xref: /openbmc/linux/drivers/crypto/n2_core.c (revision 76ce0265)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29 
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32 
33 #include "n2_core.h"
34 
35 #define DRV_MODULE_NAME		"n2_crypto"
36 #define DRV_MODULE_VERSION	"0.2"
37 #define DRV_MODULE_RELDATE	"July 28, 2011"
38 
39 static const char version[] =
40 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41 
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46 
47 #define N2_CRA_PRIORITY		200
48 
49 static DEFINE_MUTEX(spu_lock);
50 
51 struct spu_queue {
52 	cpumask_t		sharing;
53 	unsigned long		qhandle;
54 
55 	spinlock_t		lock;
56 	u8			q_type;
57 	void			*q;
58 	unsigned long		head;
59 	unsigned long		tail;
60 	struct list_head	jobs;
61 
62 	unsigned long		devino;
63 
64 	char			irq_name[32];
65 	unsigned int		irq;
66 
67 	struct list_head	list;
68 };
69 
70 struct spu_qreg {
71 	struct spu_queue	*queue;
72 	unsigned long		type;
73 };
74 
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77 
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80 	if (q->q_type == HV_NCS_QTYPE_MAU) {
81 		off += MAU_ENTRY_SIZE;
82 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 			off = 0;
84 	} else {
85 		off += CWQ_ENTRY_SIZE;
86 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 			off = 0;
88 	}
89 	return off;
90 }
91 
92 struct n2_request_common {
93 	struct list_head	entry;
94 	unsigned int		offset;
95 };
96 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
97 
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 				unsigned long old_head, unsigned long new_head)
104 {
105 	if (old_head <= new_head) {
106 		if (offset > old_head && offset <= new_head)
107 			return true;
108 	} else {
109 		if (offset > old_head || offset <= new_head)
110 			return true;
111 	}
112 	return false;
113 }
114 
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122 	unsigned long off, new_head, hv_ret;
123 	struct spu_queue *q = dev_id;
124 
125 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 	       smp_processor_id(), q->qhandle);
127 
128 	spin_lock(&q->lock);
129 
130 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131 
132 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 	       smp_processor_id(), new_head, hv_ret);
134 
135 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 		/* XXX ... XXX */
137 	}
138 
139 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 	if (hv_ret == HV_EOK)
141 		q->head = new_head;
142 
143 	spin_unlock(&q->lock);
144 
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150 	struct spu_queue *q = dev_id;
151 	unsigned long head, hv_ret;
152 
153 	spin_lock(&q->lock);
154 
155 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 	       smp_processor_id(), q->qhandle);
157 
158 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159 
160 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 	       smp_processor_id(), head, hv_ret);
162 
163 	sun4v_ncs_sethead_marker(q->qhandle, head);
164 
165 	spin_unlock(&q->lock);
166 
167 	return IRQ_HANDLED;
168 }
169 
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172 	return q->q + spu_next_offset(q, cur - q->q);
173 }
174 
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177 	unsigned long head = q->head;
178 	unsigned long tail = q->tail;
179 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 	unsigned long diff;
181 
182 	if (head > tail)
183 		diff = head - tail;
184 	else
185 		diff = (end - tail) + head;
186 
187 	return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189 
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192 	int avail = spu_queue_num_free(q);
193 
194 	if (avail >= num_entries)
195 		return q->q + q->tail;
196 
197 	return NULL;
198 }
199 
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202 	unsigned long hv_ret, new_tail;
203 
204 	new_tail = spu_next_offset(q, last - q->q);
205 
206 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 	if (hv_ret == HV_EOK)
208 		q->tail = new_tail;
209 	return hv_ret;
210 }
211 
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 			     int enc_type, int auth_type,
214 			     unsigned int hash_len,
215 			     bool sfas, bool sob, bool eob, bool encrypt,
216 			     int opcode)
217 {
218 	u64 word = (len - 1) & CONTROL_LEN;
219 
220 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 	if (sfas)
224 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 	if (sob)
226 		word |= CONTROL_START_OF_BLOCK;
227 	if (eob)
228 		word |= CONTROL_END_OF_BLOCK;
229 	if (encrypt)
230 		word |= CONTROL_ENCRYPT;
231 	if (hmac_key_len)
232 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 	if (hash_len)
234 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235 
236 	return word;
237 }
238 
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242 	if (this_len >= 64 ||
243 	    qp->head != qp->tail)
244 		return true;
245 	return false;
246 }
247 #endif
248 
249 struct n2_ahash_alg {
250 	struct list_head	entry;
251 	const u8		*hash_zero;
252 	const u32		*hash_init;
253 	u8			hw_op_hashsz;
254 	u8			digest_size;
255 	u8			auth_type;
256 	u8			hmac_type;
257 	struct ahash_alg	alg;
258 };
259 
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262 	struct crypto_alg *alg = tfm->__crt_alg;
263 	struct ahash_alg *ahash_alg;
264 
265 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266 
267 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269 
270 struct n2_hmac_alg {
271 	const char		*child_alg;
272 	struct n2_ahash_alg	derived;
273 };
274 
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277 	struct crypto_alg *alg = tfm->__crt_alg;
278 	struct ahash_alg *ahash_alg;
279 
280 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281 
282 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284 
285 struct n2_hash_ctx {
286 	struct crypto_ahash		*fallback_tfm;
287 };
288 
289 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
290 
291 struct n2_hmac_ctx {
292 	struct n2_hash_ctx		base;
293 
294 	struct crypto_shash		*child_shash;
295 
296 	int				hash_key_len;
297 	unsigned char			hash_key[N2_HASH_KEY_MAX];
298 };
299 
300 struct n2_hash_req_ctx {
301 	union {
302 		struct md5_state	md5;
303 		struct sha1_state	sha1;
304 		struct sha256_state	sha256;
305 	} u;
306 
307 	struct ahash_request		fallback_req;
308 };
309 
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315 
316 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318 
319 	return crypto_ahash_init(&rctx->fallback_req);
320 }
321 
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327 
328 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 	rctx->fallback_req.nbytes = req->nbytes;
331 	rctx->fallback_req.src = req->src;
332 
333 	return crypto_ahash_update(&rctx->fallback_req);
334 }
335 
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341 
342 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 	rctx->fallback_req.result = req->result;
345 
346 	return crypto_ahash_final(&rctx->fallback_req);
347 }
348 
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354 
355 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 	rctx->fallback_req.nbytes = req->nbytes;
358 	rctx->fallback_req.src = req->src;
359 	rctx->fallback_req.result = req->result;
360 
361 	return crypto_ahash_finup(&rctx->fallback_req);
362 }
363 
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366 	return -ENOSYS;
367 }
368 
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371 	return -ENOSYS;
372 }
373 
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 	struct crypto_ahash *fallback_tfm;
380 	int err;
381 
382 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 					  CRYPTO_ALG_NEED_FALLBACK);
384 	if (IS_ERR(fallback_tfm)) {
385 		pr_warn("Fallback driver '%s' could not be loaded!\n",
386 			fallback_driver_name);
387 		err = PTR_ERR(fallback_tfm);
388 		goto out;
389 	}
390 
391 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 					 crypto_ahash_reqsize(fallback_tfm)));
393 
394 	ctx->fallback_tfm = fallback_tfm;
395 	return 0;
396 
397 out:
398 	return err;
399 }
400 
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405 
406 	crypto_free_ahash(ctx->fallback_tfm);
407 }
408 
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 	struct crypto_ahash *fallback_tfm;
416 	struct crypto_shash *child_shash;
417 	int err;
418 
419 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 					  CRYPTO_ALG_NEED_FALLBACK);
421 	if (IS_ERR(fallback_tfm)) {
422 		pr_warn("Fallback driver '%s' could not be loaded!\n",
423 			fallback_driver_name);
424 		err = PTR_ERR(fallback_tfm);
425 		goto out;
426 	}
427 
428 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 	if (IS_ERR(child_shash)) {
430 		pr_warn("Child shash '%s' could not be loaded!\n",
431 			n2alg->child_alg);
432 		err = PTR_ERR(child_shash);
433 		goto out_free_fallback;
434 	}
435 
436 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 					 crypto_ahash_reqsize(fallback_tfm)));
438 
439 	ctx->child_shash = child_shash;
440 	ctx->base.fallback_tfm = fallback_tfm;
441 	return 0;
442 
443 out_free_fallback:
444 	crypto_free_ahash(fallback_tfm);
445 
446 out:
447 	return err;
448 }
449 
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454 
455 	crypto_free_ahash(ctx->base.fallback_tfm);
456 	crypto_free_shash(ctx->child_shash);
457 }
458 
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 				unsigned int keylen)
461 {
462 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 	struct crypto_shash *child_shash = ctx->child_shash;
464 	struct crypto_ahash *fallback_tfm;
465 	SHASH_DESC_ON_STACK(shash, child_shash);
466 	int err, bs, ds;
467 
468 	fallback_tfm = ctx->base.fallback_tfm;
469 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470 	if (err)
471 		return err;
472 
473 	shash->tfm = child_shash;
474 
475 	bs = crypto_shash_blocksize(child_shash);
476 	ds = crypto_shash_digestsize(child_shash);
477 	BUG_ON(ds > N2_HASH_KEY_MAX);
478 	if (keylen > bs) {
479 		err = crypto_shash_digest(shash, key, keylen,
480 					  ctx->hash_key);
481 		if (err)
482 			return err;
483 		keylen = ds;
484 	} else if (keylen <= N2_HASH_KEY_MAX)
485 		memcpy(ctx->hash_key, key, keylen);
486 
487 	ctx->hash_key_len = keylen;
488 
489 	return err;
490 }
491 
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494 	unsigned long head, hv_ret;
495 
496 	do {
497 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 		if (hv_ret != HV_EOK) {
499 			pr_err("Hypervisor error on gethead\n");
500 			break;
501 		}
502 		if (head == qp->tail) {
503 			qp->head = head;
504 			break;
505 		}
506 	} while (1);
507 	return hv_ret;
508 }
509 
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 					      struct cwq_initial_entry *ent)
512 {
513 	unsigned long hv_ret = spu_queue_submit(qp, ent);
514 
515 	if (hv_ret == HV_EOK)
516 		hv_ret = wait_for_tail(qp);
517 
518 	return hv_ret;
519 }
520 
521 static int n2_do_async_digest(struct ahash_request *req,
522 			      unsigned int auth_type, unsigned int digest_size,
523 			      unsigned int result_size, void *hash_loc,
524 			      unsigned long auth_key, unsigned int auth_key_len)
525 {
526 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 	struct cwq_initial_entry *ent;
528 	struct crypto_hash_walk walk;
529 	struct spu_queue *qp;
530 	unsigned long flags;
531 	int err = -ENODEV;
532 	int nbytes, cpu;
533 
534 	/* The total effective length of the operation may not
535 	 * exceed 2^16.
536 	 */
537 	if (unlikely(req->nbytes > (1 << 16))) {
538 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 
541 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 		rctx->fallback_req.base.flags =
543 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 		rctx->fallback_req.nbytes = req->nbytes;
545 		rctx->fallback_req.src = req->src;
546 		rctx->fallback_req.result = req->result;
547 
548 		return crypto_ahash_digest(&rctx->fallback_req);
549 	}
550 
551 	nbytes = crypto_hash_walk_first(req, &walk);
552 
553 	cpu = get_cpu();
554 	qp = cpu_to_cwq[cpu];
555 	if (!qp)
556 		goto out;
557 
558 	spin_lock_irqsave(&qp->lock, flags);
559 
560 	/* XXX can do better, improve this later by doing a by-hand scatterlist
561 	 * XXX walk, etc.
562 	 */
563 	ent = qp->q + qp->tail;
564 
565 	ent->control = control_word_base(nbytes, auth_key_len, 0,
566 					 auth_type, digest_size,
567 					 false, true, false, false,
568 					 OPCODE_INPLACE_BIT |
569 					 OPCODE_AUTH_MAC);
570 	ent->src_addr = __pa(walk.data);
571 	ent->auth_key_addr = auth_key;
572 	ent->auth_iv_addr = __pa(hash_loc);
573 	ent->final_auth_state_addr = 0UL;
574 	ent->enc_key_addr = 0UL;
575 	ent->enc_iv_addr = 0UL;
576 	ent->dest_addr = __pa(hash_loc);
577 
578 	nbytes = crypto_hash_walk_done(&walk, 0);
579 	while (nbytes > 0) {
580 		ent = spu_queue_next(qp, ent);
581 
582 		ent->control = (nbytes - 1);
583 		ent->src_addr = __pa(walk.data);
584 		ent->auth_key_addr = 0UL;
585 		ent->auth_iv_addr = 0UL;
586 		ent->final_auth_state_addr = 0UL;
587 		ent->enc_key_addr = 0UL;
588 		ent->enc_iv_addr = 0UL;
589 		ent->dest_addr = 0UL;
590 
591 		nbytes = crypto_hash_walk_done(&walk, 0);
592 	}
593 	ent->control |= CONTROL_END_OF_BLOCK;
594 
595 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 		err = -EINVAL;
597 	else
598 		err = 0;
599 
600 	spin_unlock_irqrestore(&qp->lock, flags);
601 
602 	if (!err)
603 		memcpy(req->result, hash_loc, result_size);
604 out:
605 	put_cpu();
606 
607 	return err;
608 }
609 
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 	int ds;
615 
616 	ds = n2alg->digest_size;
617 	if (unlikely(req->nbytes == 0)) {
618 		memcpy(req->result, n2alg->hash_zero, ds);
619 		return 0;
620 	}
621 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 
623 	return n2_do_async_digest(req, n2alg->auth_type,
624 				  n2alg->hw_op_hashsz, ds,
625 				  &rctx->u, 0UL, 0);
626 }
627 
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 	int ds;
635 
636 	ds = n2alg->derived.digest_size;
637 	if (unlikely(req->nbytes == 0) ||
638 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 
642 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 		rctx->fallback_req.base.flags =
644 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 		rctx->fallback_req.nbytes = req->nbytes;
646 		rctx->fallback_req.src = req->src;
647 		rctx->fallback_req.result = req->result;
648 
649 		return crypto_ahash_digest(&rctx->fallback_req);
650 	}
651 	memcpy(&rctx->u, n2alg->derived.hash_init,
652 	       n2alg->derived.hw_op_hashsz);
653 
654 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 				  n2alg->derived.hw_op_hashsz, ds,
656 				  &rctx->u,
657 				  __pa(&ctx->hash_key),
658 				  ctx->hash_key_len);
659 }
660 
661 struct n2_skcipher_context {
662 	int			key_len;
663 	int			enc_type;
664 	union {
665 		u8		aes[AES_MAX_KEY_SIZE];
666 		u8		des[DES_KEY_SIZE];
667 		u8		des3[3 * DES_KEY_SIZE];
668 		u8		arc4[258]; /* S-box, X, Y */
669 	} key;
670 };
671 
672 #define N2_CHUNK_ARR_LEN	16
673 
674 struct n2_crypto_chunk {
675 	struct list_head	entry;
676 	unsigned long		iv_paddr : 44;
677 	unsigned long		arr_len : 20;
678 	unsigned long		dest_paddr;
679 	unsigned long		dest_final;
680 	struct {
681 		unsigned long	src_paddr : 44;
682 		unsigned long	src_len : 20;
683 	} arr[N2_CHUNK_ARR_LEN];
684 };
685 
686 struct n2_request_context {
687 	struct skcipher_walk	walk;
688 	struct list_head	chunk_list;
689 	struct n2_crypto_chunk	chunk;
690 	u8			temp_iv[16];
691 };
692 
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *	0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *	0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711 
712 struct n2_skcipher_alg {
713 	struct list_head	entry;
714 	u8			enc_type;
715 	struct skcipher_alg	skcipher;
716 };
717 
718 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
719 {
720 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
721 
722 	return container_of(alg, struct n2_skcipher_alg, skcipher);
723 }
724 
725 struct n2_skcipher_request_context {
726 	struct skcipher_walk	walk;
727 };
728 
729 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
730 			 unsigned int keylen)
731 {
732 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
733 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
734 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
735 
736 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 
738 	switch (keylen) {
739 	case AES_KEYSIZE_128:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 		break;
742 	case AES_KEYSIZE_192:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 		break;
745 	case AES_KEYSIZE_256:
746 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 		break;
748 	default:
749 		return -EINVAL;
750 	}
751 
752 	ctx->key_len = keylen;
753 	memcpy(ctx->key.aes, key, keylen);
754 	return 0;
755 }
756 
757 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
758 			 unsigned int keylen)
759 {
760 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
761 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
762 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
763 	int err;
764 
765 	err = verify_skcipher_des_key(skcipher, key);
766 	if (err)
767 		return err;
768 
769 	ctx->enc_type = n2alg->enc_type;
770 
771 	ctx->key_len = keylen;
772 	memcpy(ctx->key.des, key, keylen);
773 	return 0;
774 }
775 
776 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
777 			  unsigned int keylen)
778 {
779 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
780 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
781 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
782 	int err;
783 
784 	err = verify_skcipher_des3_key(skcipher, key);
785 	if (err)
786 		return err;
787 
788 	ctx->enc_type = n2alg->enc_type;
789 
790 	ctx->key_len = keylen;
791 	memcpy(ctx->key.des3, key, keylen);
792 	return 0;
793 }
794 
795 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
796 			  unsigned int keylen)
797 {
798 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
799 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
800 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
801 	u8 *s = ctx->key.arc4;
802 	u8 *x = s + 256;
803 	u8 *y = x + 1;
804 	int i, j, k;
805 
806 	ctx->enc_type = n2alg->enc_type;
807 
808 	j = k = 0;
809 	*x = 0;
810 	*y = 0;
811 	for (i = 0; i < 256; i++)
812 		s[i] = i;
813 	for (i = 0; i < 256; i++) {
814 		u8 a = s[i];
815 		j = (j + key[k] + a) & 0xff;
816 		s[i] = s[j];
817 		s[j] = a;
818 		if (++k >= keylen)
819 			k = 0;
820 	}
821 
822 	return 0;
823 }
824 
825 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
826 {
827 	int this_len = nbytes;
828 
829 	this_len -= (nbytes & (block_size - 1));
830 	return this_len > (1 << 16) ? (1 << 16) : this_len;
831 }
832 
833 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
834 			    struct n2_crypto_chunk *cp,
835 			    struct spu_queue *qp, bool encrypt)
836 {
837 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
838 	struct cwq_initial_entry *ent;
839 	bool in_place;
840 	int i;
841 
842 	ent = spu_queue_alloc(qp, cp->arr_len);
843 	if (!ent) {
844 		pr_info("queue_alloc() of %d fails\n",
845 			cp->arr_len);
846 		return -EBUSY;
847 	}
848 
849 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
850 
851 	ent->control = control_word_base(cp->arr[0].src_len,
852 					 0, ctx->enc_type, 0, 0,
853 					 false, true, false, encrypt,
854 					 OPCODE_ENCRYPT |
855 					 (in_place ? OPCODE_INPLACE_BIT : 0));
856 	ent->src_addr = cp->arr[0].src_paddr;
857 	ent->auth_key_addr = 0UL;
858 	ent->auth_iv_addr = 0UL;
859 	ent->final_auth_state_addr = 0UL;
860 	ent->enc_key_addr = __pa(&ctx->key);
861 	ent->enc_iv_addr = cp->iv_paddr;
862 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
863 
864 	for (i = 1; i < cp->arr_len; i++) {
865 		ent = spu_queue_next(qp, ent);
866 
867 		ent->control = cp->arr[i].src_len - 1;
868 		ent->src_addr = cp->arr[i].src_paddr;
869 		ent->auth_key_addr = 0UL;
870 		ent->auth_iv_addr = 0UL;
871 		ent->final_auth_state_addr = 0UL;
872 		ent->enc_key_addr = 0UL;
873 		ent->enc_iv_addr = 0UL;
874 		ent->dest_addr = 0UL;
875 	}
876 	ent->control |= CONTROL_END_OF_BLOCK;
877 
878 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
879 }
880 
881 static int n2_compute_chunks(struct skcipher_request *req)
882 {
883 	struct n2_request_context *rctx = skcipher_request_ctx(req);
884 	struct skcipher_walk *walk = &rctx->walk;
885 	struct n2_crypto_chunk *chunk;
886 	unsigned long dest_prev;
887 	unsigned int tot_len;
888 	bool prev_in_place;
889 	int err, nbytes;
890 
891 	err = skcipher_walk_async(walk, req);
892 	if (err)
893 		return err;
894 
895 	INIT_LIST_HEAD(&rctx->chunk_list);
896 
897 	chunk = &rctx->chunk;
898 	INIT_LIST_HEAD(&chunk->entry);
899 
900 	chunk->iv_paddr = 0UL;
901 	chunk->arr_len = 0;
902 	chunk->dest_paddr = 0UL;
903 
904 	prev_in_place = false;
905 	dest_prev = ~0UL;
906 	tot_len = 0;
907 
908 	while ((nbytes = walk->nbytes) != 0) {
909 		unsigned long dest_paddr, src_paddr;
910 		bool in_place;
911 		int this_len;
912 
913 		src_paddr = (page_to_phys(walk->src.phys.page) +
914 			     walk->src.phys.offset);
915 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
916 			      walk->dst.phys.offset);
917 		in_place = (src_paddr == dest_paddr);
918 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
919 
920 		if (chunk->arr_len != 0) {
921 			if (in_place != prev_in_place ||
922 			    (!prev_in_place &&
923 			     dest_paddr != dest_prev) ||
924 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
925 			    tot_len + this_len > (1 << 16)) {
926 				chunk->dest_final = dest_prev;
927 				list_add_tail(&chunk->entry,
928 					      &rctx->chunk_list);
929 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930 				if (!chunk) {
931 					err = -ENOMEM;
932 					break;
933 				}
934 				INIT_LIST_HEAD(&chunk->entry);
935 			}
936 		}
937 		if (chunk->arr_len == 0) {
938 			chunk->dest_paddr = dest_paddr;
939 			tot_len = 0;
940 		}
941 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
942 		chunk->arr[chunk->arr_len].src_len = this_len;
943 		chunk->arr_len++;
944 
945 		dest_prev = dest_paddr + this_len;
946 		prev_in_place = in_place;
947 		tot_len += this_len;
948 
949 		err = skcipher_walk_done(walk, nbytes - this_len);
950 		if (err)
951 			break;
952 	}
953 	if (!err && chunk->arr_len != 0) {
954 		chunk->dest_final = dest_prev;
955 		list_add_tail(&chunk->entry, &rctx->chunk_list);
956 	}
957 
958 	return err;
959 }
960 
961 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
962 {
963 	struct n2_request_context *rctx = skcipher_request_ctx(req);
964 	struct n2_crypto_chunk *c, *tmp;
965 
966 	if (final_iv)
967 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
968 
969 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
970 		list_del(&c->entry);
971 		if (unlikely(c != &rctx->chunk))
972 			kfree(c);
973 	}
974 
975 }
976 
977 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
978 {
979 	struct n2_request_context *rctx = skcipher_request_ctx(req);
980 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
981 	int err = n2_compute_chunks(req);
982 	struct n2_crypto_chunk *c, *tmp;
983 	unsigned long flags, hv_ret;
984 	struct spu_queue *qp;
985 
986 	if (err)
987 		return err;
988 
989 	qp = cpu_to_cwq[get_cpu()];
990 	err = -ENODEV;
991 	if (!qp)
992 		goto out;
993 
994 	spin_lock_irqsave(&qp->lock, flags);
995 
996 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
997 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
998 		if (err)
999 			break;
1000 		list_del(&c->entry);
1001 		if (unlikely(c != &rctx->chunk))
1002 			kfree(c);
1003 	}
1004 	if (!err) {
1005 		hv_ret = wait_for_tail(qp);
1006 		if (hv_ret != HV_EOK)
1007 			err = -EINVAL;
1008 	}
1009 
1010 	spin_unlock_irqrestore(&qp->lock, flags);
1011 
1012 out:
1013 	put_cpu();
1014 
1015 	n2_chunk_complete(req, NULL);
1016 	return err;
1017 }
1018 
1019 static int n2_encrypt_ecb(struct skcipher_request *req)
1020 {
1021 	return n2_do_ecb(req, true);
1022 }
1023 
1024 static int n2_decrypt_ecb(struct skcipher_request *req)
1025 {
1026 	return n2_do_ecb(req, false);
1027 }
1028 
1029 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1030 {
1031 	struct n2_request_context *rctx = skcipher_request_ctx(req);
1032 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1033 	unsigned long flags, hv_ret, iv_paddr;
1034 	int err = n2_compute_chunks(req);
1035 	struct n2_crypto_chunk *c, *tmp;
1036 	struct spu_queue *qp;
1037 	void *final_iv_addr;
1038 
1039 	final_iv_addr = NULL;
1040 
1041 	if (err)
1042 		return err;
1043 
1044 	qp = cpu_to_cwq[get_cpu()];
1045 	err = -ENODEV;
1046 	if (!qp)
1047 		goto out;
1048 
1049 	spin_lock_irqsave(&qp->lock, flags);
1050 
1051 	if (encrypt) {
1052 		iv_paddr = __pa(rctx->walk.iv);
1053 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1054 					 entry) {
1055 			c->iv_paddr = iv_paddr;
1056 			err = __n2_crypt_chunk(tfm, c, qp, true);
1057 			if (err)
1058 				break;
1059 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1060 			list_del(&c->entry);
1061 			if (unlikely(c != &rctx->chunk))
1062 				kfree(c);
1063 		}
1064 		final_iv_addr = __va(iv_paddr);
1065 	} else {
1066 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1067 						 entry) {
1068 			if (c == &rctx->chunk) {
1069 				iv_paddr = __pa(rctx->walk.iv);
1070 			} else {
1071 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1072 					    tmp->arr[tmp->arr_len-1].src_len -
1073 					    rctx->walk.blocksize);
1074 			}
1075 			if (!final_iv_addr) {
1076 				unsigned long pa;
1077 
1078 				pa = (c->arr[c->arr_len-1].src_paddr +
1079 				      c->arr[c->arr_len-1].src_len -
1080 				      rctx->walk.blocksize);
1081 				final_iv_addr = rctx->temp_iv;
1082 				memcpy(rctx->temp_iv, __va(pa),
1083 				       rctx->walk.blocksize);
1084 			}
1085 			c->iv_paddr = iv_paddr;
1086 			err = __n2_crypt_chunk(tfm, c, qp, false);
1087 			if (err)
1088 				break;
1089 			list_del(&c->entry);
1090 			if (unlikely(c != &rctx->chunk))
1091 				kfree(c);
1092 		}
1093 	}
1094 	if (!err) {
1095 		hv_ret = wait_for_tail(qp);
1096 		if (hv_ret != HV_EOK)
1097 			err = -EINVAL;
1098 	}
1099 
1100 	spin_unlock_irqrestore(&qp->lock, flags);
1101 
1102 out:
1103 	put_cpu();
1104 
1105 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1106 	return err;
1107 }
1108 
1109 static int n2_encrypt_chaining(struct skcipher_request *req)
1110 {
1111 	return n2_do_chaining(req, true);
1112 }
1113 
1114 static int n2_decrypt_chaining(struct skcipher_request *req)
1115 {
1116 	return n2_do_chaining(req, false);
1117 }
1118 
1119 struct n2_skcipher_tmpl {
1120 	const char		*name;
1121 	const char		*drv_name;
1122 	u8			block_size;
1123 	u8			enc_type;
1124 	struct skcipher_alg	skcipher;
1125 };
1126 
1127 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1128 	/* ARC4: only ECB is supported (chaining bits ignored) */
1129 	{	.name		= "ecb(arc4)",
1130 		.drv_name	= "ecb-arc4",
1131 		.block_size	= 1,
1132 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1133 				   ENC_TYPE_CHAINING_ECB),
1134 		.skcipher	= {
1135 			.min_keysize	= 1,
1136 			.max_keysize	= 256,
1137 			.setkey		= n2_arc4_setkey,
1138 			.encrypt	= n2_encrypt_ecb,
1139 			.decrypt	= n2_decrypt_ecb,
1140 		},
1141 	},
1142 
1143 	/* DES: ECB CBC and CFB are supported */
1144 	{	.name		= "ecb(des)",
1145 		.drv_name	= "ecb-des",
1146 		.block_size	= DES_BLOCK_SIZE,
1147 		.enc_type	= (ENC_TYPE_ALG_DES |
1148 				   ENC_TYPE_CHAINING_ECB),
1149 		.skcipher	= {
1150 			.min_keysize	= DES_KEY_SIZE,
1151 			.max_keysize	= DES_KEY_SIZE,
1152 			.setkey		= n2_des_setkey,
1153 			.encrypt	= n2_encrypt_ecb,
1154 			.decrypt	= n2_decrypt_ecb,
1155 		},
1156 	},
1157 	{	.name		= "cbc(des)",
1158 		.drv_name	= "cbc-des",
1159 		.block_size	= DES_BLOCK_SIZE,
1160 		.enc_type	= (ENC_TYPE_ALG_DES |
1161 				   ENC_TYPE_CHAINING_CBC),
1162 		.skcipher	= {
1163 			.ivsize		= DES_BLOCK_SIZE,
1164 			.min_keysize	= DES_KEY_SIZE,
1165 			.max_keysize	= DES_KEY_SIZE,
1166 			.setkey		= n2_des_setkey,
1167 			.encrypt	= n2_encrypt_chaining,
1168 			.decrypt	= n2_decrypt_chaining,
1169 		},
1170 	},
1171 	{	.name		= "cfb(des)",
1172 		.drv_name	= "cfb-des",
1173 		.block_size	= DES_BLOCK_SIZE,
1174 		.enc_type	= (ENC_TYPE_ALG_DES |
1175 				   ENC_TYPE_CHAINING_CFB),
1176 		.skcipher	= {
1177 			.min_keysize	= DES_KEY_SIZE,
1178 			.max_keysize	= DES_KEY_SIZE,
1179 			.setkey		= n2_des_setkey,
1180 			.encrypt	= n2_encrypt_chaining,
1181 			.decrypt	= n2_decrypt_chaining,
1182 		},
1183 	},
1184 
1185 	/* 3DES: ECB CBC and CFB are supported */
1186 	{	.name		= "ecb(des3_ede)",
1187 		.drv_name	= "ecb-3des",
1188 		.block_size	= DES_BLOCK_SIZE,
1189 		.enc_type	= (ENC_TYPE_ALG_3DES |
1190 				   ENC_TYPE_CHAINING_ECB),
1191 		.skcipher	= {
1192 			.min_keysize	= 3 * DES_KEY_SIZE,
1193 			.max_keysize	= 3 * DES_KEY_SIZE,
1194 			.setkey		= n2_3des_setkey,
1195 			.encrypt	= n2_encrypt_ecb,
1196 			.decrypt	= n2_decrypt_ecb,
1197 		},
1198 	},
1199 	{	.name		= "cbc(des3_ede)",
1200 		.drv_name	= "cbc-3des",
1201 		.block_size	= DES_BLOCK_SIZE,
1202 		.enc_type	= (ENC_TYPE_ALG_3DES |
1203 				   ENC_TYPE_CHAINING_CBC),
1204 		.skcipher	= {
1205 			.ivsize		= DES_BLOCK_SIZE,
1206 			.min_keysize	= 3 * DES_KEY_SIZE,
1207 			.max_keysize	= 3 * DES_KEY_SIZE,
1208 			.setkey		= n2_3des_setkey,
1209 			.encrypt	= n2_encrypt_chaining,
1210 			.decrypt	= n2_decrypt_chaining,
1211 		},
1212 	},
1213 	{	.name		= "cfb(des3_ede)",
1214 		.drv_name	= "cfb-3des",
1215 		.block_size	= DES_BLOCK_SIZE,
1216 		.enc_type	= (ENC_TYPE_ALG_3DES |
1217 				   ENC_TYPE_CHAINING_CFB),
1218 		.skcipher	= {
1219 			.min_keysize	= 3 * DES_KEY_SIZE,
1220 			.max_keysize	= 3 * DES_KEY_SIZE,
1221 			.setkey		= n2_3des_setkey,
1222 			.encrypt	= n2_encrypt_chaining,
1223 			.decrypt	= n2_decrypt_chaining,
1224 		},
1225 	},
1226 	/* AES: ECB CBC and CTR are supported */
1227 	{	.name		= "ecb(aes)",
1228 		.drv_name	= "ecb-aes",
1229 		.block_size	= AES_BLOCK_SIZE,
1230 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1231 				   ENC_TYPE_CHAINING_ECB),
1232 		.skcipher	= {
1233 			.min_keysize	= AES_MIN_KEY_SIZE,
1234 			.max_keysize	= AES_MAX_KEY_SIZE,
1235 			.setkey		= n2_aes_setkey,
1236 			.encrypt	= n2_encrypt_ecb,
1237 			.decrypt	= n2_decrypt_ecb,
1238 		},
1239 	},
1240 	{	.name		= "cbc(aes)",
1241 		.drv_name	= "cbc-aes",
1242 		.block_size	= AES_BLOCK_SIZE,
1243 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1244 				   ENC_TYPE_CHAINING_CBC),
1245 		.skcipher	= {
1246 			.ivsize		= AES_BLOCK_SIZE,
1247 			.min_keysize	= AES_MIN_KEY_SIZE,
1248 			.max_keysize	= AES_MAX_KEY_SIZE,
1249 			.setkey		= n2_aes_setkey,
1250 			.encrypt	= n2_encrypt_chaining,
1251 			.decrypt	= n2_decrypt_chaining,
1252 		},
1253 	},
1254 	{	.name		= "ctr(aes)",
1255 		.drv_name	= "ctr-aes",
1256 		.block_size	= AES_BLOCK_SIZE,
1257 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1258 				   ENC_TYPE_CHAINING_COUNTER),
1259 		.skcipher	= {
1260 			.ivsize		= AES_BLOCK_SIZE,
1261 			.min_keysize	= AES_MIN_KEY_SIZE,
1262 			.max_keysize	= AES_MAX_KEY_SIZE,
1263 			.setkey		= n2_aes_setkey,
1264 			.encrypt	= n2_encrypt_chaining,
1265 			.decrypt	= n2_encrypt_chaining,
1266 		},
1267 	},
1268 
1269 };
1270 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1271 
1272 static LIST_HEAD(skcipher_algs);
1273 
1274 struct n2_hash_tmpl {
1275 	const char	*name;
1276 	const u8	*hash_zero;
1277 	const u32	*hash_init;
1278 	u8		hw_op_hashsz;
1279 	u8		digest_size;
1280 	u8		block_size;
1281 	u8		auth_type;
1282 	u8		hmac_type;
1283 };
1284 
1285 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1286 	cpu_to_le32(MD5_H0),
1287 	cpu_to_le32(MD5_H1),
1288 	cpu_to_le32(MD5_H2),
1289 	cpu_to_le32(MD5_H3),
1290 };
1291 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1292 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1293 };
1294 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1295 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1296 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1297 };
1298 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1299 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1300 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1301 };
1302 
1303 static const struct n2_hash_tmpl hash_tmpls[] = {
1304 	{ .name		= "md5",
1305 	  .hash_zero	= md5_zero_message_hash,
1306 	  .hash_init	= n2_md5_init,
1307 	  .auth_type	= AUTH_TYPE_MD5,
1308 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1309 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1310 	  .digest_size	= MD5_DIGEST_SIZE,
1311 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1312 	{ .name		= "sha1",
1313 	  .hash_zero	= sha1_zero_message_hash,
1314 	  .hash_init	= n2_sha1_init,
1315 	  .auth_type	= AUTH_TYPE_SHA1,
1316 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1317 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1318 	  .digest_size	= SHA1_DIGEST_SIZE,
1319 	  .block_size	= SHA1_BLOCK_SIZE },
1320 	{ .name		= "sha256",
1321 	  .hash_zero	= sha256_zero_message_hash,
1322 	  .hash_init	= n2_sha256_init,
1323 	  .auth_type	= AUTH_TYPE_SHA256,
1324 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1325 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1326 	  .digest_size	= SHA256_DIGEST_SIZE,
1327 	  .block_size	= SHA256_BLOCK_SIZE },
1328 	{ .name		= "sha224",
1329 	  .hash_zero	= sha224_zero_message_hash,
1330 	  .hash_init	= n2_sha224_init,
1331 	  .auth_type	= AUTH_TYPE_SHA256,
1332 	  .hmac_type	= AUTH_TYPE_RESERVED,
1333 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1334 	  .digest_size	= SHA224_DIGEST_SIZE,
1335 	  .block_size	= SHA224_BLOCK_SIZE },
1336 };
1337 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1338 
1339 static LIST_HEAD(ahash_algs);
1340 static LIST_HEAD(hmac_algs);
1341 
1342 static int algs_registered;
1343 
1344 static void __n2_unregister_algs(void)
1345 {
1346 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1347 	struct n2_ahash_alg *alg, *alg_tmp;
1348 	struct n2_hmac_alg *hmac, *hmac_tmp;
1349 
1350 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1351 		crypto_unregister_skcipher(&skcipher->skcipher);
1352 		list_del(&skcipher->entry);
1353 		kfree(skcipher);
1354 	}
1355 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1356 		crypto_unregister_ahash(&hmac->derived.alg);
1357 		list_del(&hmac->derived.entry);
1358 		kfree(hmac);
1359 	}
1360 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1361 		crypto_unregister_ahash(&alg->alg);
1362 		list_del(&alg->entry);
1363 		kfree(alg);
1364 	}
1365 }
1366 
1367 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1368 {
1369 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1370 	return 0;
1371 }
1372 
1373 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1374 {
1375 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1376 	struct skcipher_alg *alg;
1377 	int err;
1378 
1379 	if (!p)
1380 		return -ENOMEM;
1381 
1382 	alg = &p->skcipher;
1383 	*alg = tmpl->skcipher;
1384 
1385 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387 	alg->base.cra_priority = N2_CRA_PRIORITY;
1388 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1389 	alg->base.cra_blocksize = tmpl->block_size;
1390 	p->enc_type = tmpl->enc_type;
1391 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1392 	alg->base.cra_module = THIS_MODULE;
1393 	alg->init = n2_skcipher_init_tfm;
1394 
1395 	list_add(&p->entry, &skcipher_algs);
1396 	err = crypto_register_skcipher(alg);
1397 	if (err) {
1398 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1399 		list_del(&p->entry);
1400 		kfree(p);
1401 	} else {
1402 		pr_info("%s alg registered\n", alg->base.cra_name);
1403 	}
1404 	return err;
1405 }
1406 
1407 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1408 {
1409 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1410 	struct ahash_alg *ahash;
1411 	struct crypto_alg *base;
1412 	int err;
1413 
1414 	if (!p)
1415 		return -ENOMEM;
1416 
1417 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1418 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1419 	INIT_LIST_HEAD(&p->derived.entry);
1420 
1421 	ahash = &p->derived.alg;
1422 	ahash->digest = n2_hmac_async_digest;
1423 	ahash->setkey = n2_hmac_async_setkey;
1424 
1425 	base = &ahash->halg.base;
1426 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1427 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1428 
1429 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1430 	base->cra_init = n2_hmac_cra_init;
1431 	base->cra_exit = n2_hmac_cra_exit;
1432 
1433 	list_add(&p->derived.entry, &hmac_algs);
1434 	err = crypto_register_ahash(ahash);
1435 	if (err) {
1436 		pr_err("%s alg registration failed\n", base->cra_name);
1437 		list_del(&p->derived.entry);
1438 		kfree(p);
1439 	} else {
1440 		pr_info("%s alg registered\n", base->cra_name);
1441 	}
1442 	return err;
1443 }
1444 
1445 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1446 {
1447 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1448 	struct hash_alg_common *halg;
1449 	struct crypto_alg *base;
1450 	struct ahash_alg *ahash;
1451 	int err;
1452 
1453 	if (!p)
1454 		return -ENOMEM;
1455 
1456 	p->hash_zero = tmpl->hash_zero;
1457 	p->hash_init = tmpl->hash_init;
1458 	p->auth_type = tmpl->auth_type;
1459 	p->hmac_type = tmpl->hmac_type;
1460 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1461 	p->digest_size = tmpl->digest_size;
1462 
1463 	ahash = &p->alg;
1464 	ahash->init = n2_hash_async_init;
1465 	ahash->update = n2_hash_async_update;
1466 	ahash->final = n2_hash_async_final;
1467 	ahash->finup = n2_hash_async_finup;
1468 	ahash->digest = n2_hash_async_digest;
1469 	ahash->export = n2_hash_async_noexport;
1470 	ahash->import = n2_hash_async_noimport;
1471 
1472 	halg = &ahash->halg;
1473 	halg->digestsize = tmpl->digest_size;
1474 
1475 	base = &halg->base;
1476 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1477 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1478 	base->cra_priority = N2_CRA_PRIORITY;
1479 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1480 			  CRYPTO_ALG_NEED_FALLBACK;
1481 	base->cra_blocksize = tmpl->block_size;
1482 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483 	base->cra_module = THIS_MODULE;
1484 	base->cra_init = n2_hash_cra_init;
1485 	base->cra_exit = n2_hash_cra_exit;
1486 
1487 	list_add(&p->entry, &ahash_algs);
1488 	err = crypto_register_ahash(ahash);
1489 	if (err) {
1490 		pr_err("%s alg registration failed\n", base->cra_name);
1491 		list_del(&p->entry);
1492 		kfree(p);
1493 	} else {
1494 		pr_info("%s alg registered\n", base->cra_name);
1495 	}
1496 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497 		err = __n2_register_one_hmac(p);
1498 	return err;
1499 }
1500 
1501 static int n2_register_algs(void)
1502 {
1503 	int i, err = 0;
1504 
1505 	mutex_lock(&spu_lock);
1506 	if (algs_registered++)
1507 		goto out;
1508 
1509 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1511 		if (err) {
1512 			__n2_unregister_algs();
1513 			goto out;
1514 		}
1515 	}
1516 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1518 		if (err) {
1519 			__n2_unregister_algs();
1520 			goto out;
1521 		}
1522 	}
1523 
1524 out:
1525 	mutex_unlock(&spu_lock);
1526 	return err;
1527 }
1528 
1529 static void n2_unregister_algs(void)
1530 {
1531 	mutex_lock(&spu_lock);
1532 	if (!--algs_registered)
1533 		__n2_unregister_algs();
1534 	mutex_unlock(&spu_lock);
1535 }
1536 
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538  * a devino.  This isn't very useful to us because all of the
1539  * interrupts listed in the device_node have been translated to
1540  * Linux virtual IRQ cookie numbers.
1541  *
1542  * So we have to back-translate, going through the 'intr' and 'ino'
1543  * property tables of the n2cp MDESC node, matching it with the OF
1544  * 'interrupts' property entries, in order to to figure out which
1545  * devino goes to which already-translated IRQ.
1546  */
1547 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548 			     unsigned long dev_ino)
1549 {
1550 	const unsigned int *dev_intrs;
1551 	unsigned int intr;
1552 	int i;
1553 
1554 	for (i = 0; i < ip->num_intrs; i++) {
1555 		if (ip->ino_table[i].ino == dev_ino)
1556 			break;
1557 	}
1558 	if (i == ip->num_intrs)
1559 		return -ENODEV;
1560 
1561 	intr = ip->ino_table[i].intr;
1562 
1563 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564 	if (!dev_intrs)
1565 		return -ENODEV;
1566 
1567 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1568 		if (dev_intrs[i] == intr)
1569 			return i;
1570 	}
1571 
1572 	return -ENODEV;
1573 }
1574 
1575 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576 		       const char *irq_name, struct spu_queue *p,
1577 		       irq_handler_t handler)
1578 {
1579 	unsigned long herr;
1580 	int index;
1581 
1582 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583 	if (herr)
1584 		return -EINVAL;
1585 
1586 	index = find_devino_index(dev, ip, p->devino);
1587 	if (index < 0)
1588 		return index;
1589 
1590 	p->irq = dev->archdata.irqs[index];
1591 
1592 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1593 
1594 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1595 }
1596 
1597 static struct kmem_cache *queue_cache[2];
1598 
1599 static void *new_queue(unsigned long q_type)
1600 {
1601 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602 }
1603 
1604 static void free_queue(void *p, unsigned long q_type)
1605 {
1606 	kmem_cache_free(queue_cache[q_type - 1], p);
1607 }
1608 
1609 static int queue_cache_init(void)
1610 {
1611 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613 			kmem_cache_create("mau_queue",
1614 					  (MAU_NUM_ENTRIES *
1615 					   MAU_ENTRY_SIZE),
1616 					  MAU_ENTRY_SIZE, 0, NULL);
1617 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618 		return -ENOMEM;
1619 
1620 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622 			kmem_cache_create("cwq_queue",
1623 					  (CWQ_NUM_ENTRIES *
1624 					   CWQ_ENTRY_SIZE),
1625 					  CWQ_ENTRY_SIZE, 0, NULL);
1626 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1629 		return -ENOMEM;
1630 	}
1631 	return 0;
1632 }
1633 
1634 static void queue_cache_destroy(void)
1635 {
1636 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1637 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1638 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1639 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1640 }
1641 
1642 static long spu_queue_register_workfn(void *arg)
1643 {
1644 	struct spu_qreg *qr = arg;
1645 	struct spu_queue *p = qr->queue;
1646 	unsigned long q_type = qr->type;
1647 	unsigned long hv_ret;
1648 
1649 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1650 				 CWQ_NUM_ENTRIES, &p->qhandle);
1651 	if (!hv_ret)
1652 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1653 
1654 	return hv_ret ? -EINVAL : 0;
1655 }
1656 
1657 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1658 {
1659 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1660 	struct spu_qreg qr = { .queue = p, .type = q_type };
1661 
1662 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1663 }
1664 
1665 static int spu_queue_setup(struct spu_queue *p)
1666 {
1667 	int err;
1668 
1669 	p->q = new_queue(p->q_type);
1670 	if (!p->q)
1671 		return -ENOMEM;
1672 
1673 	err = spu_queue_register(p, p->q_type);
1674 	if (err) {
1675 		free_queue(p->q, p->q_type);
1676 		p->q = NULL;
1677 	}
1678 
1679 	return err;
1680 }
1681 
1682 static void spu_queue_destroy(struct spu_queue *p)
1683 {
1684 	unsigned long hv_ret;
1685 
1686 	if (!p->q)
1687 		return;
1688 
1689 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1690 
1691 	if (!hv_ret)
1692 		free_queue(p->q, p->q_type);
1693 }
1694 
1695 static void spu_list_destroy(struct list_head *list)
1696 {
1697 	struct spu_queue *p, *n;
1698 
1699 	list_for_each_entry_safe(p, n, list, list) {
1700 		int i;
1701 
1702 		for (i = 0; i < NR_CPUS; i++) {
1703 			if (cpu_to_cwq[i] == p)
1704 				cpu_to_cwq[i] = NULL;
1705 		}
1706 
1707 		if (p->irq) {
1708 			free_irq(p->irq, p);
1709 			p->irq = 0;
1710 		}
1711 		spu_queue_destroy(p);
1712 		list_del(&p->list);
1713 		kfree(p);
1714 	}
1715 }
1716 
1717 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1718  * gathering cpu membership information.
1719  */
1720 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1721 			       struct platform_device *dev,
1722 			       u64 node, struct spu_queue *p,
1723 			       struct spu_queue **table)
1724 {
1725 	u64 arc;
1726 
1727 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1728 		u64 tgt = mdesc_arc_target(mdesc, arc);
1729 		const char *name = mdesc_node_name(mdesc, tgt);
1730 		const u64 *id;
1731 
1732 		if (strcmp(name, "cpu"))
1733 			continue;
1734 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1735 		if (table[*id] != NULL) {
1736 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1737 				dev->dev.of_node);
1738 			return -EINVAL;
1739 		}
1740 		cpumask_set_cpu(*id, &p->sharing);
1741 		table[*id] = p;
1742 	}
1743 	return 0;
1744 }
1745 
1746 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1747 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1748 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1749 			    u64 node, const char *iname, unsigned long q_type,
1750 			    irq_handler_t handler, struct spu_queue **table)
1751 {
1752 	struct spu_queue *p;
1753 	int err;
1754 
1755 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1756 	if (!p) {
1757 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1758 			dev->dev.of_node);
1759 		return -ENOMEM;
1760 	}
1761 
1762 	cpumask_clear(&p->sharing);
1763 	spin_lock_init(&p->lock);
1764 	p->q_type = q_type;
1765 	INIT_LIST_HEAD(&p->jobs);
1766 	list_add(&p->list, list);
1767 
1768 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1769 	if (err)
1770 		return err;
1771 
1772 	err = spu_queue_setup(p);
1773 	if (err)
1774 		return err;
1775 
1776 	return spu_map_ino(dev, ip, iname, p, handler);
1777 }
1778 
1779 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1780 			  struct spu_mdesc_info *ip, struct list_head *list,
1781 			  const char *exec_name, unsigned long q_type,
1782 			  irq_handler_t handler, struct spu_queue **table)
1783 {
1784 	int err = 0;
1785 	u64 node;
1786 
1787 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1788 		const char *type;
1789 
1790 		type = mdesc_get_property(mdesc, node, "type", NULL);
1791 		if (!type || strcmp(type, exec_name))
1792 			continue;
1793 
1794 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1795 				       exec_name, q_type, handler, table);
1796 		if (err) {
1797 			spu_list_destroy(list);
1798 			break;
1799 		}
1800 	}
1801 
1802 	return err;
1803 }
1804 
1805 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1806 			 struct spu_mdesc_info *ip)
1807 {
1808 	const u64 *ino;
1809 	int ino_len;
1810 	int i;
1811 
1812 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1813 	if (!ino) {
1814 		printk("NO 'ino'\n");
1815 		return -ENODEV;
1816 	}
1817 
1818 	ip->num_intrs = ino_len / sizeof(u64);
1819 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1820 				 ip->num_intrs),
1821 				GFP_KERNEL);
1822 	if (!ip->ino_table)
1823 		return -ENOMEM;
1824 
1825 	for (i = 0; i < ip->num_intrs; i++) {
1826 		struct ino_blob *b = &ip->ino_table[i];
1827 		b->intr = i + 1;
1828 		b->ino = ino[i];
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1835 				struct platform_device *dev,
1836 				struct spu_mdesc_info *ip,
1837 				const char *node_name)
1838 {
1839 	const unsigned int *reg;
1840 	u64 node;
1841 
1842 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1843 	if (!reg)
1844 		return -ENODEV;
1845 
1846 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1847 		const char *name;
1848 		const u64 *chdl;
1849 
1850 		name = mdesc_get_property(mdesc, node, "name", NULL);
1851 		if (!name || strcmp(name, node_name))
1852 			continue;
1853 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1854 		if (!chdl || (*chdl != *reg))
1855 			continue;
1856 		ip->cfg_handle = *chdl;
1857 		return get_irq_props(mdesc, node, ip);
1858 	}
1859 
1860 	return -ENODEV;
1861 }
1862 
1863 static unsigned long n2_spu_hvapi_major;
1864 static unsigned long n2_spu_hvapi_minor;
1865 
1866 static int n2_spu_hvapi_register(void)
1867 {
1868 	int err;
1869 
1870 	n2_spu_hvapi_major = 2;
1871 	n2_spu_hvapi_minor = 0;
1872 
1873 	err = sun4v_hvapi_register(HV_GRP_NCS,
1874 				   n2_spu_hvapi_major,
1875 				   &n2_spu_hvapi_minor);
1876 
1877 	if (!err)
1878 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1879 			n2_spu_hvapi_major,
1880 			n2_spu_hvapi_minor);
1881 
1882 	return err;
1883 }
1884 
1885 static void n2_spu_hvapi_unregister(void)
1886 {
1887 	sun4v_hvapi_unregister(HV_GRP_NCS);
1888 }
1889 
1890 static int global_ref;
1891 
1892 static int grab_global_resources(void)
1893 {
1894 	int err = 0;
1895 
1896 	mutex_lock(&spu_lock);
1897 
1898 	if (global_ref++)
1899 		goto out;
1900 
1901 	err = n2_spu_hvapi_register();
1902 	if (err)
1903 		goto out;
1904 
1905 	err = queue_cache_init();
1906 	if (err)
1907 		goto out_hvapi_release;
1908 
1909 	err = -ENOMEM;
1910 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1911 			     GFP_KERNEL);
1912 	if (!cpu_to_cwq)
1913 		goto out_queue_cache_destroy;
1914 
1915 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1916 			     GFP_KERNEL);
1917 	if (!cpu_to_mau)
1918 		goto out_free_cwq_table;
1919 
1920 	err = 0;
1921 
1922 out:
1923 	if (err)
1924 		global_ref--;
1925 	mutex_unlock(&spu_lock);
1926 	return err;
1927 
1928 out_free_cwq_table:
1929 	kfree(cpu_to_cwq);
1930 	cpu_to_cwq = NULL;
1931 
1932 out_queue_cache_destroy:
1933 	queue_cache_destroy();
1934 
1935 out_hvapi_release:
1936 	n2_spu_hvapi_unregister();
1937 	goto out;
1938 }
1939 
1940 static void release_global_resources(void)
1941 {
1942 	mutex_lock(&spu_lock);
1943 	if (!--global_ref) {
1944 		kfree(cpu_to_cwq);
1945 		cpu_to_cwq = NULL;
1946 
1947 		kfree(cpu_to_mau);
1948 		cpu_to_mau = NULL;
1949 
1950 		queue_cache_destroy();
1951 		n2_spu_hvapi_unregister();
1952 	}
1953 	mutex_unlock(&spu_lock);
1954 }
1955 
1956 static struct n2_crypto *alloc_n2cp(void)
1957 {
1958 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1959 
1960 	if (np)
1961 		INIT_LIST_HEAD(&np->cwq_list);
1962 
1963 	return np;
1964 }
1965 
1966 static void free_n2cp(struct n2_crypto *np)
1967 {
1968 	kfree(np->cwq_info.ino_table);
1969 	np->cwq_info.ino_table = NULL;
1970 
1971 	kfree(np);
1972 }
1973 
1974 static void n2_spu_driver_version(void)
1975 {
1976 	static int n2_spu_version_printed;
1977 
1978 	if (n2_spu_version_printed++ == 0)
1979 		pr_info("%s", version);
1980 }
1981 
1982 static int n2_crypto_probe(struct platform_device *dev)
1983 {
1984 	struct mdesc_handle *mdesc;
1985 	struct n2_crypto *np;
1986 	int err;
1987 
1988 	n2_spu_driver_version();
1989 
1990 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1991 
1992 	np = alloc_n2cp();
1993 	if (!np) {
1994 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1995 			dev->dev.of_node);
1996 		return -ENOMEM;
1997 	}
1998 
1999 	err = grab_global_resources();
2000 	if (err) {
2001 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2002 			dev->dev.of_node);
2003 		goto out_free_n2cp;
2004 	}
2005 
2006 	mdesc = mdesc_grab();
2007 
2008 	if (!mdesc) {
2009 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2010 			dev->dev.of_node);
2011 		err = -ENODEV;
2012 		goto out_free_global;
2013 	}
2014 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2015 	if (err) {
2016 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2017 			dev->dev.of_node);
2018 		mdesc_release(mdesc);
2019 		goto out_free_global;
2020 	}
2021 
2022 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2023 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2024 			     cpu_to_cwq);
2025 	mdesc_release(mdesc);
2026 
2027 	if (err) {
2028 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2029 			dev->dev.of_node);
2030 		goto out_free_global;
2031 	}
2032 
2033 	err = n2_register_algs();
2034 	if (err) {
2035 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2036 			dev->dev.of_node);
2037 		goto out_free_spu_list;
2038 	}
2039 
2040 	dev_set_drvdata(&dev->dev, np);
2041 
2042 	return 0;
2043 
2044 out_free_spu_list:
2045 	spu_list_destroy(&np->cwq_list);
2046 
2047 out_free_global:
2048 	release_global_resources();
2049 
2050 out_free_n2cp:
2051 	free_n2cp(np);
2052 
2053 	return err;
2054 }
2055 
2056 static int n2_crypto_remove(struct platform_device *dev)
2057 {
2058 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2059 
2060 	n2_unregister_algs();
2061 
2062 	spu_list_destroy(&np->cwq_list);
2063 
2064 	release_global_resources();
2065 
2066 	free_n2cp(np);
2067 
2068 	return 0;
2069 }
2070 
2071 static struct n2_mau *alloc_ncp(void)
2072 {
2073 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2074 
2075 	if (mp)
2076 		INIT_LIST_HEAD(&mp->mau_list);
2077 
2078 	return mp;
2079 }
2080 
2081 static void free_ncp(struct n2_mau *mp)
2082 {
2083 	kfree(mp->mau_info.ino_table);
2084 	mp->mau_info.ino_table = NULL;
2085 
2086 	kfree(mp);
2087 }
2088 
2089 static int n2_mau_probe(struct platform_device *dev)
2090 {
2091 	struct mdesc_handle *mdesc;
2092 	struct n2_mau *mp;
2093 	int err;
2094 
2095 	n2_spu_driver_version();
2096 
2097 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2098 
2099 	mp = alloc_ncp();
2100 	if (!mp) {
2101 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2102 			dev->dev.of_node);
2103 		return -ENOMEM;
2104 	}
2105 
2106 	err = grab_global_resources();
2107 	if (err) {
2108 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2109 			dev->dev.of_node);
2110 		goto out_free_ncp;
2111 	}
2112 
2113 	mdesc = mdesc_grab();
2114 
2115 	if (!mdesc) {
2116 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2117 			dev->dev.of_node);
2118 		err = -ENODEV;
2119 		goto out_free_global;
2120 	}
2121 
2122 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2123 	if (err) {
2124 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2125 			dev->dev.of_node);
2126 		mdesc_release(mdesc);
2127 		goto out_free_global;
2128 	}
2129 
2130 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2131 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2132 			     cpu_to_mau);
2133 	mdesc_release(mdesc);
2134 
2135 	if (err) {
2136 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2137 			dev->dev.of_node);
2138 		goto out_free_global;
2139 	}
2140 
2141 	dev_set_drvdata(&dev->dev, mp);
2142 
2143 	return 0;
2144 
2145 out_free_global:
2146 	release_global_resources();
2147 
2148 out_free_ncp:
2149 	free_ncp(mp);
2150 
2151 	return err;
2152 }
2153 
2154 static int n2_mau_remove(struct platform_device *dev)
2155 {
2156 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2157 
2158 	spu_list_destroy(&mp->mau_list);
2159 
2160 	release_global_resources();
2161 
2162 	free_ncp(mp);
2163 
2164 	return 0;
2165 }
2166 
2167 static const struct of_device_id n2_crypto_match[] = {
2168 	{
2169 		.name = "n2cp",
2170 		.compatible = "SUNW,n2-cwq",
2171 	},
2172 	{
2173 		.name = "n2cp",
2174 		.compatible = "SUNW,vf-cwq",
2175 	},
2176 	{
2177 		.name = "n2cp",
2178 		.compatible = "SUNW,kt-cwq",
2179 	},
2180 	{},
2181 };
2182 
2183 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2184 
2185 static struct platform_driver n2_crypto_driver = {
2186 	.driver = {
2187 		.name		=	"n2cp",
2188 		.of_match_table	=	n2_crypto_match,
2189 	},
2190 	.probe		=	n2_crypto_probe,
2191 	.remove		=	n2_crypto_remove,
2192 };
2193 
2194 static const struct of_device_id n2_mau_match[] = {
2195 	{
2196 		.name = "ncp",
2197 		.compatible = "SUNW,n2-mau",
2198 	},
2199 	{
2200 		.name = "ncp",
2201 		.compatible = "SUNW,vf-mau",
2202 	},
2203 	{
2204 		.name = "ncp",
2205 		.compatible = "SUNW,kt-mau",
2206 	},
2207 	{},
2208 };
2209 
2210 MODULE_DEVICE_TABLE(of, n2_mau_match);
2211 
2212 static struct platform_driver n2_mau_driver = {
2213 	.driver = {
2214 		.name		=	"ncp",
2215 		.of_match_table	=	n2_mau_match,
2216 	},
2217 	.probe		=	n2_mau_probe,
2218 	.remove		=	n2_mau_remove,
2219 };
2220 
2221 static struct platform_driver * const drivers[] = {
2222 	&n2_crypto_driver,
2223 	&n2_mau_driver,
2224 };
2225 
2226 static int __init n2_init(void)
2227 {
2228 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2229 }
2230 
2231 static void __exit n2_exit(void)
2232 {
2233 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2234 }
2235 
2236 module_init(n2_init);
2237 module_exit(n2_exit);
2238