xref: /openbmc/linux/drivers/crypto/n2_core.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 struct spu_qreg {
69 	struct spu_queue	*queue;
70 	unsigned long		type;
71 };
72 
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75 
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 	if (q->q_type == HV_NCS_QTYPE_MAU) {
79 		off += MAU_ENTRY_SIZE;
80 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 			off = 0;
82 	} else {
83 		off += CWQ_ENTRY_SIZE;
84 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 			off = 0;
86 	}
87 	return off;
88 }
89 
90 struct n2_request_common {
91 	struct list_head	entry;
92 	unsigned int		offset;
93 };
94 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
95 
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 				unsigned long old_head, unsigned long new_head)
102 {
103 	if (old_head <= new_head) {
104 		if (offset > old_head && offset <= new_head)
105 			return true;
106 	} else {
107 		if (offset > old_head || offset <= new_head)
108 			return true;
109 	}
110 	return false;
111 }
112 
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 	unsigned long off, new_head, hv_ret;
121 	struct spu_queue *q = dev_id;
122 
123 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 	       smp_processor_id(), q->qhandle);
125 
126 	spin_lock(&q->lock);
127 
128 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129 
130 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 	       smp_processor_id(), new_head, hv_ret);
132 
133 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 		/* XXX ... XXX */
135 	}
136 
137 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 	if (hv_ret == HV_EOK)
139 		q->head = new_head;
140 
141 	spin_unlock(&q->lock);
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 	struct spu_queue *q = dev_id;
149 	unsigned long head, hv_ret;
150 
151 	spin_lock(&q->lock);
152 
153 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 	       smp_processor_id(), q->qhandle);
155 
156 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157 
158 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 	       smp_processor_id(), head, hv_ret);
160 
161 	sun4v_ncs_sethead_marker(q->qhandle, head);
162 
163 	spin_unlock(&q->lock);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 	return q->q + spu_next_offset(q, cur - q->q);
171 }
172 
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 	unsigned long head = q->head;
176 	unsigned long tail = q->tail;
177 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 	unsigned long diff;
179 
180 	if (head > tail)
181 		diff = head - tail;
182 	else
183 		diff = (end - tail) + head;
184 
185 	return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187 
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 	int avail = spu_queue_num_free(q);
191 
192 	if (avail >= num_entries)
193 		return q->q + q->tail;
194 
195 	return NULL;
196 }
197 
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 	unsigned long hv_ret, new_tail;
201 
202 	new_tail = spu_next_offset(q, last - q->q);
203 
204 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 	if (hv_ret == HV_EOK)
206 		q->tail = new_tail;
207 	return hv_ret;
208 }
209 
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 			     int enc_type, int auth_type,
212 			     unsigned int hash_len,
213 			     bool sfas, bool sob, bool eob, bool encrypt,
214 			     int opcode)
215 {
216 	u64 word = (len - 1) & CONTROL_LEN;
217 
218 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 	if (sfas)
222 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 	if (sob)
224 		word |= CONTROL_START_OF_BLOCK;
225 	if (eob)
226 		word |= CONTROL_END_OF_BLOCK;
227 	if (encrypt)
228 		word |= CONTROL_ENCRYPT;
229 	if (hmac_key_len)
230 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 	if (hash_len)
232 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 
234 	return word;
235 }
236 
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 	if (this_len >= 64 ||
241 	    qp->head != qp->tail)
242 		return true;
243 	return false;
244 }
245 #endif
246 
247 struct n2_ahash_alg {
248 	struct list_head	entry;
249 	const u8		*hash_zero;
250 	const u32		*hash_init;
251 	u8			hw_op_hashsz;
252 	u8			digest_size;
253 	u8			auth_type;
254 	u8			hmac_type;
255 	struct ahash_alg	alg;
256 };
257 
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 	struct crypto_alg *alg = tfm->__crt_alg;
261 	struct ahash_alg *ahash_alg;
262 
263 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264 
265 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267 
268 struct n2_hmac_alg {
269 	const char		*child_alg;
270 	struct n2_ahash_alg	derived;
271 };
272 
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 	struct crypto_alg *alg = tfm->__crt_alg;
276 	struct ahash_alg *ahash_alg;
277 
278 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279 
280 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282 
283 struct n2_hash_ctx {
284 	struct crypto_ahash		*fallback_tfm;
285 };
286 
287 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
288 
289 struct n2_hmac_ctx {
290 	struct n2_hash_ctx		base;
291 
292 	struct crypto_shash		*child_shash;
293 
294 	int				hash_key_len;
295 	unsigned char			hash_key[N2_HASH_KEY_MAX];
296 };
297 
298 struct n2_hash_req_ctx {
299 	union {
300 		struct md5_state	md5;
301 		struct sha1_state	sha1;
302 		struct sha256_state	sha256;
303 	} u;
304 
305 	struct ahash_request		fallback_req;
306 };
307 
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313 
314 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316 
317 	return crypto_ahash_init(&rctx->fallback_req);
318 }
319 
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325 
326 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 	rctx->fallback_req.nbytes = req->nbytes;
329 	rctx->fallback_req.src = req->src;
330 
331 	return crypto_ahash_update(&rctx->fallback_req);
332 }
333 
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339 
340 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 	rctx->fallback_req.result = req->result;
343 
344 	return crypto_ahash_final(&rctx->fallback_req);
345 }
346 
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352 
353 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 	rctx->fallback_req.nbytes = req->nbytes;
356 	rctx->fallback_req.src = req->src;
357 	rctx->fallback_req.result = req->result;
358 
359 	return crypto_ahash_finup(&rctx->fallback_req);
360 }
361 
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363 {
364 	return -ENOSYS;
365 }
366 
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368 {
369 	return -ENOSYS;
370 }
371 
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
373 {
374 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 	struct crypto_ahash *fallback_tfm;
378 	int err;
379 
380 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 					  CRYPTO_ALG_NEED_FALLBACK);
382 	if (IS_ERR(fallback_tfm)) {
383 		pr_warning("Fallback driver '%s' could not be loaded!\n",
384 			   fallback_driver_name);
385 		err = PTR_ERR(fallback_tfm);
386 		goto out;
387 	}
388 
389 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 					 crypto_ahash_reqsize(fallback_tfm)));
391 
392 	ctx->fallback_tfm = fallback_tfm;
393 	return 0;
394 
395 out:
396 	return err;
397 }
398 
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400 {
401 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403 
404 	crypto_free_ahash(ctx->fallback_tfm);
405 }
406 
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408 {
409 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 	struct crypto_ahash *fallback_tfm;
414 	struct crypto_shash *child_shash;
415 	int err;
416 
417 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 					  CRYPTO_ALG_NEED_FALLBACK);
419 	if (IS_ERR(fallback_tfm)) {
420 		pr_warning("Fallback driver '%s' could not be loaded!\n",
421 			   fallback_driver_name);
422 		err = PTR_ERR(fallback_tfm);
423 		goto out;
424 	}
425 
426 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 	if (IS_ERR(child_shash)) {
428 		pr_warning("Child shash '%s' could not be loaded!\n",
429 			   n2alg->child_alg);
430 		err = PTR_ERR(child_shash);
431 		goto out_free_fallback;
432 	}
433 
434 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 					 crypto_ahash_reqsize(fallback_tfm)));
436 
437 	ctx->child_shash = child_shash;
438 	ctx->base.fallback_tfm = fallback_tfm;
439 	return 0;
440 
441 out_free_fallback:
442 	crypto_free_ahash(fallback_tfm);
443 
444 out:
445 	return err;
446 }
447 
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449 {
450 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452 
453 	crypto_free_ahash(ctx->base.fallback_tfm);
454 	crypto_free_shash(ctx->child_shash);
455 }
456 
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458 				unsigned int keylen)
459 {
460 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 	struct crypto_shash *child_shash = ctx->child_shash;
462 	struct crypto_ahash *fallback_tfm;
463 	SHASH_DESC_ON_STACK(shash, child_shash);
464 	int err, bs, ds;
465 
466 	fallback_tfm = ctx->base.fallback_tfm;
467 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468 	if (err)
469 		return err;
470 
471 	shash->tfm = child_shash;
472 	shash->flags = crypto_ahash_get_flags(tfm) &
473 		CRYPTO_TFM_REQ_MAY_SLEEP;
474 
475 	bs = crypto_shash_blocksize(child_shash);
476 	ds = crypto_shash_digestsize(child_shash);
477 	BUG_ON(ds > N2_HASH_KEY_MAX);
478 	if (keylen > bs) {
479 		err = crypto_shash_digest(shash, key, keylen,
480 					  ctx->hash_key);
481 		if (err)
482 			return err;
483 		keylen = ds;
484 	} else if (keylen <= N2_HASH_KEY_MAX)
485 		memcpy(ctx->hash_key, key, keylen);
486 
487 	ctx->hash_key_len = keylen;
488 
489 	return err;
490 }
491 
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494 	unsigned long head, hv_ret;
495 
496 	do {
497 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 		if (hv_ret != HV_EOK) {
499 			pr_err("Hypervisor error on gethead\n");
500 			break;
501 		}
502 		if (head == qp->tail) {
503 			qp->head = head;
504 			break;
505 		}
506 	} while (1);
507 	return hv_ret;
508 }
509 
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 					      struct cwq_initial_entry *ent)
512 {
513 	unsigned long hv_ret = spu_queue_submit(qp, ent);
514 
515 	if (hv_ret == HV_EOK)
516 		hv_ret = wait_for_tail(qp);
517 
518 	return hv_ret;
519 }
520 
521 static int n2_do_async_digest(struct ahash_request *req,
522 			      unsigned int auth_type, unsigned int digest_size,
523 			      unsigned int result_size, void *hash_loc,
524 			      unsigned long auth_key, unsigned int auth_key_len)
525 {
526 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 	struct cwq_initial_entry *ent;
528 	struct crypto_hash_walk walk;
529 	struct spu_queue *qp;
530 	unsigned long flags;
531 	int err = -ENODEV;
532 	int nbytes, cpu;
533 
534 	/* The total effective length of the operation may not
535 	 * exceed 2^16.
536 	 */
537 	if (unlikely(req->nbytes > (1 << 16))) {
538 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 
541 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 		rctx->fallback_req.base.flags =
543 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 		rctx->fallback_req.nbytes = req->nbytes;
545 		rctx->fallback_req.src = req->src;
546 		rctx->fallback_req.result = req->result;
547 
548 		return crypto_ahash_digest(&rctx->fallback_req);
549 	}
550 
551 	nbytes = crypto_hash_walk_first(req, &walk);
552 
553 	cpu = get_cpu();
554 	qp = cpu_to_cwq[cpu];
555 	if (!qp)
556 		goto out;
557 
558 	spin_lock_irqsave(&qp->lock, flags);
559 
560 	/* XXX can do better, improve this later by doing a by-hand scatterlist
561 	 * XXX walk, etc.
562 	 */
563 	ent = qp->q + qp->tail;
564 
565 	ent->control = control_word_base(nbytes, auth_key_len, 0,
566 					 auth_type, digest_size,
567 					 false, true, false, false,
568 					 OPCODE_INPLACE_BIT |
569 					 OPCODE_AUTH_MAC);
570 	ent->src_addr = __pa(walk.data);
571 	ent->auth_key_addr = auth_key;
572 	ent->auth_iv_addr = __pa(hash_loc);
573 	ent->final_auth_state_addr = 0UL;
574 	ent->enc_key_addr = 0UL;
575 	ent->enc_iv_addr = 0UL;
576 	ent->dest_addr = __pa(hash_loc);
577 
578 	nbytes = crypto_hash_walk_done(&walk, 0);
579 	while (nbytes > 0) {
580 		ent = spu_queue_next(qp, ent);
581 
582 		ent->control = (nbytes - 1);
583 		ent->src_addr = __pa(walk.data);
584 		ent->auth_key_addr = 0UL;
585 		ent->auth_iv_addr = 0UL;
586 		ent->final_auth_state_addr = 0UL;
587 		ent->enc_key_addr = 0UL;
588 		ent->enc_iv_addr = 0UL;
589 		ent->dest_addr = 0UL;
590 
591 		nbytes = crypto_hash_walk_done(&walk, 0);
592 	}
593 	ent->control |= CONTROL_END_OF_BLOCK;
594 
595 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 		err = -EINVAL;
597 	else
598 		err = 0;
599 
600 	spin_unlock_irqrestore(&qp->lock, flags);
601 
602 	if (!err)
603 		memcpy(req->result, hash_loc, result_size);
604 out:
605 	put_cpu();
606 
607 	return err;
608 }
609 
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 	int ds;
615 
616 	ds = n2alg->digest_size;
617 	if (unlikely(req->nbytes == 0)) {
618 		memcpy(req->result, n2alg->hash_zero, ds);
619 		return 0;
620 	}
621 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 
623 	return n2_do_async_digest(req, n2alg->auth_type,
624 				  n2alg->hw_op_hashsz, ds,
625 				  &rctx->u, 0UL, 0);
626 }
627 
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 	int ds;
635 
636 	ds = n2alg->derived.digest_size;
637 	if (unlikely(req->nbytes == 0) ||
638 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 
642 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 		rctx->fallback_req.base.flags =
644 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 		rctx->fallback_req.nbytes = req->nbytes;
646 		rctx->fallback_req.src = req->src;
647 		rctx->fallback_req.result = req->result;
648 
649 		return crypto_ahash_digest(&rctx->fallback_req);
650 	}
651 	memcpy(&rctx->u, n2alg->derived.hash_init,
652 	       n2alg->derived.hw_op_hashsz);
653 
654 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 				  n2alg->derived.hw_op_hashsz, ds,
656 				  &rctx->u,
657 				  __pa(&ctx->hash_key),
658 				  ctx->hash_key_len);
659 }
660 
661 struct n2_cipher_context {
662 	int			key_len;
663 	int			enc_type;
664 	union {
665 		u8		aes[AES_MAX_KEY_SIZE];
666 		u8		des[DES_KEY_SIZE];
667 		u8		des3[3 * DES_KEY_SIZE];
668 		u8		arc4[258]; /* S-box, X, Y */
669 	} key;
670 };
671 
672 #define N2_CHUNK_ARR_LEN	16
673 
674 struct n2_crypto_chunk {
675 	struct list_head	entry;
676 	unsigned long		iv_paddr : 44;
677 	unsigned long		arr_len : 20;
678 	unsigned long		dest_paddr;
679 	unsigned long		dest_final;
680 	struct {
681 		unsigned long	src_paddr : 44;
682 		unsigned long	src_len : 20;
683 	} arr[N2_CHUNK_ARR_LEN];
684 };
685 
686 struct n2_request_context {
687 	struct ablkcipher_walk	walk;
688 	struct list_head	chunk_list;
689 	struct n2_crypto_chunk	chunk;
690 	u8			temp_iv[16];
691 };
692 
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *	0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *	0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711 
712 struct n2_cipher_alg {
713 	struct list_head	entry;
714 	u8			enc_type;
715 	struct crypto_alg	alg;
716 };
717 
718 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
719 {
720 	struct crypto_alg *alg = tfm->__crt_alg;
721 
722 	return container_of(alg, struct n2_cipher_alg, alg);
723 }
724 
725 struct n2_cipher_request_context {
726 	struct ablkcipher_walk	walk;
727 };
728 
729 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
730 			 unsigned int keylen)
731 {
732 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
735 
736 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 
738 	switch (keylen) {
739 	case AES_KEYSIZE_128:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 		break;
742 	case AES_KEYSIZE_192:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 		break;
745 	case AES_KEYSIZE_256:
746 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 		break;
748 	default:
749 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750 		return -EINVAL;
751 	}
752 
753 	ctx->key_len = keylen;
754 	memcpy(ctx->key.aes, key, keylen);
755 	return 0;
756 }
757 
758 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
759 			 unsigned int keylen)
760 {
761 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764 	u32 tmp[DES_EXPKEY_WORDS];
765 	int err;
766 
767 	ctx->enc_type = n2alg->enc_type;
768 
769 	if (keylen != DES_KEY_SIZE) {
770 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
771 		return -EINVAL;
772 	}
773 
774 	err = des_ekey(tmp, key);
775 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
776 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
777 		return -EINVAL;
778 	}
779 
780 	ctx->key_len = keylen;
781 	memcpy(ctx->key.des, key, keylen);
782 	return 0;
783 }
784 
785 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
786 			  unsigned int keylen)
787 {
788 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
791 
792 	ctx->enc_type = n2alg->enc_type;
793 
794 	if (keylen != (3 * DES_KEY_SIZE)) {
795 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
796 		return -EINVAL;
797 	}
798 	ctx->key_len = keylen;
799 	memcpy(ctx->key.des3, key, keylen);
800 	return 0;
801 }
802 
803 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
804 			  unsigned int keylen)
805 {
806 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
807 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
808 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
809 	u8 *s = ctx->key.arc4;
810 	u8 *x = s + 256;
811 	u8 *y = x + 1;
812 	int i, j, k;
813 
814 	ctx->enc_type = n2alg->enc_type;
815 
816 	j = k = 0;
817 	*x = 0;
818 	*y = 0;
819 	for (i = 0; i < 256; i++)
820 		s[i] = i;
821 	for (i = 0; i < 256; i++) {
822 		u8 a = s[i];
823 		j = (j + key[k] + a) & 0xff;
824 		s[i] = s[j];
825 		s[j] = a;
826 		if (++k >= keylen)
827 			k = 0;
828 	}
829 
830 	return 0;
831 }
832 
833 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
834 {
835 	int this_len = nbytes;
836 
837 	this_len -= (nbytes & (block_size - 1));
838 	return this_len > (1 << 16) ? (1 << 16) : this_len;
839 }
840 
841 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
842 			    struct spu_queue *qp, bool encrypt)
843 {
844 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
845 	struct cwq_initial_entry *ent;
846 	bool in_place;
847 	int i;
848 
849 	ent = spu_queue_alloc(qp, cp->arr_len);
850 	if (!ent) {
851 		pr_info("queue_alloc() of %d fails\n",
852 			cp->arr_len);
853 		return -EBUSY;
854 	}
855 
856 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
857 
858 	ent->control = control_word_base(cp->arr[0].src_len,
859 					 0, ctx->enc_type, 0, 0,
860 					 false, true, false, encrypt,
861 					 OPCODE_ENCRYPT |
862 					 (in_place ? OPCODE_INPLACE_BIT : 0));
863 	ent->src_addr = cp->arr[0].src_paddr;
864 	ent->auth_key_addr = 0UL;
865 	ent->auth_iv_addr = 0UL;
866 	ent->final_auth_state_addr = 0UL;
867 	ent->enc_key_addr = __pa(&ctx->key);
868 	ent->enc_iv_addr = cp->iv_paddr;
869 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
870 
871 	for (i = 1; i < cp->arr_len; i++) {
872 		ent = spu_queue_next(qp, ent);
873 
874 		ent->control = cp->arr[i].src_len - 1;
875 		ent->src_addr = cp->arr[i].src_paddr;
876 		ent->auth_key_addr = 0UL;
877 		ent->auth_iv_addr = 0UL;
878 		ent->final_auth_state_addr = 0UL;
879 		ent->enc_key_addr = 0UL;
880 		ent->enc_iv_addr = 0UL;
881 		ent->dest_addr = 0UL;
882 	}
883 	ent->control |= CONTROL_END_OF_BLOCK;
884 
885 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
886 }
887 
888 static int n2_compute_chunks(struct ablkcipher_request *req)
889 {
890 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
891 	struct ablkcipher_walk *walk = &rctx->walk;
892 	struct n2_crypto_chunk *chunk;
893 	unsigned long dest_prev;
894 	unsigned int tot_len;
895 	bool prev_in_place;
896 	int err, nbytes;
897 
898 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
899 	err = ablkcipher_walk_phys(req, walk);
900 	if (err)
901 		return err;
902 
903 	INIT_LIST_HEAD(&rctx->chunk_list);
904 
905 	chunk = &rctx->chunk;
906 	INIT_LIST_HEAD(&chunk->entry);
907 
908 	chunk->iv_paddr = 0UL;
909 	chunk->arr_len = 0;
910 	chunk->dest_paddr = 0UL;
911 
912 	prev_in_place = false;
913 	dest_prev = ~0UL;
914 	tot_len = 0;
915 
916 	while ((nbytes = walk->nbytes) != 0) {
917 		unsigned long dest_paddr, src_paddr;
918 		bool in_place;
919 		int this_len;
920 
921 		src_paddr = (page_to_phys(walk->src.page) +
922 			     walk->src.offset);
923 		dest_paddr = (page_to_phys(walk->dst.page) +
924 			      walk->dst.offset);
925 		in_place = (src_paddr == dest_paddr);
926 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
927 
928 		if (chunk->arr_len != 0) {
929 			if (in_place != prev_in_place ||
930 			    (!prev_in_place &&
931 			     dest_paddr != dest_prev) ||
932 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
933 			    tot_len + this_len > (1 << 16)) {
934 				chunk->dest_final = dest_prev;
935 				list_add_tail(&chunk->entry,
936 					      &rctx->chunk_list);
937 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
938 				if (!chunk) {
939 					err = -ENOMEM;
940 					break;
941 				}
942 				INIT_LIST_HEAD(&chunk->entry);
943 			}
944 		}
945 		if (chunk->arr_len == 0) {
946 			chunk->dest_paddr = dest_paddr;
947 			tot_len = 0;
948 		}
949 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
950 		chunk->arr[chunk->arr_len].src_len = this_len;
951 		chunk->arr_len++;
952 
953 		dest_prev = dest_paddr + this_len;
954 		prev_in_place = in_place;
955 		tot_len += this_len;
956 
957 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
958 		if (err)
959 			break;
960 	}
961 	if (!err && chunk->arr_len != 0) {
962 		chunk->dest_final = dest_prev;
963 		list_add_tail(&chunk->entry, &rctx->chunk_list);
964 	}
965 
966 	return err;
967 }
968 
969 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
970 {
971 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
972 	struct n2_crypto_chunk *c, *tmp;
973 
974 	if (final_iv)
975 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
976 
977 	ablkcipher_walk_complete(&rctx->walk);
978 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
979 		list_del(&c->entry);
980 		if (unlikely(c != &rctx->chunk))
981 			kfree(c);
982 	}
983 
984 }
985 
986 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
987 {
988 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
989 	struct crypto_tfm *tfm = req->base.tfm;
990 	int err = n2_compute_chunks(req);
991 	struct n2_crypto_chunk *c, *tmp;
992 	unsigned long flags, hv_ret;
993 	struct spu_queue *qp;
994 
995 	if (err)
996 		return err;
997 
998 	qp = cpu_to_cwq[get_cpu()];
999 	err = -ENODEV;
1000 	if (!qp)
1001 		goto out;
1002 
1003 	spin_lock_irqsave(&qp->lock, flags);
1004 
1005 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1006 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1007 		if (err)
1008 			break;
1009 		list_del(&c->entry);
1010 		if (unlikely(c != &rctx->chunk))
1011 			kfree(c);
1012 	}
1013 	if (!err) {
1014 		hv_ret = wait_for_tail(qp);
1015 		if (hv_ret != HV_EOK)
1016 			err = -EINVAL;
1017 	}
1018 
1019 	spin_unlock_irqrestore(&qp->lock, flags);
1020 
1021 out:
1022 	put_cpu();
1023 
1024 	n2_chunk_complete(req, NULL);
1025 	return err;
1026 }
1027 
1028 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1029 {
1030 	return n2_do_ecb(req, true);
1031 }
1032 
1033 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1034 {
1035 	return n2_do_ecb(req, false);
1036 }
1037 
1038 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1039 {
1040 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1041 	struct crypto_tfm *tfm = req->base.tfm;
1042 	unsigned long flags, hv_ret, iv_paddr;
1043 	int err = n2_compute_chunks(req);
1044 	struct n2_crypto_chunk *c, *tmp;
1045 	struct spu_queue *qp;
1046 	void *final_iv_addr;
1047 
1048 	final_iv_addr = NULL;
1049 
1050 	if (err)
1051 		return err;
1052 
1053 	qp = cpu_to_cwq[get_cpu()];
1054 	err = -ENODEV;
1055 	if (!qp)
1056 		goto out;
1057 
1058 	spin_lock_irqsave(&qp->lock, flags);
1059 
1060 	if (encrypt) {
1061 		iv_paddr = __pa(rctx->walk.iv);
1062 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1063 					 entry) {
1064 			c->iv_paddr = iv_paddr;
1065 			err = __n2_crypt_chunk(tfm, c, qp, true);
1066 			if (err)
1067 				break;
1068 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1069 			list_del(&c->entry);
1070 			if (unlikely(c != &rctx->chunk))
1071 				kfree(c);
1072 		}
1073 		final_iv_addr = __va(iv_paddr);
1074 	} else {
1075 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1076 						 entry) {
1077 			if (c == &rctx->chunk) {
1078 				iv_paddr = __pa(rctx->walk.iv);
1079 			} else {
1080 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1081 					    tmp->arr[tmp->arr_len-1].src_len -
1082 					    rctx->walk.blocksize);
1083 			}
1084 			if (!final_iv_addr) {
1085 				unsigned long pa;
1086 
1087 				pa = (c->arr[c->arr_len-1].src_paddr +
1088 				      c->arr[c->arr_len-1].src_len -
1089 				      rctx->walk.blocksize);
1090 				final_iv_addr = rctx->temp_iv;
1091 				memcpy(rctx->temp_iv, __va(pa),
1092 				       rctx->walk.blocksize);
1093 			}
1094 			c->iv_paddr = iv_paddr;
1095 			err = __n2_crypt_chunk(tfm, c, qp, false);
1096 			if (err)
1097 				break;
1098 			list_del(&c->entry);
1099 			if (unlikely(c != &rctx->chunk))
1100 				kfree(c);
1101 		}
1102 	}
1103 	if (!err) {
1104 		hv_ret = wait_for_tail(qp);
1105 		if (hv_ret != HV_EOK)
1106 			err = -EINVAL;
1107 	}
1108 
1109 	spin_unlock_irqrestore(&qp->lock, flags);
1110 
1111 out:
1112 	put_cpu();
1113 
1114 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1115 	return err;
1116 }
1117 
1118 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1119 {
1120 	return n2_do_chaining(req, true);
1121 }
1122 
1123 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1124 {
1125 	return n2_do_chaining(req, false);
1126 }
1127 
1128 struct n2_cipher_tmpl {
1129 	const char		*name;
1130 	const char		*drv_name;
1131 	u8			block_size;
1132 	u8			enc_type;
1133 	struct ablkcipher_alg	ablkcipher;
1134 };
1135 
1136 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1137 	/* ARC4: only ECB is supported (chaining bits ignored) */
1138 	{	.name		= "ecb(arc4)",
1139 		.drv_name	= "ecb-arc4",
1140 		.block_size	= 1,
1141 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1142 				   ENC_TYPE_CHAINING_ECB),
1143 		.ablkcipher	= {
1144 			.min_keysize	= 1,
1145 			.max_keysize	= 256,
1146 			.setkey		= n2_arc4_setkey,
1147 			.encrypt	= n2_encrypt_ecb,
1148 			.decrypt	= n2_decrypt_ecb,
1149 		},
1150 	},
1151 
1152 	/* DES: ECB CBC and CFB are supported */
1153 	{	.name		= "ecb(des)",
1154 		.drv_name	= "ecb-des",
1155 		.block_size	= DES_BLOCK_SIZE,
1156 		.enc_type	= (ENC_TYPE_ALG_DES |
1157 				   ENC_TYPE_CHAINING_ECB),
1158 		.ablkcipher	= {
1159 			.min_keysize	= DES_KEY_SIZE,
1160 			.max_keysize	= DES_KEY_SIZE,
1161 			.setkey		= n2_des_setkey,
1162 			.encrypt	= n2_encrypt_ecb,
1163 			.decrypt	= n2_decrypt_ecb,
1164 		},
1165 	},
1166 	{	.name		= "cbc(des)",
1167 		.drv_name	= "cbc-des",
1168 		.block_size	= DES_BLOCK_SIZE,
1169 		.enc_type	= (ENC_TYPE_ALG_DES |
1170 				   ENC_TYPE_CHAINING_CBC),
1171 		.ablkcipher	= {
1172 			.ivsize		= DES_BLOCK_SIZE,
1173 			.min_keysize	= DES_KEY_SIZE,
1174 			.max_keysize	= DES_KEY_SIZE,
1175 			.setkey		= n2_des_setkey,
1176 			.encrypt	= n2_encrypt_chaining,
1177 			.decrypt	= n2_decrypt_chaining,
1178 		},
1179 	},
1180 	{	.name		= "cfb(des)",
1181 		.drv_name	= "cfb-des",
1182 		.block_size	= DES_BLOCK_SIZE,
1183 		.enc_type	= (ENC_TYPE_ALG_DES |
1184 				   ENC_TYPE_CHAINING_CFB),
1185 		.ablkcipher	= {
1186 			.min_keysize	= DES_KEY_SIZE,
1187 			.max_keysize	= DES_KEY_SIZE,
1188 			.setkey		= n2_des_setkey,
1189 			.encrypt	= n2_encrypt_chaining,
1190 			.decrypt	= n2_decrypt_chaining,
1191 		},
1192 	},
1193 
1194 	/* 3DES: ECB CBC and CFB are supported */
1195 	{	.name		= "ecb(des3_ede)",
1196 		.drv_name	= "ecb-3des",
1197 		.block_size	= DES_BLOCK_SIZE,
1198 		.enc_type	= (ENC_TYPE_ALG_3DES |
1199 				   ENC_TYPE_CHAINING_ECB),
1200 		.ablkcipher	= {
1201 			.min_keysize	= 3 * DES_KEY_SIZE,
1202 			.max_keysize	= 3 * DES_KEY_SIZE,
1203 			.setkey		= n2_3des_setkey,
1204 			.encrypt	= n2_encrypt_ecb,
1205 			.decrypt	= n2_decrypt_ecb,
1206 		},
1207 	},
1208 	{	.name		= "cbc(des3_ede)",
1209 		.drv_name	= "cbc-3des",
1210 		.block_size	= DES_BLOCK_SIZE,
1211 		.enc_type	= (ENC_TYPE_ALG_3DES |
1212 				   ENC_TYPE_CHAINING_CBC),
1213 		.ablkcipher	= {
1214 			.ivsize		= DES_BLOCK_SIZE,
1215 			.min_keysize	= 3 * DES_KEY_SIZE,
1216 			.max_keysize	= 3 * DES_KEY_SIZE,
1217 			.setkey		= n2_3des_setkey,
1218 			.encrypt	= n2_encrypt_chaining,
1219 			.decrypt	= n2_decrypt_chaining,
1220 		},
1221 	},
1222 	{	.name		= "cfb(des3_ede)",
1223 		.drv_name	= "cfb-3des",
1224 		.block_size	= DES_BLOCK_SIZE,
1225 		.enc_type	= (ENC_TYPE_ALG_3DES |
1226 				   ENC_TYPE_CHAINING_CFB),
1227 		.ablkcipher	= {
1228 			.min_keysize	= 3 * DES_KEY_SIZE,
1229 			.max_keysize	= 3 * DES_KEY_SIZE,
1230 			.setkey		= n2_3des_setkey,
1231 			.encrypt	= n2_encrypt_chaining,
1232 			.decrypt	= n2_decrypt_chaining,
1233 		},
1234 	},
1235 	/* AES: ECB CBC and CTR are supported */
1236 	{	.name		= "ecb(aes)",
1237 		.drv_name	= "ecb-aes",
1238 		.block_size	= AES_BLOCK_SIZE,
1239 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1240 				   ENC_TYPE_CHAINING_ECB),
1241 		.ablkcipher	= {
1242 			.min_keysize	= AES_MIN_KEY_SIZE,
1243 			.max_keysize	= AES_MAX_KEY_SIZE,
1244 			.setkey		= n2_aes_setkey,
1245 			.encrypt	= n2_encrypt_ecb,
1246 			.decrypt	= n2_decrypt_ecb,
1247 		},
1248 	},
1249 	{	.name		= "cbc(aes)",
1250 		.drv_name	= "cbc-aes",
1251 		.block_size	= AES_BLOCK_SIZE,
1252 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1253 				   ENC_TYPE_CHAINING_CBC),
1254 		.ablkcipher	= {
1255 			.ivsize		= AES_BLOCK_SIZE,
1256 			.min_keysize	= AES_MIN_KEY_SIZE,
1257 			.max_keysize	= AES_MAX_KEY_SIZE,
1258 			.setkey		= n2_aes_setkey,
1259 			.encrypt	= n2_encrypt_chaining,
1260 			.decrypt	= n2_decrypt_chaining,
1261 		},
1262 	},
1263 	{	.name		= "ctr(aes)",
1264 		.drv_name	= "ctr-aes",
1265 		.block_size	= AES_BLOCK_SIZE,
1266 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1267 				   ENC_TYPE_CHAINING_COUNTER),
1268 		.ablkcipher	= {
1269 			.ivsize		= AES_BLOCK_SIZE,
1270 			.min_keysize	= AES_MIN_KEY_SIZE,
1271 			.max_keysize	= AES_MAX_KEY_SIZE,
1272 			.setkey		= n2_aes_setkey,
1273 			.encrypt	= n2_encrypt_chaining,
1274 			.decrypt	= n2_encrypt_chaining,
1275 		},
1276 	},
1277 
1278 };
1279 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1280 
1281 static LIST_HEAD(cipher_algs);
1282 
1283 struct n2_hash_tmpl {
1284 	const char	*name;
1285 	const u8	*hash_zero;
1286 	const u32	*hash_init;
1287 	u8		hw_op_hashsz;
1288 	u8		digest_size;
1289 	u8		block_size;
1290 	u8		auth_type;
1291 	u8		hmac_type;
1292 };
1293 
1294 static const u32 md5_init[MD5_HASH_WORDS] = {
1295 	cpu_to_le32(MD5_H0),
1296 	cpu_to_le32(MD5_H1),
1297 	cpu_to_le32(MD5_H2),
1298 	cpu_to_le32(MD5_H3),
1299 };
1300 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1301 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1302 };
1303 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1304 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1305 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1306 };
1307 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1308 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1309 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1310 };
1311 
1312 static const struct n2_hash_tmpl hash_tmpls[] = {
1313 	{ .name		= "md5",
1314 	  .hash_zero	= md5_zero_message_hash,
1315 	  .hash_init	= md5_init,
1316 	  .auth_type	= AUTH_TYPE_MD5,
1317 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1318 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1319 	  .digest_size	= MD5_DIGEST_SIZE,
1320 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1321 	{ .name		= "sha1",
1322 	  .hash_zero	= sha1_zero_message_hash,
1323 	  .hash_init	= sha1_init,
1324 	  .auth_type	= AUTH_TYPE_SHA1,
1325 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1326 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1327 	  .digest_size	= SHA1_DIGEST_SIZE,
1328 	  .block_size	= SHA1_BLOCK_SIZE },
1329 	{ .name		= "sha256",
1330 	  .hash_zero	= sha256_zero_message_hash,
1331 	  .hash_init	= sha256_init,
1332 	  .auth_type	= AUTH_TYPE_SHA256,
1333 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1334 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1335 	  .digest_size	= SHA256_DIGEST_SIZE,
1336 	  .block_size	= SHA256_BLOCK_SIZE },
1337 	{ .name		= "sha224",
1338 	  .hash_zero	= sha224_zero_message_hash,
1339 	  .hash_init	= sha224_init,
1340 	  .auth_type	= AUTH_TYPE_SHA256,
1341 	  .hmac_type	= AUTH_TYPE_RESERVED,
1342 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1343 	  .digest_size	= SHA224_DIGEST_SIZE,
1344 	  .block_size	= SHA224_BLOCK_SIZE },
1345 };
1346 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1347 
1348 static LIST_HEAD(ahash_algs);
1349 static LIST_HEAD(hmac_algs);
1350 
1351 static int algs_registered;
1352 
1353 static void __n2_unregister_algs(void)
1354 {
1355 	struct n2_cipher_alg *cipher, *cipher_tmp;
1356 	struct n2_ahash_alg *alg, *alg_tmp;
1357 	struct n2_hmac_alg *hmac, *hmac_tmp;
1358 
1359 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1360 		crypto_unregister_alg(&cipher->alg);
1361 		list_del(&cipher->entry);
1362 		kfree(cipher);
1363 	}
1364 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1365 		crypto_unregister_ahash(&hmac->derived.alg);
1366 		list_del(&hmac->derived.entry);
1367 		kfree(hmac);
1368 	}
1369 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1370 		crypto_unregister_ahash(&alg->alg);
1371 		list_del(&alg->entry);
1372 		kfree(alg);
1373 	}
1374 }
1375 
1376 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1377 {
1378 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1379 	return 0;
1380 }
1381 
1382 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1383 {
1384 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1385 	struct crypto_alg *alg;
1386 	int err;
1387 
1388 	if (!p)
1389 		return -ENOMEM;
1390 
1391 	alg = &p->alg;
1392 
1393 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1394 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1395 	alg->cra_priority = N2_CRA_PRIORITY;
1396 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1397 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1398 	alg->cra_blocksize = tmpl->block_size;
1399 	p->enc_type = tmpl->enc_type;
1400 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1401 	alg->cra_type = &crypto_ablkcipher_type;
1402 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1403 	alg->cra_init = n2_cipher_cra_init;
1404 	alg->cra_module = THIS_MODULE;
1405 
1406 	list_add(&p->entry, &cipher_algs);
1407 	err = crypto_register_alg(alg);
1408 	if (err) {
1409 		pr_err("%s alg registration failed\n", alg->cra_name);
1410 		list_del(&p->entry);
1411 		kfree(p);
1412 	} else {
1413 		pr_info("%s alg registered\n", alg->cra_name);
1414 	}
1415 	return err;
1416 }
1417 
1418 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1419 {
1420 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1421 	struct ahash_alg *ahash;
1422 	struct crypto_alg *base;
1423 	int err;
1424 
1425 	if (!p)
1426 		return -ENOMEM;
1427 
1428 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1429 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1430 	INIT_LIST_HEAD(&p->derived.entry);
1431 
1432 	ahash = &p->derived.alg;
1433 	ahash->digest = n2_hmac_async_digest;
1434 	ahash->setkey = n2_hmac_async_setkey;
1435 
1436 	base = &ahash->halg.base;
1437 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1438 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1439 
1440 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1441 	base->cra_init = n2_hmac_cra_init;
1442 	base->cra_exit = n2_hmac_cra_exit;
1443 
1444 	list_add(&p->derived.entry, &hmac_algs);
1445 	err = crypto_register_ahash(ahash);
1446 	if (err) {
1447 		pr_err("%s alg registration failed\n", base->cra_name);
1448 		list_del(&p->derived.entry);
1449 		kfree(p);
1450 	} else {
1451 		pr_info("%s alg registered\n", base->cra_name);
1452 	}
1453 	return err;
1454 }
1455 
1456 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1457 {
1458 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1459 	struct hash_alg_common *halg;
1460 	struct crypto_alg *base;
1461 	struct ahash_alg *ahash;
1462 	int err;
1463 
1464 	if (!p)
1465 		return -ENOMEM;
1466 
1467 	p->hash_zero = tmpl->hash_zero;
1468 	p->hash_init = tmpl->hash_init;
1469 	p->auth_type = tmpl->auth_type;
1470 	p->hmac_type = tmpl->hmac_type;
1471 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1472 	p->digest_size = tmpl->digest_size;
1473 
1474 	ahash = &p->alg;
1475 	ahash->init = n2_hash_async_init;
1476 	ahash->update = n2_hash_async_update;
1477 	ahash->final = n2_hash_async_final;
1478 	ahash->finup = n2_hash_async_finup;
1479 	ahash->digest = n2_hash_async_digest;
1480 	ahash->export = n2_hash_async_noexport;
1481 	ahash->import = n2_hash_async_noimport;
1482 
1483 	halg = &ahash->halg;
1484 	halg->digestsize = tmpl->digest_size;
1485 
1486 	base = &halg->base;
1487 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1488 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1489 	base->cra_priority = N2_CRA_PRIORITY;
1490 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1491 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
1492 			  CRYPTO_ALG_NEED_FALLBACK;
1493 	base->cra_blocksize = tmpl->block_size;
1494 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1495 	base->cra_module = THIS_MODULE;
1496 	base->cra_init = n2_hash_cra_init;
1497 	base->cra_exit = n2_hash_cra_exit;
1498 
1499 	list_add(&p->entry, &ahash_algs);
1500 	err = crypto_register_ahash(ahash);
1501 	if (err) {
1502 		pr_err("%s alg registration failed\n", base->cra_name);
1503 		list_del(&p->entry);
1504 		kfree(p);
1505 	} else {
1506 		pr_info("%s alg registered\n", base->cra_name);
1507 	}
1508 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1509 		err = __n2_register_one_hmac(p);
1510 	return err;
1511 }
1512 
1513 static int n2_register_algs(void)
1514 {
1515 	int i, err = 0;
1516 
1517 	mutex_lock(&spu_lock);
1518 	if (algs_registered++)
1519 		goto out;
1520 
1521 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1522 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1523 		if (err) {
1524 			__n2_unregister_algs();
1525 			goto out;
1526 		}
1527 	}
1528 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1529 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1530 		if (err) {
1531 			__n2_unregister_algs();
1532 			goto out;
1533 		}
1534 	}
1535 
1536 out:
1537 	mutex_unlock(&spu_lock);
1538 	return err;
1539 }
1540 
1541 static void n2_unregister_algs(void)
1542 {
1543 	mutex_lock(&spu_lock);
1544 	if (!--algs_registered)
1545 		__n2_unregister_algs();
1546 	mutex_unlock(&spu_lock);
1547 }
1548 
1549 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1550  * a devino.  This isn't very useful to us because all of the
1551  * interrupts listed in the device_node have been translated to
1552  * Linux virtual IRQ cookie numbers.
1553  *
1554  * So we have to back-translate, going through the 'intr' and 'ino'
1555  * property tables of the n2cp MDESC node, matching it with the OF
1556  * 'interrupts' property entries, in order to to figure out which
1557  * devino goes to which already-translated IRQ.
1558  */
1559 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1560 			     unsigned long dev_ino)
1561 {
1562 	const unsigned int *dev_intrs;
1563 	unsigned int intr;
1564 	int i;
1565 
1566 	for (i = 0; i < ip->num_intrs; i++) {
1567 		if (ip->ino_table[i].ino == dev_ino)
1568 			break;
1569 	}
1570 	if (i == ip->num_intrs)
1571 		return -ENODEV;
1572 
1573 	intr = ip->ino_table[i].intr;
1574 
1575 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1576 	if (!dev_intrs)
1577 		return -ENODEV;
1578 
1579 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1580 		if (dev_intrs[i] == intr)
1581 			return i;
1582 	}
1583 
1584 	return -ENODEV;
1585 }
1586 
1587 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1588 		       const char *irq_name, struct spu_queue *p,
1589 		       irq_handler_t handler)
1590 {
1591 	unsigned long herr;
1592 	int index;
1593 
1594 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1595 	if (herr)
1596 		return -EINVAL;
1597 
1598 	index = find_devino_index(dev, ip, p->devino);
1599 	if (index < 0)
1600 		return index;
1601 
1602 	p->irq = dev->archdata.irqs[index];
1603 
1604 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1605 
1606 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1607 }
1608 
1609 static struct kmem_cache *queue_cache[2];
1610 
1611 static void *new_queue(unsigned long q_type)
1612 {
1613 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1614 }
1615 
1616 static void free_queue(void *p, unsigned long q_type)
1617 {
1618 	kmem_cache_free(queue_cache[q_type - 1], p);
1619 }
1620 
1621 static int queue_cache_init(void)
1622 {
1623 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1624 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1625 			kmem_cache_create("mau_queue",
1626 					  (MAU_NUM_ENTRIES *
1627 					   MAU_ENTRY_SIZE),
1628 					  MAU_ENTRY_SIZE, 0, NULL);
1629 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1630 		return -ENOMEM;
1631 
1632 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1633 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1634 			kmem_cache_create("cwq_queue",
1635 					  (CWQ_NUM_ENTRIES *
1636 					   CWQ_ENTRY_SIZE),
1637 					  CWQ_ENTRY_SIZE, 0, NULL);
1638 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1639 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1641 		return -ENOMEM;
1642 	}
1643 	return 0;
1644 }
1645 
1646 static void queue_cache_destroy(void)
1647 {
1648 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1649 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1650 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1651 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1652 }
1653 
1654 static long spu_queue_register_workfn(void *arg)
1655 {
1656 	struct spu_qreg *qr = arg;
1657 	struct spu_queue *p = qr->queue;
1658 	unsigned long q_type = qr->type;
1659 	unsigned long hv_ret;
1660 
1661 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1662 				 CWQ_NUM_ENTRIES, &p->qhandle);
1663 	if (!hv_ret)
1664 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1665 
1666 	return hv_ret ? -EINVAL : 0;
1667 }
1668 
1669 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1670 {
1671 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1672 	struct spu_qreg qr = { .queue = p, .type = q_type };
1673 
1674 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1675 }
1676 
1677 static int spu_queue_setup(struct spu_queue *p)
1678 {
1679 	int err;
1680 
1681 	p->q = new_queue(p->q_type);
1682 	if (!p->q)
1683 		return -ENOMEM;
1684 
1685 	err = spu_queue_register(p, p->q_type);
1686 	if (err) {
1687 		free_queue(p->q, p->q_type);
1688 		p->q = NULL;
1689 	}
1690 
1691 	return err;
1692 }
1693 
1694 static void spu_queue_destroy(struct spu_queue *p)
1695 {
1696 	unsigned long hv_ret;
1697 
1698 	if (!p->q)
1699 		return;
1700 
1701 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1702 
1703 	if (!hv_ret)
1704 		free_queue(p->q, p->q_type);
1705 }
1706 
1707 static void spu_list_destroy(struct list_head *list)
1708 {
1709 	struct spu_queue *p, *n;
1710 
1711 	list_for_each_entry_safe(p, n, list, list) {
1712 		int i;
1713 
1714 		for (i = 0; i < NR_CPUS; i++) {
1715 			if (cpu_to_cwq[i] == p)
1716 				cpu_to_cwq[i] = NULL;
1717 		}
1718 
1719 		if (p->irq) {
1720 			free_irq(p->irq, p);
1721 			p->irq = 0;
1722 		}
1723 		spu_queue_destroy(p);
1724 		list_del(&p->list);
1725 		kfree(p);
1726 	}
1727 }
1728 
1729 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1730  * gathering cpu membership information.
1731  */
1732 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1733 			       struct platform_device *dev,
1734 			       u64 node, struct spu_queue *p,
1735 			       struct spu_queue **table)
1736 {
1737 	u64 arc;
1738 
1739 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1740 		u64 tgt = mdesc_arc_target(mdesc, arc);
1741 		const char *name = mdesc_node_name(mdesc, tgt);
1742 		const u64 *id;
1743 
1744 		if (strcmp(name, "cpu"))
1745 			continue;
1746 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1747 		if (table[*id] != NULL) {
1748 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1749 				dev->dev.of_node);
1750 			return -EINVAL;
1751 		}
1752 		cpumask_set_cpu(*id, &p->sharing);
1753 		table[*id] = p;
1754 	}
1755 	return 0;
1756 }
1757 
1758 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1759 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1760 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1761 			    u64 node, const char *iname, unsigned long q_type,
1762 			    irq_handler_t handler, struct spu_queue **table)
1763 {
1764 	struct spu_queue *p;
1765 	int err;
1766 
1767 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1768 	if (!p) {
1769 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1770 			dev->dev.of_node);
1771 		return -ENOMEM;
1772 	}
1773 
1774 	cpumask_clear(&p->sharing);
1775 	spin_lock_init(&p->lock);
1776 	p->q_type = q_type;
1777 	INIT_LIST_HEAD(&p->jobs);
1778 	list_add(&p->list, list);
1779 
1780 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1781 	if (err)
1782 		return err;
1783 
1784 	err = spu_queue_setup(p);
1785 	if (err)
1786 		return err;
1787 
1788 	return spu_map_ino(dev, ip, iname, p, handler);
1789 }
1790 
1791 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1792 			  struct spu_mdesc_info *ip, struct list_head *list,
1793 			  const char *exec_name, unsigned long q_type,
1794 			  irq_handler_t handler, struct spu_queue **table)
1795 {
1796 	int err = 0;
1797 	u64 node;
1798 
1799 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1800 		const char *type;
1801 
1802 		type = mdesc_get_property(mdesc, node, "type", NULL);
1803 		if (!type || strcmp(type, exec_name))
1804 			continue;
1805 
1806 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1807 				       exec_name, q_type, handler, table);
1808 		if (err) {
1809 			spu_list_destroy(list);
1810 			break;
1811 		}
1812 	}
1813 
1814 	return err;
1815 }
1816 
1817 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1818 			 struct spu_mdesc_info *ip)
1819 {
1820 	const u64 *ino;
1821 	int ino_len;
1822 	int i;
1823 
1824 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1825 	if (!ino) {
1826 		printk("NO 'ino'\n");
1827 		return -ENODEV;
1828 	}
1829 
1830 	ip->num_intrs = ino_len / sizeof(u64);
1831 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1832 				 ip->num_intrs),
1833 				GFP_KERNEL);
1834 	if (!ip->ino_table)
1835 		return -ENOMEM;
1836 
1837 	for (i = 0; i < ip->num_intrs; i++) {
1838 		struct ino_blob *b = &ip->ino_table[i];
1839 		b->intr = i + 1;
1840 		b->ino = ino[i];
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1847 				struct platform_device *dev,
1848 				struct spu_mdesc_info *ip,
1849 				const char *node_name)
1850 {
1851 	const unsigned int *reg;
1852 	u64 node;
1853 
1854 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1855 	if (!reg)
1856 		return -ENODEV;
1857 
1858 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1859 		const char *name;
1860 		const u64 *chdl;
1861 
1862 		name = mdesc_get_property(mdesc, node, "name", NULL);
1863 		if (!name || strcmp(name, node_name))
1864 			continue;
1865 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1866 		if (!chdl || (*chdl != *reg))
1867 			continue;
1868 		ip->cfg_handle = *chdl;
1869 		return get_irq_props(mdesc, node, ip);
1870 	}
1871 
1872 	return -ENODEV;
1873 }
1874 
1875 static unsigned long n2_spu_hvapi_major;
1876 static unsigned long n2_spu_hvapi_minor;
1877 
1878 static int n2_spu_hvapi_register(void)
1879 {
1880 	int err;
1881 
1882 	n2_spu_hvapi_major = 2;
1883 	n2_spu_hvapi_minor = 0;
1884 
1885 	err = sun4v_hvapi_register(HV_GRP_NCS,
1886 				   n2_spu_hvapi_major,
1887 				   &n2_spu_hvapi_minor);
1888 
1889 	if (!err)
1890 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1891 			n2_spu_hvapi_major,
1892 			n2_spu_hvapi_minor);
1893 
1894 	return err;
1895 }
1896 
1897 static void n2_spu_hvapi_unregister(void)
1898 {
1899 	sun4v_hvapi_unregister(HV_GRP_NCS);
1900 }
1901 
1902 static int global_ref;
1903 
1904 static int grab_global_resources(void)
1905 {
1906 	int err = 0;
1907 
1908 	mutex_lock(&spu_lock);
1909 
1910 	if (global_ref++)
1911 		goto out;
1912 
1913 	err = n2_spu_hvapi_register();
1914 	if (err)
1915 		goto out;
1916 
1917 	err = queue_cache_init();
1918 	if (err)
1919 		goto out_hvapi_release;
1920 
1921 	err = -ENOMEM;
1922 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1923 			     GFP_KERNEL);
1924 	if (!cpu_to_cwq)
1925 		goto out_queue_cache_destroy;
1926 
1927 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1928 			     GFP_KERNEL);
1929 	if (!cpu_to_mau)
1930 		goto out_free_cwq_table;
1931 
1932 	err = 0;
1933 
1934 out:
1935 	if (err)
1936 		global_ref--;
1937 	mutex_unlock(&spu_lock);
1938 	return err;
1939 
1940 out_free_cwq_table:
1941 	kfree(cpu_to_cwq);
1942 	cpu_to_cwq = NULL;
1943 
1944 out_queue_cache_destroy:
1945 	queue_cache_destroy();
1946 
1947 out_hvapi_release:
1948 	n2_spu_hvapi_unregister();
1949 	goto out;
1950 }
1951 
1952 static void release_global_resources(void)
1953 {
1954 	mutex_lock(&spu_lock);
1955 	if (!--global_ref) {
1956 		kfree(cpu_to_cwq);
1957 		cpu_to_cwq = NULL;
1958 
1959 		kfree(cpu_to_mau);
1960 		cpu_to_mau = NULL;
1961 
1962 		queue_cache_destroy();
1963 		n2_spu_hvapi_unregister();
1964 	}
1965 	mutex_unlock(&spu_lock);
1966 }
1967 
1968 static struct n2_crypto *alloc_n2cp(void)
1969 {
1970 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1971 
1972 	if (np)
1973 		INIT_LIST_HEAD(&np->cwq_list);
1974 
1975 	return np;
1976 }
1977 
1978 static void free_n2cp(struct n2_crypto *np)
1979 {
1980 	kfree(np->cwq_info.ino_table);
1981 	np->cwq_info.ino_table = NULL;
1982 
1983 	kfree(np);
1984 }
1985 
1986 static void n2_spu_driver_version(void)
1987 {
1988 	static int n2_spu_version_printed;
1989 
1990 	if (n2_spu_version_printed++ == 0)
1991 		pr_info("%s", version);
1992 }
1993 
1994 static int n2_crypto_probe(struct platform_device *dev)
1995 {
1996 	struct mdesc_handle *mdesc;
1997 	struct n2_crypto *np;
1998 	int err;
1999 
2000 	n2_spu_driver_version();
2001 
2002 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2003 
2004 	np = alloc_n2cp();
2005 	if (!np) {
2006 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2007 			dev->dev.of_node);
2008 		return -ENOMEM;
2009 	}
2010 
2011 	err = grab_global_resources();
2012 	if (err) {
2013 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2014 			dev->dev.of_node);
2015 		goto out_free_n2cp;
2016 	}
2017 
2018 	mdesc = mdesc_grab();
2019 
2020 	if (!mdesc) {
2021 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2022 			dev->dev.of_node);
2023 		err = -ENODEV;
2024 		goto out_free_global;
2025 	}
2026 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2027 	if (err) {
2028 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2029 			dev->dev.of_node);
2030 		mdesc_release(mdesc);
2031 		goto out_free_global;
2032 	}
2033 
2034 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2035 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2036 			     cpu_to_cwq);
2037 	mdesc_release(mdesc);
2038 
2039 	if (err) {
2040 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2041 			dev->dev.of_node);
2042 		goto out_free_global;
2043 	}
2044 
2045 	err = n2_register_algs();
2046 	if (err) {
2047 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2048 			dev->dev.of_node);
2049 		goto out_free_spu_list;
2050 	}
2051 
2052 	dev_set_drvdata(&dev->dev, np);
2053 
2054 	return 0;
2055 
2056 out_free_spu_list:
2057 	spu_list_destroy(&np->cwq_list);
2058 
2059 out_free_global:
2060 	release_global_resources();
2061 
2062 out_free_n2cp:
2063 	free_n2cp(np);
2064 
2065 	return err;
2066 }
2067 
2068 static int n2_crypto_remove(struct platform_device *dev)
2069 {
2070 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2071 
2072 	n2_unregister_algs();
2073 
2074 	spu_list_destroy(&np->cwq_list);
2075 
2076 	release_global_resources();
2077 
2078 	free_n2cp(np);
2079 
2080 	return 0;
2081 }
2082 
2083 static struct n2_mau *alloc_ncp(void)
2084 {
2085 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2086 
2087 	if (mp)
2088 		INIT_LIST_HEAD(&mp->mau_list);
2089 
2090 	return mp;
2091 }
2092 
2093 static void free_ncp(struct n2_mau *mp)
2094 {
2095 	kfree(mp->mau_info.ino_table);
2096 	mp->mau_info.ino_table = NULL;
2097 
2098 	kfree(mp);
2099 }
2100 
2101 static int n2_mau_probe(struct platform_device *dev)
2102 {
2103 	struct mdesc_handle *mdesc;
2104 	struct n2_mau *mp;
2105 	int err;
2106 
2107 	n2_spu_driver_version();
2108 
2109 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2110 
2111 	mp = alloc_ncp();
2112 	if (!mp) {
2113 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2114 			dev->dev.of_node);
2115 		return -ENOMEM;
2116 	}
2117 
2118 	err = grab_global_resources();
2119 	if (err) {
2120 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2121 			dev->dev.of_node);
2122 		goto out_free_ncp;
2123 	}
2124 
2125 	mdesc = mdesc_grab();
2126 
2127 	if (!mdesc) {
2128 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2129 			dev->dev.of_node);
2130 		err = -ENODEV;
2131 		goto out_free_global;
2132 	}
2133 
2134 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2135 	if (err) {
2136 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2137 			dev->dev.of_node);
2138 		mdesc_release(mdesc);
2139 		goto out_free_global;
2140 	}
2141 
2142 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2143 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2144 			     cpu_to_mau);
2145 	mdesc_release(mdesc);
2146 
2147 	if (err) {
2148 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2149 			dev->dev.of_node);
2150 		goto out_free_global;
2151 	}
2152 
2153 	dev_set_drvdata(&dev->dev, mp);
2154 
2155 	return 0;
2156 
2157 out_free_global:
2158 	release_global_resources();
2159 
2160 out_free_ncp:
2161 	free_ncp(mp);
2162 
2163 	return err;
2164 }
2165 
2166 static int n2_mau_remove(struct platform_device *dev)
2167 {
2168 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2169 
2170 	spu_list_destroy(&mp->mau_list);
2171 
2172 	release_global_resources();
2173 
2174 	free_ncp(mp);
2175 
2176 	return 0;
2177 }
2178 
2179 static const struct of_device_id n2_crypto_match[] = {
2180 	{
2181 		.name = "n2cp",
2182 		.compatible = "SUNW,n2-cwq",
2183 	},
2184 	{
2185 		.name = "n2cp",
2186 		.compatible = "SUNW,vf-cwq",
2187 	},
2188 	{
2189 		.name = "n2cp",
2190 		.compatible = "SUNW,kt-cwq",
2191 	},
2192 	{},
2193 };
2194 
2195 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2196 
2197 static struct platform_driver n2_crypto_driver = {
2198 	.driver = {
2199 		.name		=	"n2cp",
2200 		.of_match_table	=	n2_crypto_match,
2201 	},
2202 	.probe		=	n2_crypto_probe,
2203 	.remove		=	n2_crypto_remove,
2204 };
2205 
2206 static const struct of_device_id n2_mau_match[] = {
2207 	{
2208 		.name = "ncp",
2209 		.compatible = "SUNW,n2-mau",
2210 	},
2211 	{
2212 		.name = "ncp",
2213 		.compatible = "SUNW,vf-mau",
2214 	},
2215 	{
2216 		.name = "ncp",
2217 		.compatible = "SUNW,kt-mau",
2218 	},
2219 	{},
2220 };
2221 
2222 MODULE_DEVICE_TABLE(of, n2_mau_match);
2223 
2224 static struct platform_driver n2_mau_driver = {
2225 	.driver = {
2226 		.name		=	"ncp",
2227 		.of_match_table	=	n2_mau_match,
2228 	},
2229 	.probe		=	n2_mau_probe,
2230 	.remove		=	n2_mau_remove,
2231 };
2232 
2233 static struct platform_driver * const drivers[] = {
2234 	&n2_crypto_driver,
2235 	&n2_mau_driver,
2236 };
2237 
2238 static int __init n2_init(void)
2239 {
2240 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2241 }
2242 
2243 static void __exit n2_exit(void)
2244 {
2245 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2246 }
2247 
2248 module_init(n2_init);
2249 module_exit(n2_exit);
2250