1303 list_del(&skcipher->entry); 1304 kfree(skcipher); 1305 } 1306 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1307 crypto_unregister_ahash(&hmac->derived.alg); 1308 list_del(&hmac->derived.entry); 1309 kfree(hmac); 1310 } 1311 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1312 crypto_unregister_ahash(&alg->alg); 1313 list_del(&alg->entry); 1314 kfree(alg); 1315 } 1316 } 1317 1318 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1319 { 1320 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1321 return 0; 1322 } 1323 1324 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1325 { 1326 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1327 struct skcipher_alg *alg; 1328 int err; 1329 1330 if (!p) 1331 return -ENOMEM; 1332 1333 alg = &p->skcipher; 1334 *alg = tmpl->skcipher; 1335 1336 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1337 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1338 alg->base.cra_priority = N2_CRA_PRIORITY; 1339 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 1340 CRYPTO_ALG_ALLOCATES_MEMORY; 1341 alg->base.cra_blocksize = tmpl->block_size; 1342 p->enc_type = tmpl->enc_type; 1343 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1344 alg->base.cra_module = THIS_MODULE; 1345 alg->init = n2_skcipher_init_tfm; 1346 1347 list_add(&p->entry, &skcipher_algs); 1348 err = crypto_register_skcipher(alg); 1349 if (err) { 1350 pr_err("%s alg registration failed\n", alg->base.cra_name); 1351 list_del(&p->entry); 1352 kfree(p); 1353 } else { 1354 pr_info("%s alg registered\n", alg->base.cra_name); 1355 } 1356 return err; 1357 } 1358 1359 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1360 { 1361 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1362 struct ahash_alg *ahash; 1363 struct crypto_alg *base; 1364 int err; 1365 1366 if (!p) 1367 return -ENOMEM; 1368 1369 p->child_alg = n2ahash->alg.halg.base.cra_name; 1370 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1371 INIT_LIST_HEAD(&p->derived.entry); 1372 1373 ahash = &p->derived.alg; 1374 ahash->digest = n2_hmac_async_digest; 1375 ahash->setkey = n2_hmac_async_setkey; 1376 1377 base = &ahash->halg.base; 1378 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); 1379 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); 1380 1381 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1382 base->cra_init = n2_hmac_cra_init; 1383 base->cra_exit = n2_hmac_cra_exit; 1384 1385 list_add(&p->derived.entry, &hmac_algs); 1386 err = crypto_register_ahash(ahash); 1387 if (err) { 1388 pr_err("%s alg registration failed\n", base->cra_name); 1389 list_del(&p->derived.entry); 1390 kfree(p); 1391 } else { 1392 pr_info("%s alg registered\n", base->cra_name); 1393 } 1394 return err; 1395 } 1396 1397 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1398 { 1399 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1400 struct hash_alg_common *halg; 1401 struct crypto_alg *base; 1402 struct ahash_alg *ahash; 1403 int err; 1404 1405 if (!p) 1406 return -ENOMEM; 1407 1408 p->hash_zero = tmpl->hash_zero; 1409 p->hash_init = tmpl->hash_init; 1410 p->auth_type = tmpl->auth_type; 1411 p->hmac_type = tmpl->hmac_type; 1412 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1413 p->digest_size = tmpl->digest_size; 1414 1415 ahash = &p->alg; 1416 ahash->init = n2_hash_async_init; 1417 ahash->update = n2_hash_async_update; 1418 ahash->final = n2_hash_async_final; 1419 ahash->finup = n2_hash_async_finup; 1420 ahash->digest = n2_hash_async_digest; 1421 ahash->export = n2_hash_async_noexport; 1422 ahash->import = n2_hash_async_noimport; 1423 1424 halg = &ahash->halg; 1425 halg->digestsize = tmpl->digest_size; 1426 1427 base = &halg->base; 1428 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1429 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1430 base->cra_priority = N2_CRA_PRIORITY; 1431 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1432 CRYPTO_ALG_NEED_FALLBACK; 1433 base->cra_blocksize = tmpl->block_size; 1434 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1435 base->cra_module = THIS_MODULE; 1436 base->cra_init = n2_hash_cra_init; 1437 base->cra_exit = n2_hash_cra_exit; 1438 1439 list_add(&p->entry, &ahash_algs); 1440 err = crypto_register_ahash(ahash); 1441 if (err) { 1442 pr_err("%s alg registration failed\n", base->cra_name); 1443 list_del(&p->entry); 1444 kfree(p); 1445 } else { 1446 pr_info("%s alg registered\n", base->cra_name); 1447 } 1448 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1449 err = __n2_register_one_hmac(p); 1450 return err; 1451 } 1452 1453 static int n2_register_algs(void) 1454 { 1455 int i, err = 0; 1456 1457 mutex_lock(&spu_lock); 1458 if (algs_registered++) 1459 goto out; 1460 1461 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1462 err = __n2_register_one_ahash(&hash_tmpls[i]); 1463 if (err) { 1464 __n2_unregister_algs(); 1465 goto out; 1466 } 1467 } 1468 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1469 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1470 if (err) { 1471 __n2_unregister_algs(); 1472 goto out; 1473 } 1474 } 1475 1476 out: 1477 mutex_unlock(&spu_lock); 1478 return err; 1479 } 1480 1481 static void n2_unregister_algs(void) 1482 { 1483 mutex_lock(&spu_lock); 1484 if (!--algs_registered) 1485 __n2_unregister_algs(); 1486 mutex_unlock(&spu_lock); 1487 } 1488 1489 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1490 * a devino. This isn't very useful to us because all of the 1491 * interrupts listed in the device_node have been translated to 1492 * Linux virtual IRQ cookie numbers. 1493 * 1494 * So we have to back-translate, going through the 'intr' and 'ino' 1495 * property tables of the n2cp MDESC node, matching it with the OF 1496 * 'interrupts' property entries, in order to to figure out which 1497 * devino goes to which already-translated IRQ. 1498 */ 1499 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1500 unsigned long dev_ino) 1501 { 1502 const unsigned int *dev_intrs; 1503 unsigned int intr; 1504 int i; 1505 1506 for (i = 0; i < ip->num_intrs; i++) { 1507 if (ip->ino_table[i].ino == dev_ino) 1508 break; 1509 } 1510 if (i == ip->num_intrs) 1511 return -ENODEV; 1512 1513 intr = ip->ino_table[i].intr; 1514 1515 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1516 if (!dev_intrs) 1517 return -ENODEV; 1518 1519 for (i = 0; i < dev->archdata.num_irqs; i++) { 1520 if (dev_intrs[i] == intr) 1521 return i; 1522 } 1523 1524 return -ENODEV; 1525 } 1526 1527 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1528 const char *irq_name, struct spu_queue *p, 1529 irq_handler_t handler) 1530 { 1531 unsigned long herr; 1532 int index; 1533 1534 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1535 if (herr) 1536 return -EINVAL; 1537 1538 index = find_devino_index(dev, ip, p->devino); 1539 if (index < 0) 1540 return index; 1541 1542 p->irq = dev->archdata.irqs[index]; 1543 1544 sprintf(p->irq_name, "%s-%d", irq_name, index); 1545 1546 return request_irq(p->irq, handler, 0, p->irq_name, p); 1547 } 1548 1549 static struct kmem_cache *queue_cache[2]; 1550 1551 static void *new_queue(unsigned long q_type) 1552 { 1553 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1554 } 1555 1556 static void free_queue(void *p, unsigned long q_type) 1557 { 1558 kmem_cache_free(queue_cache[q_type - 1], p); 1559 } 1560 1561 static int queue_cache_init(void) 1562 { 1563 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1564 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1565 kmem_cache_create("mau_queue", 1566 (MAU_NUM_ENTRIES * 1567 MAU_ENTRY_SIZE), 1568 MAU_ENTRY_SIZE, 0, NULL); 1569 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1570 return -ENOMEM; 1571 1572 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1573 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1574 kmem_cache_create("cwq_queue", 1575 (CWQ_NUM_ENTRIES * 1576 CWQ_ENTRY_SIZE), 1577 CWQ_ENTRY_SIZE, 0, NULL); 1578 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1579 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1580 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1581 return -ENOMEM; 1582 } 1583 return 0; 1584 } 1585 1586 static void queue_cache_destroy(void) 1587 { 1588 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1589 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1590 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1591 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1592 } 1593 1594 static long spu_queue_register_workfn(void *arg) 1595 { 1596 struct spu_qreg *qr = arg; 1597 struct spu_queue *p = qr->queue; 1598 unsigned long q_type = qr->type; 1599 unsigned long hv_ret; 1600 1601 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1602 CWQ_NUM_ENTRIES, &p->qhandle); 1603 if (!hv_ret) 1604 sun4v_ncs_sethead_marker(p->qhandle, 0); 1605 1606 return hv_ret ? -EINVAL : 0; 1607 } 1608 1609 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1610 { 1611 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1612 struct spu_qreg qr = { .queue = p, .type = q_type }; 1613 1614 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1615 } 1616 1617 static int spu_queue_setup(struct spu_queue *p) 1618 { 1619 int err; 1620 1621 p->q = new_queue(p->q_type); 1622 if (!p->q) 1623 return -ENOMEM; 1624 1625 err = spu_queue_register(p, p->q_type); 1626 if (err) { 1627 free_queue(p->q, p->q_type); 1628 p->q = NULL; 1629 } 1630 1631 return err; 1632 } 1633 1634 static void spu_queue_destroy(struct spu_queue *p) 1635 { 1636 unsigned long hv_ret; 1637 1638 if (!p->q) 1639 return; 1640 1641 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1642 1643 if (!hv_ret) 1644 free_queue(p->q, p->q_type); 1645 } 1646 1647 static void spu_list_destroy(struct list_head *list) 1648 { 1649 struct spu_queue *p, *n; 1650 1651 list_for_each_entry_safe(p, n, list, list) { 1652 int i; 1653 1654 for (i = 0; i < NR_CPUS; i++) { 1655 if (cpu_to_cwq[i] == p) 1656 cpu_to_cwq[i] = NULL; 1657 } 1658 1659 if (p->irq) { 1660 free_irq(p->irq, p); 1661 p->irq = 0; 1662 } 1663 spu_queue_destroy(p); 1664 list_del(&p->list); 1665 kfree(p); 1666 } 1667 } 1668 1669 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1670 * gathering cpu membership information. 1671 */ 1672 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1673 struct platform_device *dev, 1674 u64 node, struct spu_queue *p, 1675 struct spu_queue **table) 1676 { 1677 u64 arc; 1678 1679 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1680 u64 tgt = mdesc_arc_target(mdesc, arc); 1681 const char *name = mdesc_node_name(mdesc, tgt); 1682 const u64 *id; 1683 1684 if (strcmp(name, "cpu")) 1685 continue; 1686 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1687 if (table[*id] != NULL) { 1688 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1689 dev->dev.of_node); 1690 return -EINVAL; 1691 } 1692 cpumask_set_cpu(*id, &p->sharing); 1693 table[*id] = p; 1694 } 1695 return 0; 1696 } 1697 1698 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1699 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1700 struct platform_device *dev, struct mdesc_handle *mdesc, 1701 u64 node, const char *iname, unsigned long q_type, 1702 irq_handler_t handler, struct spu_queue **table) 1703 { 1704 struct spu_queue *p; 1705 int err; 1706 1707 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1708 if (!p) { 1709 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1710 dev->dev.of_node); 1711 return -ENOMEM; 1712 } 1713 1714 cpumask_clear(&p->sharing); 1715 spin_lock_init(&p->lock); 1716 p->q_type = q_type; 1717 INIT_LIST_HEAD(&p->jobs); 1718 list_add(&p->list, list); 1719 1720 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1721 if (err) 1722 return err; 1723 1724 err = spu_queue_setup(p); 1725 if (err) 1726 return err; 1727 1728 return spu_map_ino(dev, ip, iname, p, handler); 1729 } 1730 1731 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1732 struct spu_mdesc_info *ip, struct list_head *list, 1733 const char *exec_name, unsigned long q_type, 1734 irq_handler_t handler, struct spu_queue **table) 1735 { 1736 int err = 0; 1737 u64 node; 1738 1739 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1740 const char *type; 1741 1742 type = mdesc_get_property(mdesc, node, "type", NULL); 1743 if (!type || strcmp(type, exec_name)) 1744 continue; 1745 1746 err = handle_exec_unit(ip, list, dev, mdesc, node, 1747 exec_name, q_type, handler, table); 1748 if (err) { 1749 spu_list_destroy(list); 1750 break; 1751 } 1752 } 1753 1754 return err; 1755 } 1756 1757 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1758 struct spu_mdesc_info *ip) 1759 { 1760 const u64 *ino; 1761 int ino_len; 1762 int i; 1763 1764 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1765 if (!ino) { 1766 printk("NO 'ino'\n"); 1767 return -ENODEV; 1768 } 1769 1770 ip->num_intrs = ino_len / sizeof(u64); 1771 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1772 ip->num_intrs), 1773 GFP_KERNEL); 1774 if (!ip->ino_table) 1775 return -ENOMEM; 1776 1777 for (i = 0; i < ip->num_intrs; i++) { 1778 struct ino_blob *b = &ip->ino_table[i]; 1779 b->intr = i + 1; 1780 b->ino = ino[i]; 1781 } 1782 1783 return 0; 1784 } 1785 1786 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1787 struct platform_device *dev, 1788 struct spu_mdesc_info *ip, 1789 const char *node_name) 1790 { 1791 const unsigned int *reg; 1792 u64 node; 1793 1794 reg = of_get_property(dev->dev.of_node, "reg", NULL); 1795 if (!reg) 1796 return -ENODEV; 1797 1798 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1799 const char *name; 1800 const u64 *chdl; 1801 1802 name = mdesc_get_property(mdesc, node, "name", NULL); 1803 if (!name || strcmp(name, node_name)) 1804 continue; 1805 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1806 if (!chdl || (*chdl != *reg)) 1807 continue; 1808 ip->cfg_handle = *chdl; 1809 return get_irq_props(mdesc, node, ip); 1810 } 1811 1812 return -ENODEV; 1813 } 1814 1815 static unsigned long n2_spu_hvapi_major; 1816 static unsigned long n2_spu_hvapi_minor; 1817 1818 static int n2_spu_hvapi_register(void) 1819 { 1820 int err; 1821 1822 n2_spu_hvapi_major = 2; 1823 n2_spu_hvapi_minor = 0; 1824 1825 err = sun4v_hvapi_register(HV_GRP_NCS, 1826 n2_spu_hvapi_major, 1827 &n2_spu_hvapi_minor); 1828 1829 if (!err) 1830 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1831 n2_spu_hvapi_major, 1832 n2_spu_hvapi_minor); 1833 1834 return err; 1835 } 1836 1837 static void n2_spu_hvapi_unregister(void) 1838 { 1839 sun4v_hvapi_unregister(HV_GRP_NCS); 1840 } 1841 1842 static int global_ref; 1843 1844 static int grab_global_resources(void) 1845 { 1846 int err = 0; 1847 1848 mutex_lock(&spu_lock); 1849 1850 if (global_ref++) 1851 goto out; 1852 1853 err = n2_spu_hvapi_register(); 1854 if (err) 1855 goto out; 1856 1857 err = queue_cache_init(); 1858 if (err) 1859 goto out_hvapi_release; 1860 1861 err = -ENOMEM; 1862 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1863 GFP_KERNEL); 1864 if (!cpu_to_cwq) 1865 goto out_queue_cache_destroy; 1866 1867 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1868 GFP_KERNEL); 1869 if (!cpu_to_mau) 1870 goto out_free_cwq_table; 1871 1872 err = 0; 1873 1874 out: 1875 if (err) 1876 global_ref--; 1877 mutex_unlock(&spu_lock); 1878 return err; 1879 1880 out_free_cwq_table: 1881 kfree(cpu_to_cwq); 1882 cpu_to_cwq = NULL; 1883 1884 out_queue_cache_destroy: 1885 queue_cache_destroy(); 1886 1887 out_hvapi_release: 1888 n2_spu_hvapi_unregister(); 1889 goto out; 1890 } 1891 1892 static void release_global_resources(void) 1893 { 1894 mutex_lock(&spu_lock); 1895 if (!--global_ref) { 1896 kfree(cpu_to_cwq); 1897 cpu_to_cwq = NULL; 1898 1899 kfree(cpu_to_mau); 1900 cpu_to_mau = NULL; 1901 1902 queue_cache_destroy(); 1903 n2_spu_hvapi_unregister(); 1904 } 1905 mutex_unlock(&spu_lock); 1906 } 1907 1908 static struct n2_crypto *alloc_n2cp(void) 1909 { 1910 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1911 1912 if (np) 1913 INIT_LIST_HEAD(&np->cwq_list); 1914 1915 return np; 1916 } 1917 1918 static void free_n2cp(struct n2_crypto *np) 1919 { 1920 kfree(np->cwq_info.ino_table); 1921 np->cwq_info.ino_table = NULL; 1922 1923 kfree(np); 1924 } 1925 1926 static void n2_spu_driver_version(void) 1927 { 1928 static int n2_spu_version_printed; 1929 1930 if (n2_spu_version_printed++ == 0) 1931 pr_info("%s", version); 1932 } 1933 1934 static int n2_crypto_probe(struct platform_device *dev) 1935 { 1936 struct mdesc_handle *mdesc; 1937 struct n2_crypto *np; 1938 int err; 1939 1940 n2_spu_driver_version(); 1941 1942 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1943 1944 np = alloc_n2cp(); 1945 if (!np) { 1946 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1947 dev->dev.of_node); 1948 return -ENOMEM; 1949 } 1950 1951 err = grab_global_resources(); 1952 if (err) { 1953 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 1954 dev->dev.of_node); 1955 goto out_free_n2cp; 1956 } 1957 1958 mdesc = mdesc_grab(); 1959 1960 if (!mdesc) { 1961 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 1962 dev->dev.of_node); 1963 err = -ENODEV; 1964 goto out_free_global; 1965 } 1966 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 1967 if (err) { 1968 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 1969 dev->dev.of_node); 1970 mdesc_release(mdesc); 1971 goto out_free_global; 1972 } 1973 1974 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 1975 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 1976 cpu_to_cwq); 1977 mdesc_release(mdesc); 1978 1979 if (err) { 1980 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 1981 dev->dev.of_node); 1982 goto out_free_global; 1983 } 1984 1985 err = n2_register_algs(); 1986 if (err) { 1987 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 1988 dev->dev.of_node); 1989 goto out_free_spu_list; 1990 } 1991 1992 dev_set_drvdata(&dev->dev, np); 1993 1994 return 0; 1995 1996 out_free_spu_list: 1997 spu_list_destroy(&np->cwq_list); 1998 1999 out_free_global: 2000 release_global_resources(); 2001 2002 out_free_n2cp: 2003 free_n2cp(np); 2004 2005 return err; 2006 } 2007 2008 static int n2_crypto_remove(struct platform_device *dev) 2009 { 2010 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 2011 2012 n2_unregister_algs(); 2013 2014 spu_list_destroy(&np->cwq_list); 2015 2016 release_global_resources(); 2017 2018 free_n2cp(np); 2019 2020 return 0; 2021 } 2022 2023 static struct n2_mau *alloc_ncp(void) 2024 { 2025 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2026 2027 if (mp) 2028 INIT_LIST_HEAD(&mp->mau_list); 2029 2030 return mp; 2031 } 2032 2033 static void free_ncp(struct n2_mau *mp) 2034 { 2035 kfree(mp->mau_info.ino_table); 2036 mp->mau_info.ino_table = NULL; 2037 2038 kfree(mp); 2039 } 2040 2041 static int n2_mau_probe(struct platform_device *dev) 2042 { 2043 struct mdesc_handle *mdesc; 2044 struct n2_mau *mp; 2045 int err; 2046 2047 n2_spu_driver_version(); 2048 2049 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2050 2051 mp = alloc_ncp(); 2052 if (!mp) { 2053 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2054 dev->dev.of_node); 2055 return -ENOMEM; 2056 } 2057 2058 err = grab_global_resources(); 2059 if (err) { 2060 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2061 dev->dev.of_node); 2062 goto out_free_ncp; 2063 } 2064 2065 mdesc = mdesc_grab(); 2066 2067 if (!mdesc) { 2068 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2069 dev->dev.of_node); 2070 err = -ENODEV; 2071 goto out_free_global; 2072 } 2073 2074 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2075 if (err) { 2076 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2077 dev->dev.of_node); 2078 mdesc_release(mdesc); 2079 goto out_free_global; 2080 } 2081 2082 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2083 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2084 cpu_to_mau); 2085 mdesc_release(mdesc); 2086 2087 if (err) { 2088 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2089 dev->dev.of_node); 2090 goto out_free_global; 2091 } 2092 2093 dev_set_drvdata(&dev->dev, mp); 2094 2095 return 0; 2096 2097 out_free_global: 2098 release_global_resources(); 2099 2100 out_free_ncp: 2101 free_ncp(mp); 2102 2103 return err; 2104 } 2105 2106 static int n2_mau_remove(struct platform_device *dev) 2107 { 2108 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2109 2110 spu_list_destroy(&mp->mau_list); 2111 2112 release_global_resources(); 2113 2114 free_ncp(mp); 2115 2116 return 0; 2117 } 2118 2119 static const struct of_device_id n2_crypto_match[] = { 2120 { 2121 .name = "n2cp", 2122 .compatible = "SUNW,n2-cwq", 2123 }, 2124 { 2125 .name = "n2cp", 2126 .compatible = "SUNW,vf-cwq", 2127 }, 2128 { 2129 .name = "n2cp", 2130 .compatible = "SUNW,kt-cwq", 2131 }, 2132 {}, 2133 }; 2134 2135 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2136 2137 static struct platform_driver n2_crypto_driver = { 2138 .driver = { 2139 .name = "n2cp", 2140 .of_match_table = n2_crypto_match, 2141 }, 2142 .probe = n2_crypto_probe, 2143 .remove = n2_crypto_remove, 2144 }; 2145 2146 static const struct of_device_id n2_mau_match[] = { 2147 { 2148 .name = "ncp", 2149 .compatible = "SUNW,n2-mau", 2150 }, 2151 { 2152 .name = "ncp", 2153 .compatible = "SUNW,vf-mau", 2154 }, 2155 { 2156 .name = "ncp", 2157 .compatible = "SUNW,kt-mau", 2158 }, 2159 {}, 2160 }; 2161 2162 MODULE_DEVICE_TABLE(of, n2_mau_match); 2163 2164 static struct platform_driver n2_mau_driver = { 2165 .driver = { 2166 .name = "ncp", 2167 .of_match_table = n2_mau_match, 2168 }, 2169 .probe = n2_mau_probe, 2170 .remove = n2_mau_remove, 2171 }; 2172 2173 static struct platform_driver * const drivers[] = { 2174 &n2_crypto_driver, 2175 &n2_mau_driver, 2176 }; 2177 2178 static int __init n2_init(void) 2179 { 2180 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2181 } 2182 2183 static void __exit n2_exit(void) 2184 { 2185 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2186 } 2187 2188 module_init(n2_init); 2189 module_exit(n2_exit); 2190