xref: /openbmc/linux/drivers/crypto/n2_core.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 struct spu_qreg {
69 	struct spu_queue	*queue;
70 	unsigned long		type;
71 };
72 
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75 
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 	if (q->q_type == HV_NCS_QTYPE_MAU) {
79 		off += MAU_ENTRY_SIZE;
80 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 			off = 0;
82 	} else {
83 		off += CWQ_ENTRY_SIZE;
84 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 			off = 0;
86 	}
87 	return off;
88 }
89 
90 struct n2_request_common {
91 	struct list_head	entry;
92 	unsigned int		offset;
93 };
94 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
95 
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 				unsigned long old_head, unsigned long new_head)
102 {
103 	if (old_head <= new_head) {
104 		if (offset > old_head && offset <= new_head)
105 			return true;
106 	} else {
107 		if (offset > old_head || offset <= new_head)
108 			return true;
109 	}
110 	return false;
111 }
112 
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 	unsigned long off, new_head, hv_ret;
121 	struct spu_queue *q = dev_id;
122 
123 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 	       smp_processor_id(), q->qhandle);
125 
126 	spin_lock(&q->lock);
127 
128 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129 
130 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 	       smp_processor_id(), new_head, hv_ret);
132 
133 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 		/* XXX ... XXX */
135 	}
136 
137 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 	if (hv_ret == HV_EOK)
139 		q->head = new_head;
140 
141 	spin_unlock(&q->lock);
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 	struct spu_queue *q = dev_id;
149 	unsigned long head, hv_ret;
150 
151 	spin_lock(&q->lock);
152 
153 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 	       smp_processor_id(), q->qhandle);
155 
156 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157 
158 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 	       smp_processor_id(), head, hv_ret);
160 
161 	sun4v_ncs_sethead_marker(q->qhandle, head);
162 
163 	spin_unlock(&q->lock);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 	return q->q + spu_next_offset(q, cur - q->q);
171 }
172 
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 	unsigned long head = q->head;
176 	unsigned long tail = q->tail;
177 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 	unsigned long diff;
179 
180 	if (head > tail)
181 		diff = head - tail;
182 	else
183 		diff = (end - tail) + head;
184 
185 	return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187 
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 	int avail = spu_queue_num_free(q);
191 
192 	if (avail >= num_entries)
193 		return q->q + q->tail;
194 
195 	return NULL;
196 }
197 
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 	unsigned long hv_ret, new_tail;
201 
202 	new_tail = spu_next_offset(q, last - q->q);
203 
204 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 	if (hv_ret == HV_EOK)
206 		q->tail = new_tail;
207 	return hv_ret;
208 }
209 
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 			     int enc_type, int auth_type,
212 			     unsigned int hash_len,
213 			     bool sfas, bool sob, bool eob, bool encrypt,
214 			     int opcode)
215 {
216 	u64 word = (len - 1) & CONTROL_LEN;
217 
218 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 	if (sfas)
222 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 	if (sob)
224 		word |= CONTROL_START_OF_BLOCK;
225 	if (eob)
226 		word |= CONTROL_END_OF_BLOCK;
227 	if (encrypt)
228 		word |= CONTROL_ENCRYPT;
229 	if (hmac_key_len)
230 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 	if (hash_len)
232 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 
234 	return word;
235 }
236 
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 	if (this_len >= 64 ||
241 	    qp->head != qp->tail)
242 		return true;
243 	return false;
244 }
245 #endif
246 
247 struct n2_ahash_alg {
248 	struct list_head	entry;
249 	const u8		*hash_zero;
250 	const u32		*hash_init;
251 	u8			hw_op_hashsz;
252 	u8			digest_size;
253 	u8			auth_type;
254 	u8			hmac_type;
255 	struct ahash_alg	alg;
256 };
257 
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 	struct crypto_alg *alg = tfm->__crt_alg;
261 	struct ahash_alg *ahash_alg;
262 
263 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264 
265 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267 
268 struct n2_hmac_alg {
269 	const char		*child_alg;
270 	struct n2_ahash_alg	derived;
271 };
272 
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 	struct crypto_alg *alg = tfm->__crt_alg;
276 	struct ahash_alg *ahash_alg;
277 
278 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279 
280 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282 
283 struct n2_hash_ctx {
284 	struct crypto_ahash		*fallback_tfm;
285 };
286 
287 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
288 
289 struct n2_hmac_ctx {
290 	struct n2_hash_ctx		base;
291 
292 	struct crypto_shash		*child_shash;
293 
294 	int				hash_key_len;
295 	unsigned char			hash_key[N2_HASH_KEY_MAX];
296 };
297 
298 struct n2_hash_req_ctx {
299 	union {
300 		struct md5_state	md5;
301 		struct sha1_state	sha1;
302 		struct sha256_state	sha256;
303 	} u;
304 
305 	struct ahash_request		fallback_req;
306 };
307 
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313 
314 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316 
317 	return crypto_ahash_init(&rctx->fallback_req);
318 }
319 
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325 
326 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 	rctx->fallback_req.nbytes = req->nbytes;
329 	rctx->fallback_req.src = req->src;
330 
331 	return crypto_ahash_update(&rctx->fallback_req);
332 }
333 
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339 
340 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 	rctx->fallback_req.result = req->result;
343 
344 	return crypto_ahash_final(&rctx->fallback_req);
345 }
346 
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352 
353 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 	rctx->fallback_req.nbytes = req->nbytes;
356 	rctx->fallback_req.src = req->src;
357 	rctx->fallback_req.result = req->result;
358 
359 	return crypto_ahash_finup(&rctx->fallback_req);
360 }
361 
362 static int n2_hash_cra_init(struct crypto_tfm *tfm)
363 {
364 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
365 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
366 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
367 	struct crypto_ahash *fallback_tfm;
368 	int err;
369 
370 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
371 					  CRYPTO_ALG_NEED_FALLBACK);
372 	if (IS_ERR(fallback_tfm)) {
373 		pr_warning("Fallback driver '%s' could not be loaded!\n",
374 			   fallback_driver_name);
375 		err = PTR_ERR(fallback_tfm);
376 		goto out;
377 	}
378 
379 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
380 					 crypto_ahash_reqsize(fallback_tfm)));
381 
382 	ctx->fallback_tfm = fallback_tfm;
383 	return 0;
384 
385 out:
386 	return err;
387 }
388 
389 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
390 {
391 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
392 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
393 
394 	crypto_free_ahash(ctx->fallback_tfm);
395 }
396 
397 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
398 {
399 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
400 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
401 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
402 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
403 	struct crypto_ahash *fallback_tfm;
404 	struct crypto_shash *child_shash;
405 	int err;
406 
407 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
408 					  CRYPTO_ALG_NEED_FALLBACK);
409 	if (IS_ERR(fallback_tfm)) {
410 		pr_warning("Fallback driver '%s' could not be loaded!\n",
411 			   fallback_driver_name);
412 		err = PTR_ERR(fallback_tfm);
413 		goto out;
414 	}
415 
416 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
417 	if (IS_ERR(child_shash)) {
418 		pr_warning("Child shash '%s' could not be loaded!\n",
419 			   n2alg->child_alg);
420 		err = PTR_ERR(child_shash);
421 		goto out_free_fallback;
422 	}
423 
424 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
425 					 crypto_ahash_reqsize(fallback_tfm)));
426 
427 	ctx->child_shash = child_shash;
428 	ctx->base.fallback_tfm = fallback_tfm;
429 	return 0;
430 
431 out_free_fallback:
432 	crypto_free_ahash(fallback_tfm);
433 
434 out:
435 	return err;
436 }
437 
438 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
439 {
440 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
441 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
442 
443 	crypto_free_ahash(ctx->base.fallback_tfm);
444 	crypto_free_shash(ctx->child_shash);
445 }
446 
447 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
448 				unsigned int keylen)
449 {
450 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
451 	struct crypto_shash *child_shash = ctx->child_shash;
452 	struct crypto_ahash *fallback_tfm;
453 	SHASH_DESC_ON_STACK(shash, child_shash);
454 	int err, bs, ds;
455 
456 	fallback_tfm = ctx->base.fallback_tfm;
457 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
458 	if (err)
459 		return err;
460 
461 	shash->tfm = child_shash;
462 	shash->flags = crypto_ahash_get_flags(tfm) &
463 		CRYPTO_TFM_REQ_MAY_SLEEP;
464 
465 	bs = crypto_shash_blocksize(child_shash);
466 	ds = crypto_shash_digestsize(child_shash);
467 	BUG_ON(ds > N2_HASH_KEY_MAX);
468 	if (keylen > bs) {
469 		err = crypto_shash_digest(shash, key, keylen,
470 					  ctx->hash_key);
471 		if (err)
472 			return err;
473 		keylen = ds;
474 	} else if (keylen <= N2_HASH_KEY_MAX)
475 		memcpy(ctx->hash_key, key, keylen);
476 
477 	ctx->hash_key_len = keylen;
478 
479 	return err;
480 }
481 
482 static unsigned long wait_for_tail(struct spu_queue *qp)
483 {
484 	unsigned long head, hv_ret;
485 
486 	do {
487 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
488 		if (hv_ret != HV_EOK) {
489 			pr_err("Hypervisor error on gethead\n");
490 			break;
491 		}
492 		if (head == qp->tail) {
493 			qp->head = head;
494 			break;
495 		}
496 	} while (1);
497 	return hv_ret;
498 }
499 
500 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
501 					      struct cwq_initial_entry *ent)
502 {
503 	unsigned long hv_ret = spu_queue_submit(qp, ent);
504 
505 	if (hv_ret == HV_EOK)
506 		hv_ret = wait_for_tail(qp);
507 
508 	return hv_ret;
509 }
510 
511 static int n2_do_async_digest(struct ahash_request *req,
512 			      unsigned int auth_type, unsigned int digest_size,
513 			      unsigned int result_size, void *hash_loc,
514 			      unsigned long auth_key, unsigned int auth_key_len)
515 {
516 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
517 	struct cwq_initial_entry *ent;
518 	struct crypto_hash_walk walk;
519 	struct spu_queue *qp;
520 	unsigned long flags;
521 	int err = -ENODEV;
522 	int nbytes, cpu;
523 
524 	/* The total effective length of the operation may not
525 	 * exceed 2^16.
526 	 */
527 	if (unlikely(req->nbytes > (1 << 16))) {
528 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
529 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
530 
531 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
532 		rctx->fallback_req.base.flags =
533 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
534 		rctx->fallback_req.nbytes = req->nbytes;
535 		rctx->fallback_req.src = req->src;
536 		rctx->fallback_req.result = req->result;
537 
538 		return crypto_ahash_digest(&rctx->fallback_req);
539 	}
540 
541 	nbytes = crypto_hash_walk_first(req, &walk);
542 
543 	cpu = get_cpu();
544 	qp = cpu_to_cwq[cpu];
545 	if (!qp)
546 		goto out;
547 
548 	spin_lock_irqsave(&qp->lock, flags);
549 
550 	/* XXX can do better, improve this later by doing a by-hand scatterlist
551 	 * XXX walk, etc.
552 	 */
553 	ent = qp->q + qp->tail;
554 
555 	ent->control = control_word_base(nbytes, auth_key_len, 0,
556 					 auth_type, digest_size,
557 					 false, true, false, false,
558 					 OPCODE_INPLACE_BIT |
559 					 OPCODE_AUTH_MAC);
560 	ent->src_addr = __pa(walk.data);
561 	ent->auth_key_addr = auth_key;
562 	ent->auth_iv_addr = __pa(hash_loc);
563 	ent->final_auth_state_addr = 0UL;
564 	ent->enc_key_addr = 0UL;
565 	ent->enc_iv_addr = 0UL;
566 	ent->dest_addr = __pa(hash_loc);
567 
568 	nbytes = crypto_hash_walk_done(&walk, 0);
569 	while (nbytes > 0) {
570 		ent = spu_queue_next(qp, ent);
571 
572 		ent->control = (nbytes - 1);
573 		ent->src_addr = __pa(walk.data);
574 		ent->auth_key_addr = 0UL;
575 		ent->auth_iv_addr = 0UL;
576 		ent->final_auth_state_addr = 0UL;
577 		ent->enc_key_addr = 0UL;
578 		ent->enc_iv_addr = 0UL;
579 		ent->dest_addr = 0UL;
580 
581 		nbytes = crypto_hash_walk_done(&walk, 0);
582 	}
583 	ent->control |= CONTROL_END_OF_BLOCK;
584 
585 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
586 		err = -EINVAL;
587 	else
588 		err = 0;
589 
590 	spin_unlock_irqrestore(&qp->lock, flags);
591 
592 	if (!err)
593 		memcpy(req->result, hash_loc, result_size);
594 out:
595 	put_cpu();
596 
597 	return err;
598 }
599 
600 static int n2_hash_async_digest(struct ahash_request *req)
601 {
602 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
603 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
604 	int ds;
605 
606 	ds = n2alg->digest_size;
607 	if (unlikely(req->nbytes == 0)) {
608 		memcpy(req->result, n2alg->hash_zero, ds);
609 		return 0;
610 	}
611 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
612 
613 	return n2_do_async_digest(req, n2alg->auth_type,
614 				  n2alg->hw_op_hashsz, ds,
615 				  &rctx->u, 0UL, 0);
616 }
617 
618 static int n2_hmac_async_digest(struct ahash_request *req)
619 {
620 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
621 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
622 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
623 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
624 	int ds;
625 
626 	ds = n2alg->derived.digest_size;
627 	if (unlikely(req->nbytes == 0) ||
628 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
629 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
631 
632 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
633 		rctx->fallback_req.base.flags =
634 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
635 		rctx->fallback_req.nbytes = req->nbytes;
636 		rctx->fallback_req.src = req->src;
637 		rctx->fallback_req.result = req->result;
638 
639 		return crypto_ahash_digest(&rctx->fallback_req);
640 	}
641 	memcpy(&rctx->u, n2alg->derived.hash_init,
642 	       n2alg->derived.hw_op_hashsz);
643 
644 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
645 				  n2alg->derived.hw_op_hashsz, ds,
646 				  &rctx->u,
647 				  __pa(&ctx->hash_key),
648 				  ctx->hash_key_len);
649 }
650 
651 struct n2_cipher_context {
652 	int			key_len;
653 	int			enc_type;
654 	union {
655 		u8		aes[AES_MAX_KEY_SIZE];
656 		u8		des[DES_KEY_SIZE];
657 		u8		des3[3 * DES_KEY_SIZE];
658 		u8		arc4[258]; /* S-box, X, Y */
659 	} key;
660 };
661 
662 #define N2_CHUNK_ARR_LEN	16
663 
664 struct n2_crypto_chunk {
665 	struct list_head	entry;
666 	unsigned long		iv_paddr : 44;
667 	unsigned long		arr_len : 20;
668 	unsigned long		dest_paddr;
669 	unsigned long		dest_final;
670 	struct {
671 		unsigned long	src_paddr : 44;
672 		unsigned long	src_len : 20;
673 	} arr[N2_CHUNK_ARR_LEN];
674 };
675 
676 struct n2_request_context {
677 	struct ablkcipher_walk	walk;
678 	struct list_head	chunk_list;
679 	struct n2_crypto_chunk	chunk;
680 	u8			temp_iv[16];
681 };
682 
683 /* The SPU allows some level of flexibility for partial cipher blocks
684  * being specified in a descriptor.
685  *
686  * It merely requires that every descriptor's length field is at least
687  * as large as the cipher block size.  This means that a cipher block
688  * can span at most 2 descriptors.  However, this does not allow a
689  * partial block to span into the final descriptor as that would
690  * violate the rule (since every descriptor's length must be at lest
691  * the block size).  So, for example, assuming an 8 byte block size:
692  *
693  *	0xe --> 0xa --> 0x8
694  *
695  * is a valid length sequence, whereas:
696  *
697  *	0xe --> 0xb --> 0x7
698  *
699  * is not a valid sequence.
700  */
701 
702 struct n2_cipher_alg {
703 	struct list_head	entry;
704 	u8			enc_type;
705 	struct crypto_alg	alg;
706 };
707 
708 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
709 {
710 	struct crypto_alg *alg = tfm->__crt_alg;
711 
712 	return container_of(alg, struct n2_cipher_alg, alg);
713 }
714 
715 struct n2_cipher_request_context {
716 	struct ablkcipher_walk	walk;
717 };
718 
719 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
720 			 unsigned int keylen)
721 {
722 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
723 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
724 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
725 
726 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
727 
728 	switch (keylen) {
729 	case AES_KEYSIZE_128:
730 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
731 		break;
732 	case AES_KEYSIZE_192:
733 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
734 		break;
735 	case AES_KEYSIZE_256:
736 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
737 		break;
738 	default:
739 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
740 		return -EINVAL;
741 	}
742 
743 	ctx->key_len = keylen;
744 	memcpy(ctx->key.aes, key, keylen);
745 	return 0;
746 }
747 
748 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
749 			 unsigned int keylen)
750 {
751 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
752 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
753 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
754 	u32 tmp[DES_EXPKEY_WORDS];
755 	int err;
756 
757 	ctx->enc_type = n2alg->enc_type;
758 
759 	if (keylen != DES_KEY_SIZE) {
760 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
761 		return -EINVAL;
762 	}
763 
764 	err = des_ekey(tmp, key);
765 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
766 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
767 		return -EINVAL;
768 	}
769 
770 	ctx->key_len = keylen;
771 	memcpy(ctx->key.des, key, keylen);
772 	return 0;
773 }
774 
775 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 			  unsigned int keylen)
777 {
778 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
779 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
780 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
781 
782 	ctx->enc_type = n2alg->enc_type;
783 
784 	if (keylen != (3 * DES_KEY_SIZE)) {
785 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
786 		return -EINVAL;
787 	}
788 	ctx->key_len = keylen;
789 	memcpy(ctx->key.des3, key, keylen);
790 	return 0;
791 }
792 
793 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
794 			  unsigned int keylen)
795 {
796 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
797 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
798 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
799 	u8 *s = ctx->key.arc4;
800 	u8 *x = s + 256;
801 	u8 *y = x + 1;
802 	int i, j, k;
803 
804 	ctx->enc_type = n2alg->enc_type;
805 
806 	j = k = 0;
807 	*x = 0;
808 	*y = 0;
809 	for (i = 0; i < 256; i++)
810 		s[i] = i;
811 	for (i = 0; i < 256; i++) {
812 		u8 a = s[i];
813 		j = (j + key[k] + a) & 0xff;
814 		s[i] = s[j];
815 		s[j] = a;
816 		if (++k >= keylen)
817 			k = 0;
818 	}
819 
820 	return 0;
821 }
822 
823 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
824 {
825 	int this_len = nbytes;
826 
827 	this_len -= (nbytes & (block_size - 1));
828 	return this_len > (1 << 16) ? (1 << 16) : this_len;
829 }
830 
831 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
832 			    struct spu_queue *qp, bool encrypt)
833 {
834 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
835 	struct cwq_initial_entry *ent;
836 	bool in_place;
837 	int i;
838 
839 	ent = spu_queue_alloc(qp, cp->arr_len);
840 	if (!ent) {
841 		pr_info("queue_alloc() of %d fails\n",
842 			cp->arr_len);
843 		return -EBUSY;
844 	}
845 
846 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847 
848 	ent->control = control_word_base(cp->arr[0].src_len,
849 					 0, ctx->enc_type, 0, 0,
850 					 false, true, false, encrypt,
851 					 OPCODE_ENCRYPT |
852 					 (in_place ? OPCODE_INPLACE_BIT : 0));
853 	ent->src_addr = cp->arr[0].src_paddr;
854 	ent->auth_key_addr = 0UL;
855 	ent->auth_iv_addr = 0UL;
856 	ent->final_auth_state_addr = 0UL;
857 	ent->enc_key_addr = __pa(&ctx->key);
858 	ent->enc_iv_addr = cp->iv_paddr;
859 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860 
861 	for (i = 1; i < cp->arr_len; i++) {
862 		ent = spu_queue_next(qp, ent);
863 
864 		ent->control = cp->arr[i].src_len - 1;
865 		ent->src_addr = cp->arr[i].src_paddr;
866 		ent->auth_key_addr = 0UL;
867 		ent->auth_iv_addr = 0UL;
868 		ent->final_auth_state_addr = 0UL;
869 		ent->enc_key_addr = 0UL;
870 		ent->enc_iv_addr = 0UL;
871 		ent->dest_addr = 0UL;
872 	}
873 	ent->control |= CONTROL_END_OF_BLOCK;
874 
875 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 }
877 
878 static int n2_compute_chunks(struct ablkcipher_request *req)
879 {
880 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
881 	struct ablkcipher_walk *walk = &rctx->walk;
882 	struct n2_crypto_chunk *chunk;
883 	unsigned long dest_prev;
884 	unsigned int tot_len;
885 	bool prev_in_place;
886 	int err, nbytes;
887 
888 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
889 	err = ablkcipher_walk_phys(req, walk);
890 	if (err)
891 		return err;
892 
893 	INIT_LIST_HEAD(&rctx->chunk_list);
894 
895 	chunk = &rctx->chunk;
896 	INIT_LIST_HEAD(&chunk->entry);
897 
898 	chunk->iv_paddr = 0UL;
899 	chunk->arr_len = 0;
900 	chunk->dest_paddr = 0UL;
901 
902 	prev_in_place = false;
903 	dest_prev = ~0UL;
904 	tot_len = 0;
905 
906 	while ((nbytes = walk->nbytes) != 0) {
907 		unsigned long dest_paddr, src_paddr;
908 		bool in_place;
909 		int this_len;
910 
911 		src_paddr = (page_to_phys(walk->src.page) +
912 			     walk->src.offset);
913 		dest_paddr = (page_to_phys(walk->dst.page) +
914 			      walk->dst.offset);
915 		in_place = (src_paddr == dest_paddr);
916 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
917 
918 		if (chunk->arr_len != 0) {
919 			if (in_place != prev_in_place ||
920 			    (!prev_in_place &&
921 			     dest_paddr != dest_prev) ||
922 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
923 			    tot_len + this_len > (1 << 16)) {
924 				chunk->dest_final = dest_prev;
925 				list_add_tail(&chunk->entry,
926 					      &rctx->chunk_list);
927 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
928 				if (!chunk) {
929 					err = -ENOMEM;
930 					break;
931 				}
932 				INIT_LIST_HEAD(&chunk->entry);
933 			}
934 		}
935 		if (chunk->arr_len == 0) {
936 			chunk->dest_paddr = dest_paddr;
937 			tot_len = 0;
938 		}
939 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
940 		chunk->arr[chunk->arr_len].src_len = this_len;
941 		chunk->arr_len++;
942 
943 		dest_prev = dest_paddr + this_len;
944 		prev_in_place = in_place;
945 		tot_len += this_len;
946 
947 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
948 		if (err)
949 			break;
950 	}
951 	if (!err && chunk->arr_len != 0) {
952 		chunk->dest_final = dest_prev;
953 		list_add_tail(&chunk->entry, &rctx->chunk_list);
954 	}
955 
956 	return err;
957 }
958 
959 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
960 {
961 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
962 	struct n2_crypto_chunk *c, *tmp;
963 
964 	if (final_iv)
965 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
966 
967 	ablkcipher_walk_complete(&rctx->walk);
968 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
969 		list_del(&c->entry);
970 		if (unlikely(c != &rctx->chunk))
971 			kfree(c);
972 	}
973 
974 }
975 
976 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
977 {
978 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
979 	struct crypto_tfm *tfm = req->base.tfm;
980 	int err = n2_compute_chunks(req);
981 	struct n2_crypto_chunk *c, *tmp;
982 	unsigned long flags, hv_ret;
983 	struct spu_queue *qp;
984 
985 	if (err)
986 		return err;
987 
988 	qp = cpu_to_cwq[get_cpu()];
989 	err = -ENODEV;
990 	if (!qp)
991 		goto out;
992 
993 	spin_lock_irqsave(&qp->lock, flags);
994 
995 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
996 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
997 		if (err)
998 			break;
999 		list_del(&c->entry);
1000 		if (unlikely(c != &rctx->chunk))
1001 			kfree(c);
1002 	}
1003 	if (!err) {
1004 		hv_ret = wait_for_tail(qp);
1005 		if (hv_ret != HV_EOK)
1006 			err = -EINVAL;
1007 	}
1008 
1009 	spin_unlock_irqrestore(&qp->lock, flags);
1010 
1011 out:
1012 	put_cpu();
1013 
1014 	n2_chunk_complete(req, NULL);
1015 	return err;
1016 }
1017 
1018 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1019 {
1020 	return n2_do_ecb(req, true);
1021 }
1022 
1023 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1024 {
1025 	return n2_do_ecb(req, false);
1026 }
1027 
1028 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1029 {
1030 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1031 	struct crypto_tfm *tfm = req->base.tfm;
1032 	unsigned long flags, hv_ret, iv_paddr;
1033 	int err = n2_compute_chunks(req);
1034 	struct n2_crypto_chunk *c, *tmp;
1035 	struct spu_queue *qp;
1036 	void *final_iv_addr;
1037 
1038 	final_iv_addr = NULL;
1039 
1040 	if (err)
1041 		return err;
1042 
1043 	qp = cpu_to_cwq[get_cpu()];
1044 	err = -ENODEV;
1045 	if (!qp)
1046 		goto out;
1047 
1048 	spin_lock_irqsave(&qp->lock, flags);
1049 
1050 	if (encrypt) {
1051 		iv_paddr = __pa(rctx->walk.iv);
1052 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1053 					 entry) {
1054 			c->iv_paddr = iv_paddr;
1055 			err = __n2_crypt_chunk(tfm, c, qp, true);
1056 			if (err)
1057 				break;
1058 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1059 			list_del(&c->entry);
1060 			if (unlikely(c != &rctx->chunk))
1061 				kfree(c);
1062 		}
1063 		final_iv_addr = __va(iv_paddr);
1064 	} else {
1065 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1066 						 entry) {
1067 			if (c == &rctx->chunk) {
1068 				iv_paddr = __pa(rctx->walk.iv);
1069 			} else {
1070 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1071 					    tmp->arr[tmp->arr_len-1].src_len -
1072 					    rctx->walk.blocksize);
1073 			}
1074 			if (!final_iv_addr) {
1075 				unsigned long pa;
1076 
1077 				pa = (c->arr[c->arr_len-1].src_paddr +
1078 				      c->arr[c->arr_len-1].src_len -
1079 				      rctx->walk.blocksize);
1080 				final_iv_addr = rctx->temp_iv;
1081 				memcpy(rctx->temp_iv, __va(pa),
1082 				       rctx->walk.blocksize);
1083 			}
1084 			c->iv_paddr = iv_paddr;
1085 			err = __n2_crypt_chunk(tfm, c, qp, false);
1086 			if (err)
1087 				break;
1088 			list_del(&c->entry);
1089 			if (unlikely(c != &rctx->chunk))
1090 				kfree(c);
1091 		}
1092 	}
1093 	if (!err) {
1094 		hv_ret = wait_for_tail(qp);
1095 		if (hv_ret != HV_EOK)
1096 			err = -EINVAL;
1097 	}
1098 
1099 	spin_unlock_irqrestore(&qp->lock, flags);
1100 
1101 out:
1102 	put_cpu();
1103 
1104 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1105 	return err;
1106 }
1107 
1108 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1109 {
1110 	return n2_do_chaining(req, true);
1111 }
1112 
1113 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1114 {
1115 	return n2_do_chaining(req, false);
1116 }
1117 
1118 struct n2_cipher_tmpl {
1119 	const char		*name;
1120 	const char		*drv_name;
1121 	u8			block_size;
1122 	u8			enc_type;
1123 	struct ablkcipher_alg	ablkcipher;
1124 };
1125 
1126 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1127 	/* ARC4: only ECB is supported (chaining bits ignored) */
1128 	{	.name		= "ecb(arc4)",
1129 		.drv_name	= "ecb-arc4",
1130 		.block_size	= 1,
1131 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1132 				   ENC_TYPE_CHAINING_ECB),
1133 		.ablkcipher	= {
1134 			.min_keysize	= 1,
1135 			.max_keysize	= 256,
1136 			.setkey		= n2_arc4_setkey,
1137 			.encrypt	= n2_encrypt_ecb,
1138 			.decrypt	= n2_decrypt_ecb,
1139 		},
1140 	},
1141 
1142 	/* DES: ECB CBC and CFB are supported */
1143 	{	.name		= "ecb(des)",
1144 		.drv_name	= "ecb-des",
1145 		.block_size	= DES_BLOCK_SIZE,
1146 		.enc_type	= (ENC_TYPE_ALG_DES |
1147 				   ENC_TYPE_CHAINING_ECB),
1148 		.ablkcipher	= {
1149 			.min_keysize	= DES_KEY_SIZE,
1150 			.max_keysize	= DES_KEY_SIZE,
1151 			.setkey		= n2_des_setkey,
1152 			.encrypt	= n2_encrypt_ecb,
1153 			.decrypt	= n2_decrypt_ecb,
1154 		},
1155 	},
1156 	{	.name		= "cbc(des)",
1157 		.drv_name	= "cbc-des",
1158 		.block_size	= DES_BLOCK_SIZE,
1159 		.enc_type	= (ENC_TYPE_ALG_DES |
1160 				   ENC_TYPE_CHAINING_CBC),
1161 		.ablkcipher	= {
1162 			.ivsize		= DES_BLOCK_SIZE,
1163 			.min_keysize	= DES_KEY_SIZE,
1164 			.max_keysize	= DES_KEY_SIZE,
1165 			.setkey		= n2_des_setkey,
1166 			.encrypt	= n2_encrypt_chaining,
1167 			.decrypt	= n2_decrypt_chaining,
1168 		},
1169 	},
1170 	{	.name		= "cfb(des)",
1171 		.drv_name	= "cfb-des",
1172 		.block_size	= DES_BLOCK_SIZE,
1173 		.enc_type	= (ENC_TYPE_ALG_DES |
1174 				   ENC_TYPE_CHAINING_CFB),
1175 		.ablkcipher	= {
1176 			.min_keysize	= DES_KEY_SIZE,
1177 			.max_keysize	= DES_KEY_SIZE,
1178 			.setkey		= n2_des_setkey,
1179 			.encrypt	= n2_encrypt_chaining,
1180 			.decrypt	= n2_decrypt_chaining,
1181 		},
1182 	},
1183 
1184 	/* 3DES: ECB CBC and CFB are supported */
1185 	{	.name		= "ecb(des3_ede)",
1186 		.drv_name	= "ecb-3des",
1187 		.block_size	= DES_BLOCK_SIZE,
1188 		.enc_type	= (ENC_TYPE_ALG_3DES |
1189 				   ENC_TYPE_CHAINING_ECB),
1190 		.ablkcipher	= {
1191 			.min_keysize	= 3 * DES_KEY_SIZE,
1192 			.max_keysize	= 3 * DES_KEY_SIZE,
1193 			.setkey		= n2_3des_setkey,
1194 			.encrypt	= n2_encrypt_ecb,
1195 			.decrypt	= n2_decrypt_ecb,
1196 		},
1197 	},
1198 	{	.name		= "cbc(des3_ede)",
1199 		.drv_name	= "cbc-3des",
1200 		.block_size	= DES_BLOCK_SIZE,
1201 		.enc_type	= (ENC_TYPE_ALG_3DES |
1202 				   ENC_TYPE_CHAINING_CBC),
1203 		.ablkcipher	= {
1204 			.ivsize		= DES_BLOCK_SIZE,
1205 			.min_keysize	= 3 * DES_KEY_SIZE,
1206 			.max_keysize	= 3 * DES_KEY_SIZE,
1207 			.setkey		= n2_3des_setkey,
1208 			.encrypt	= n2_encrypt_chaining,
1209 			.decrypt	= n2_decrypt_chaining,
1210 		},
1211 	},
1212 	{	.name		= "cfb(des3_ede)",
1213 		.drv_name	= "cfb-3des",
1214 		.block_size	= DES_BLOCK_SIZE,
1215 		.enc_type	= (ENC_TYPE_ALG_3DES |
1216 				   ENC_TYPE_CHAINING_CFB),
1217 		.ablkcipher	= {
1218 			.min_keysize	= 3 * DES_KEY_SIZE,
1219 			.max_keysize	= 3 * DES_KEY_SIZE,
1220 			.setkey		= n2_3des_setkey,
1221 			.encrypt	= n2_encrypt_chaining,
1222 			.decrypt	= n2_decrypt_chaining,
1223 		},
1224 	},
1225 	/* AES: ECB CBC and CTR are supported */
1226 	{	.name		= "ecb(aes)",
1227 		.drv_name	= "ecb-aes",
1228 		.block_size	= AES_BLOCK_SIZE,
1229 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1230 				   ENC_TYPE_CHAINING_ECB),
1231 		.ablkcipher	= {
1232 			.min_keysize	= AES_MIN_KEY_SIZE,
1233 			.max_keysize	= AES_MAX_KEY_SIZE,
1234 			.setkey		= n2_aes_setkey,
1235 			.encrypt	= n2_encrypt_ecb,
1236 			.decrypt	= n2_decrypt_ecb,
1237 		},
1238 	},
1239 	{	.name		= "cbc(aes)",
1240 		.drv_name	= "cbc-aes",
1241 		.block_size	= AES_BLOCK_SIZE,
1242 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1243 				   ENC_TYPE_CHAINING_CBC),
1244 		.ablkcipher	= {
1245 			.ivsize		= AES_BLOCK_SIZE,
1246 			.min_keysize	= AES_MIN_KEY_SIZE,
1247 			.max_keysize	= AES_MAX_KEY_SIZE,
1248 			.setkey		= n2_aes_setkey,
1249 			.encrypt	= n2_encrypt_chaining,
1250 			.decrypt	= n2_decrypt_chaining,
1251 		},
1252 	},
1253 	{	.name		= "ctr(aes)",
1254 		.drv_name	= "ctr-aes",
1255 		.block_size	= AES_BLOCK_SIZE,
1256 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1257 				   ENC_TYPE_CHAINING_COUNTER),
1258 		.ablkcipher	= {
1259 			.ivsize		= AES_BLOCK_SIZE,
1260 			.min_keysize	= AES_MIN_KEY_SIZE,
1261 			.max_keysize	= AES_MAX_KEY_SIZE,
1262 			.setkey		= n2_aes_setkey,
1263 			.encrypt	= n2_encrypt_chaining,
1264 			.decrypt	= n2_encrypt_chaining,
1265 		},
1266 	},
1267 
1268 };
1269 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1270 
1271 static LIST_HEAD(cipher_algs);
1272 
1273 struct n2_hash_tmpl {
1274 	const char	*name;
1275 	const u8	*hash_zero;
1276 	const u32	*hash_init;
1277 	u8		hw_op_hashsz;
1278 	u8		digest_size;
1279 	u8		block_size;
1280 	u8		auth_type;
1281 	u8		hmac_type;
1282 };
1283 
1284 static const u32 md5_init[MD5_HASH_WORDS] = {
1285 	cpu_to_le32(MD5_H0),
1286 	cpu_to_le32(MD5_H1),
1287 	cpu_to_le32(MD5_H2),
1288 	cpu_to_le32(MD5_H3),
1289 };
1290 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1291 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1292 };
1293 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1294 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1295 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1296 };
1297 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1298 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1299 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1300 };
1301 
1302 static const struct n2_hash_tmpl hash_tmpls[] = {
1303 	{ .name		= "md5",
1304 	  .hash_zero	= md5_zero_message_hash,
1305 	  .hash_init	= md5_init,
1306 	  .auth_type	= AUTH_TYPE_MD5,
1307 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1308 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1309 	  .digest_size	= MD5_DIGEST_SIZE,
1310 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1311 	{ .name		= "sha1",
1312 	  .hash_zero	= sha1_zero_message_hash,
1313 	  .hash_init	= sha1_init,
1314 	  .auth_type	= AUTH_TYPE_SHA1,
1315 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1316 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1317 	  .digest_size	= SHA1_DIGEST_SIZE,
1318 	  .block_size	= SHA1_BLOCK_SIZE },
1319 	{ .name		= "sha256",
1320 	  .hash_zero	= sha256_zero_message_hash,
1321 	  .hash_init	= sha256_init,
1322 	  .auth_type	= AUTH_TYPE_SHA256,
1323 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1324 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1325 	  .digest_size	= SHA256_DIGEST_SIZE,
1326 	  .block_size	= SHA256_BLOCK_SIZE },
1327 	{ .name		= "sha224",
1328 	  .hash_zero	= sha224_zero_message_hash,
1329 	  .hash_init	= sha224_init,
1330 	  .auth_type	= AUTH_TYPE_SHA256,
1331 	  .hmac_type	= AUTH_TYPE_RESERVED,
1332 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1333 	  .digest_size	= SHA224_DIGEST_SIZE,
1334 	  .block_size	= SHA224_BLOCK_SIZE },
1335 };
1336 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1337 
1338 static LIST_HEAD(ahash_algs);
1339 static LIST_HEAD(hmac_algs);
1340 
1341 static int algs_registered;
1342 
1343 static void __n2_unregister_algs(void)
1344 {
1345 	struct n2_cipher_alg *cipher, *cipher_tmp;
1346 	struct n2_ahash_alg *alg, *alg_tmp;
1347 	struct n2_hmac_alg *hmac, *hmac_tmp;
1348 
1349 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1350 		crypto_unregister_alg(&cipher->alg);
1351 		list_del(&cipher->entry);
1352 		kfree(cipher);
1353 	}
1354 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1355 		crypto_unregister_ahash(&hmac->derived.alg);
1356 		list_del(&hmac->derived.entry);
1357 		kfree(hmac);
1358 	}
1359 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1360 		crypto_unregister_ahash(&alg->alg);
1361 		list_del(&alg->entry);
1362 		kfree(alg);
1363 	}
1364 }
1365 
1366 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1367 {
1368 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1369 	return 0;
1370 }
1371 
1372 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1373 {
1374 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1375 	struct crypto_alg *alg;
1376 	int err;
1377 
1378 	if (!p)
1379 		return -ENOMEM;
1380 
1381 	alg = &p->alg;
1382 
1383 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1384 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1385 	alg->cra_priority = N2_CRA_PRIORITY;
1386 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1387 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1388 	alg->cra_blocksize = tmpl->block_size;
1389 	p->enc_type = tmpl->enc_type;
1390 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1391 	alg->cra_type = &crypto_ablkcipher_type;
1392 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1393 	alg->cra_init = n2_cipher_cra_init;
1394 	alg->cra_module = THIS_MODULE;
1395 
1396 	list_add(&p->entry, &cipher_algs);
1397 	err = crypto_register_alg(alg);
1398 	if (err) {
1399 		pr_err("%s alg registration failed\n", alg->cra_name);
1400 		list_del(&p->entry);
1401 		kfree(p);
1402 	} else {
1403 		pr_info("%s alg registered\n", alg->cra_name);
1404 	}
1405 	return err;
1406 }
1407 
1408 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1409 {
1410 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1411 	struct ahash_alg *ahash;
1412 	struct crypto_alg *base;
1413 	int err;
1414 
1415 	if (!p)
1416 		return -ENOMEM;
1417 
1418 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1419 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1420 	INIT_LIST_HEAD(&p->derived.entry);
1421 
1422 	ahash = &p->derived.alg;
1423 	ahash->digest = n2_hmac_async_digest;
1424 	ahash->setkey = n2_hmac_async_setkey;
1425 
1426 	base = &ahash->halg.base;
1427 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1428 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1429 
1430 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1431 	base->cra_init = n2_hmac_cra_init;
1432 	base->cra_exit = n2_hmac_cra_exit;
1433 
1434 	list_add(&p->derived.entry, &hmac_algs);
1435 	err = crypto_register_ahash(ahash);
1436 	if (err) {
1437 		pr_err("%s alg registration failed\n", base->cra_name);
1438 		list_del(&p->derived.entry);
1439 		kfree(p);
1440 	} else {
1441 		pr_info("%s alg registered\n", base->cra_name);
1442 	}
1443 	return err;
1444 }
1445 
1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1447 {
1448 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1449 	struct hash_alg_common *halg;
1450 	struct crypto_alg *base;
1451 	struct ahash_alg *ahash;
1452 	int err;
1453 
1454 	if (!p)
1455 		return -ENOMEM;
1456 
1457 	p->hash_zero = tmpl->hash_zero;
1458 	p->hash_init = tmpl->hash_init;
1459 	p->auth_type = tmpl->auth_type;
1460 	p->hmac_type = tmpl->hmac_type;
1461 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1462 	p->digest_size = tmpl->digest_size;
1463 
1464 	ahash = &p->alg;
1465 	ahash->init = n2_hash_async_init;
1466 	ahash->update = n2_hash_async_update;
1467 	ahash->final = n2_hash_async_final;
1468 	ahash->finup = n2_hash_async_finup;
1469 	ahash->digest = n2_hash_async_digest;
1470 
1471 	halg = &ahash->halg;
1472 	halg->digestsize = tmpl->digest_size;
1473 
1474 	base = &halg->base;
1475 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1476 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1477 	base->cra_priority = N2_CRA_PRIORITY;
1478 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1479 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
1480 			  CRYPTO_ALG_NEED_FALLBACK;
1481 	base->cra_blocksize = tmpl->block_size;
1482 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483 	base->cra_module = THIS_MODULE;
1484 	base->cra_init = n2_hash_cra_init;
1485 	base->cra_exit = n2_hash_cra_exit;
1486 
1487 	list_add(&p->entry, &ahash_algs);
1488 	err = crypto_register_ahash(ahash);
1489 	if (err) {
1490 		pr_err("%s alg registration failed\n", base->cra_name);
1491 		list_del(&p->entry);
1492 		kfree(p);
1493 	} else {
1494 		pr_info("%s alg registered\n", base->cra_name);
1495 	}
1496 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497 		err = __n2_register_one_hmac(p);
1498 	return err;
1499 }
1500 
1501 static int n2_register_algs(void)
1502 {
1503 	int i, err = 0;
1504 
1505 	mutex_lock(&spu_lock);
1506 	if (algs_registered++)
1507 		goto out;
1508 
1509 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1511 		if (err) {
1512 			__n2_unregister_algs();
1513 			goto out;
1514 		}
1515 	}
1516 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1518 		if (err) {
1519 			__n2_unregister_algs();
1520 			goto out;
1521 		}
1522 	}
1523 
1524 out:
1525 	mutex_unlock(&spu_lock);
1526 	return err;
1527 }
1528 
1529 static void n2_unregister_algs(void)
1530 {
1531 	mutex_lock(&spu_lock);
1532 	if (!--algs_registered)
1533 		__n2_unregister_algs();
1534 	mutex_unlock(&spu_lock);
1535 }
1536 
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538  * a devino.  This isn't very useful to us because all of the
1539  * interrupts listed in the device_node have been translated to
1540  * Linux virtual IRQ cookie numbers.
1541  *
1542  * So we have to back-translate, going through the 'intr' and 'ino'
1543  * property tables of the n2cp MDESC node, matching it with the OF
1544  * 'interrupts' property entries, in order to to figure out which
1545  * devino goes to which already-translated IRQ.
1546  */
1547 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548 			     unsigned long dev_ino)
1549 {
1550 	const unsigned int *dev_intrs;
1551 	unsigned int intr;
1552 	int i;
1553 
1554 	for (i = 0; i < ip->num_intrs; i++) {
1555 		if (ip->ino_table[i].ino == dev_ino)
1556 			break;
1557 	}
1558 	if (i == ip->num_intrs)
1559 		return -ENODEV;
1560 
1561 	intr = ip->ino_table[i].intr;
1562 
1563 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564 	if (!dev_intrs)
1565 		return -ENODEV;
1566 
1567 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1568 		if (dev_intrs[i] == intr)
1569 			return i;
1570 	}
1571 
1572 	return -ENODEV;
1573 }
1574 
1575 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576 		       const char *irq_name, struct spu_queue *p,
1577 		       irq_handler_t handler)
1578 {
1579 	unsigned long herr;
1580 	int index;
1581 
1582 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583 	if (herr)
1584 		return -EINVAL;
1585 
1586 	index = find_devino_index(dev, ip, p->devino);
1587 	if (index < 0)
1588 		return index;
1589 
1590 	p->irq = dev->archdata.irqs[index];
1591 
1592 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1593 
1594 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1595 }
1596 
1597 static struct kmem_cache *queue_cache[2];
1598 
1599 static void *new_queue(unsigned long q_type)
1600 {
1601 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602 }
1603 
1604 static void free_queue(void *p, unsigned long q_type)
1605 {
1606 	kmem_cache_free(queue_cache[q_type - 1], p);
1607 }
1608 
1609 static int queue_cache_init(void)
1610 {
1611 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613 			kmem_cache_create("mau_queue",
1614 					  (MAU_NUM_ENTRIES *
1615 					   MAU_ENTRY_SIZE),
1616 					  MAU_ENTRY_SIZE, 0, NULL);
1617 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618 		return -ENOMEM;
1619 
1620 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622 			kmem_cache_create("cwq_queue",
1623 					  (CWQ_NUM_ENTRIES *
1624 					   CWQ_ENTRY_SIZE),
1625 					  CWQ_ENTRY_SIZE, 0, NULL);
1626 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628 		return -ENOMEM;
1629 	}
1630 	return 0;
1631 }
1632 
1633 static void queue_cache_destroy(void)
1634 {
1635 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1636 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1637 }
1638 
1639 static long spu_queue_register_workfn(void *arg)
1640 {
1641 	struct spu_qreg *qr = arg;
1642 	struct spu_queue *p = qr->queue;
1643 	unsigned long q_type = qr->type;
1644 	unsigned long hv_ret;
1645 
1646 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1647 				 CWQ_NUM_ENTRIES, &p->qhandle);
1648 	if (!hv_ret)
1649 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1650 
1651 	return hv_ret ? -EINVAL : 0;
1652 }
1653 
1654 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1655 {
1656 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1657 	struct spu_qreg qr = { .queue = p, .type = q_type };
1658 
1659 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1660 }
1661 
1662 static int spu_queue_setup(struct spu_queue *p)
1663 {
1664 	int err;
1665 
1666 	p->q = new_queue(p->q_type);
1667 	if (!p->q)
1668 		return -ENOMEM;
1669 
1670 	err = spu_queue_register(p, p->q_type);
1671 	if (err) {
1672 		free_queue(p->q, p->q_type);
1673 		p->q = NULL;
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 static void spu_queue_destroy(struct spu_queue *p)
1680 {
1681 	unsigned long hv_ret;
1682 
1683 	if (!p->q)
1684 		return;
1685 
1686 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1687 
1688 	if (!hv_ret)
1689 		free_queue(p->q, p->q_type);
1690 }
1691 
1692 static void spu_list_destroy(struct list_head *list)
1693 {
1694 	struct spu_queue *p, *n;
1695 
1696 	list_for_each_entry_safe(p, n, list, list) {
1697 		int i;
1698 
1699 		for (i = 0; i < NR_CPUS; i++) {
1700 			if (cpu_to_cwq[i] == p)
1701 				cpu_to_cwq[i] = NULL;
1702 		}
1703 
1704 		if (p->irq) {
1705 			free_irq(p->irq, p);
1706 			p->irq = 0;
1707 		}
1708 		spu_queue_destroy(p);
1709 		list_del(&p->list);
1710 		kfree(p);
1711 	}
1712 }
1713 
1714 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1715  * gathering cpu membership information.
1716  */
1717 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1718 			       struct platform_device *dev,
1719 			       u64 node, struct spu_queue *p,
1720 			       struct spu_queue **table)
1721 {
1722 	u64 arc;
1723 
1724 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1725 		u64 tgt = mdesc_arc_target(mdesc, arc);
1726 		const char *name = mdesc_node_name(mdesc, tgt);
1727 		const u64 *id;
1728 
1729 		if (strcmp(name, "cpu"))
1730 			continue;
1731 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1732 		if (table[*id] != NULL) {
1733 			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1734 				dev->dev.of_node->full_name);
1735 			return -EINVAL;
1736 		}
1737 		cpumask_set_cpu(*id, &p->sharing);
1738 		table[*id] = p;
1739 	}
1740 	return 0;
1741 }
1742 
1743 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1744 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1745 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1746 			    u64 node, const char *iname, unsigned long q_type,
1747 			    irq_handler_t handler, struct spu_queue **table)
1748 {
1749 	struct spu_queue *p;
1750 	int err;
1751 
1752 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1753 	if (!p) {
1754 		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1755 			dev->dev.of_node->full_name);
1756 		return -ENOMEM;
1757 	}
1758 
1759 	cpumask_clear(&p->sharing);
1760 	spin_lock_init(&p->lock);
1761 	p->q_type = q_type;
1762 	INIT_LIST_HEAD(&p->jobs);
1763 	list_add(&p->list, list);
1764 
1765 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1766 	if (err)
1767 		return err;
1768 
1769 	err = spu_queue_setup(p);
1770 	if (err)
1771 		return err;
1772 
1773 	return spu_map_ino(dev, ip, iname, p, handler);
1774 }
1775 
1776 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1777 			  struct spu_mdesc_info *ip, struct list_head *list,
1778 			  const char *exec_name, unsigned long q_type,
1779 			  irq_handler_t handler, struct spu_queue **table)
1780 {
1781 	int err = 0;
1782 	u64 node;
1783 
1784 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1785 		const char *type;
1786 
1787 		type = mdesc_get_property(mdesc, node, "type", NULL);
1788 		if (!type || strcmp(type, exec_name))
1789 			continue;
1790 
1791 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1792 				       exec_name, q_type, handler, table);
1793 		if (err) {
1794 			spu_list_destroy(list);
1795 			break;
1796 		}
1797 	}
1798 
1799 	return err;
1800 }
1801 
1802 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1803 			 struct spu_mdesc_info *ip)
1804 {
1805 	const u64 *ino;
1806 	int ino_len;
1807 	int i;
1808 
1809 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1810 	if (!ino) {
1811 		printk("NO 'ino'\n");
1812 		return -ENODEV;
1813 	}
1814 
1815 	ip->num_intrs = ino_len / sizeof(u64);
1816 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1817 				 ip->num_intrs),
1818 				GFP_KERNEL);
1819 	if (!ip->ino_table)
1820 		return -ENOMEM;
1821 
1822 	for (i = 0; i < ip->num_intrs; i++) {
1823 		struct ino_blob *b = &ip->ino_table[i];
1824 		b->intr = i + 1;
1825 		b->ino = ino[i];
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1832 				struct platform_device *dev,
1833 				struct spu_mdesc_info *ip,
1834 				const char *node_name)
1835 {
1836 	const unsigned int *reg;
1837 	u64 node;
1838 
1839 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1840 	if (!reg)
1841 		return -ENODEV;
1842 
1843 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1844 		const char *name;
1845 		const u64 *chdl;
1846 
1847 		name = mdesc_get_property(mdesc, node, "name", NULL);
1848 		if (!name || strcmp(name, node_name))
1849 			continue;
1850 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1851 		if (!chdl || (*chdl != *reg))
1852 			continue;
1853 		ip->cfg_handle = *chdl;
1854 		return get_irq_props(mdesc, node, ip);
1855 	}
1856 
1857 	return -ENODEV;
1858 }
1859 
1860 static unsigned long n2_spu_hvapi_major;
1861 static unsigned long n2_spu_hvapi_minor;
1862 
1863 static int n2_spu_hvapi_register(void)
1864 {
1865 	int err;
1866 
1867 	n2_spu_hvapi_major = 2;
1868 	n2_spu_hvapi_minor = 0;
1869 
1870 	err = sun4v_hvapi_register(HV_GRP_NCS,
1871 				   n2_spu_hvapi_major,
1872 				   &n2_spu_hvapi_minor);
1873 
1874 	if (!err)
1875 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1876 			n2_spu_hvapi_major,
1877 			n2_spu_hvapi_minor);
1878 
1879 	return err;
1880 }
1881 
1882 static void n2_spu_hvapi_unregister(void)
1883 {
1884 	sun4v_hvapi_unregister(HV_GRP_NCS);
1885 }
1886 
1887 static int global_ref;
1888 
1889 static int grab_global_resources(void)
1890 {
1891 	int err = 0;
1892 
1893 	mutex_lock(&spu_lock);
1894 
1895 	if (global_ref++)
1896 		goto out;
1897 
1898 	err = n2_spu_hvapi_register();
1899 	if (err)
1900 		goto out;
1901 
1902 	err = queue_cache_init();
1903 	if (err)
1904 		goto out_hvapi_release;
1905 
1906 	err = -ENOMEM;
1907 	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1908 			     GFP_KERNEL);
1909 	if (!cpu_to_cwq)
1910 		goto out_queue_cache_destroy;
1911 
1912 	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1913 			     GFP_KERNEL);
1914 	if (!cpu_to_mau)
1915 		goto out_free_cwq_table;
1916 
1917 	err = 0;
1918 
1919 out:
1920 	if (err)
1921 		global_ref--;
1922 	mutex_unlock(&spu_lock);
1923 	return err;
1924 
1925 out_free_cwq_table:
1926 	kfree(cpu_to_cwq);
1927 	cpu_to_cwq = NULL;
1928 
1929 out_queue_cache_destroy:
1930 	queue_cache_destroy();
1931 
1932 out_hvapi_release:
1933 	n2_spu_hvapi_unregister();
1934 	goto out;
1935 }
1936 
1937 static void release_global_resources(void)
1938 {
1939 	mutex_lock(&spu_lock);
1940 	if (!--global_ref) {
1941 		kfree(cpu_to_cwq);
1942 		cpu_to_cwq = NULL;
1943 
1944 		kfree(cpu_to_mau);
1945 		cpu_to_mau = NULL;
1946 
1947 		queue_cache_destroy();
1948 		n2_spu_hvapi_unregister();
1949 	}
1950 	mutex_unlock(&spu_lock);
1951 }
1952 
1953 static struct n2_crypto *alloc_n2cp(void)
1954 {
1955 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1956 
1957 	if (np)
1958 		INIT_LIST_HEAD(&np->cwq_list);
1959 
1960 	return np;
1961 }
1962 
1963 static void free_n2cp(struct n2_crypto *np)
1964 {
1965 	if (np->cwq_info.ino_table) {
1966 		kfree(np->cwq_info.ino_table);
1967 		np->cwq_info.ino_table = NULL;
1968 	}
1969 
1970 	kfree(np);
1971 }
1972 
1973 static void n2_spu_driver_version(void)
1974 {
1975 	static int n2_spu_version_printed;
1976 
1977 	if (n2_spu_version_printed++ == 0)
1978 		pr_info("%s", version);
1979 }
1980 
1981 static int n2_crypto_probe(struct platform_device *dev)
1982 {
1983 	struct mdesc_handle *mdesc;
1984 	const char *full_name;
1985 	struct n2_crypto *np;
1986 	int err;
1987 
1988 	n2_spu_driver_version();
1989 
1990 	full_name = dev->dev.of_node->full_name;
1991 	pr_info("Found N2CP at %s\n", full_name);
1992 
1993 	np = alloc_n2cp();
1994 	if (!np) {
1995 		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
1996 			full_name);
1997 		return -ENOMEM;
1998 	}
1999 
2000 	err = grab_global_resources();
2001 	if (err) {
2002 		dev_err(&dev->dev, "%s: Unable to grab "
2003 			"global resources.\n", full_name);
2004 		goto out_free_n2cp;
2005 	}
2006 
2007 	mdesc = mdesc_grab();
2008 
2009 	if (!mdesc) {
2010 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2011 			full_name);
2012 		err = -ENODEV;
2013 		goto out_free_global;
2014 	}
2015 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2016 	if (err) {
2017 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2018 			full_name);
2019 		mdesc_release(mdesc);
2020 		goto out_free_global;
2021 	}
2022 
2023 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2024 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2025 			     cpu_to_cwq);
2026 	mdesc_release(mdesc);
2027 
2028 	if (err) {
2029 		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2030 			full_name);
2031 		goto out_free_global;
2032 	}
2033 
2034 	err = n2_register_algs();
2035 	if (err) {
2036 		dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2037 			full_name);
2038 		goto out_free_spu_list;
2039 	}
2040 
2041 	dev_set_drvdata(&dev->dev, np);
2042 
2043 	return 0;
2044 
2045 out_free_spu_list:
2046 	spu_list_destroy(&np->cwq_list);
2047 
2048 out_free_global:
2049 	release_global_resources();
2050 
2051 out_free_n2cp:
2052 	free_n2cp(np);
2053 
2054 	return err;
2055 }
2056 
2057 static int n2_crypto_remove(struct platform_device *dev)
2058 {
2059 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2060 
2061 	n2_unregister_algs();
2062 
2063 	spu_list_destroy(&np->cwq_list);
2064 
2065 	release_global_resources();
2066 
2067 	free_n2cp(np);
2068 
2069 	return 0;
2070 }
2071 
2072 static struct n2_mau *alloc_ncp(void)
2073 {
2074 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2075 
2076 	if (mp)
2077 		INIT_LIST_HEAD(&mp->mau_list);
2078 
2079 	return mp;
2080 }
2081 
2082 static void free_ncp(struct n2_mau *mp)
2083 {
2084 	if (mp->mau_info.ino_table) {
2085 		kfree(mp->mau_info.ino_table);
2086 		mp->mau_info.ino_table = NULL;
2087 	}
2088 
2089 	kfree(mp);
2090 }
2091 
2092 static int n2_mau_probe(struct platform_device *dev)
2093 {
2094 	struct mdesc_handle *mdesc;
2095 	const char *full_name;
2096 	struct n2_mau *mp;
2097 	int err;
2098 
2099 	n2_spu_driver_version();
2100 
2101 	full_name = dev->dev.of_node->full_name;
2102 	pr_info("Found NCP at %s\n", full_name);
2103 
2104 	mp = alloc_ncp();
2105 	if (!mp) {
2106 		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2107 			full_name);
2108 		return -ENOMEM;
2109 	}
2110 
2111 	err = grab_global_resources();
2112 	if (err) {
2113 		dev_err(&dev->dev, "%s: Unable to grab "
2114 			"global resources.\n", full_name);
2115 		goto out_free_ncp;
2116 	}
2117 
2118 	mdesc = mdesc_grab();
2119 
2120 	if (!mdesc) {
2121 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2122 			full_name);
2123 		err = -ENODEV;
2124 		goto out_free_global;
2125 	}
2126 
2127 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2128 	if (err) {
2129 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2130 			full_name);
2131 		mdesc_release(mdesc);
2132 		goto out_free_global;
2133 	}
2134 
2135 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2136 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2137 			     cpu_to_mau);
2138 	mdesc_release(mdesc);
2139 
2140 	if (err) {
2141 		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2142 			full_name);
2143 		goto out_free_global;
2144 	}
2145 
2146 	dev_set_drvdata(&dev->dev, mp);
2147 
2148 	return 0;
2149 
2150 out_free_global:
2151 	release_global_resources();
2152 
2153 out_free_ncp:
2154 	free_ncp(mp);
2155 
2156 	return err;
2157 }
2158 
2159 static int n2_mau_remove(struct platform_device *dev)
2160 {
2161 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2162 
2163 	spu_list_destroy(&mp->mau_list);
2164 
2165 	release_global_resources();
2166 
2167 	free_ncp(mp);
2168 
2169 	return 0;
2170 }
2171 
2172 static struct of_device_id n2_crypto_match[] = {
2173 	{
2174 		.name = "n2cp",
2175 		.compatible = "SUNW,n2-cwq",
2176 	},
2177 	{
2178 		.name = "n2cp",
2179 		.compatible = "SUNW,vf-cwq",
2180 	},
2181 	{
2182 		.name = "n2cp",
2183 		.compatible = "SUNW,kt-cwq",
2184 	},
2185 	{},
2186 };
2187 
2188 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2189 
2190 static struct platform_driver n2_crypto_driver = {
2191 	.driver = {
2192 		.name		=	"n2cp",
2193 		.of_match_table	=	n2_crypto_match,
2194 	},
2195 	.probe		=	n2_crypto_probe,
2196 	.remove		=	n2_crypto_remove,
2197 };
2198 
2199 static struct of_device_id n2_mau_match[] = {
2200 	{
2201 		.name = "ncp",
2202 		.compatible = "SUNW,n2-mau",
2203 	},
2204 	{
2205 		.name = "ncp",
2206 		.compatible = "SUNW,vf-mau",
2207 	},
2208 	{
2209 		.name = "ncp",
2210 		.compatible = "SUNW,kt-mau",
2211 	},
2212 	{},
2213 };
2214 
2215 MODULE_DEVICE_TABLE(of, n2_mau_match);
2216 
2217 static struct platform_driver n2_mau_driver = {
2218 	.driver = {
2219 		.name		=	"ncp",
2220 		.of_match_table	=	n2_mau_match,
2221 	},
2222 	.probe		=	n2_mau_probe,
2223 	.remove		=	n2_mau_remove,
2224 };
2225 
2226 static struct platform_driver * const drivers[] = {
2227 	&n2_crypto_driver,
2228 	&n2_mau_driver,
2229 };
2230 
2231 static int __init n2_init(void)
2232 {
2233 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2234 }
2235 
2236 static void __exit n2_exit(void)
2237 {
2238 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2239 }
2240 
2241 module_init(n2_init);
2242 module_exit(n2_exit);
2243