xref: /openbmc/linux/drivers/crypto/n2_core.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29 
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32 
33 #include "n2_core.h"
34 
35 #define DRV_MODULE_NAME		"n2_crypto"
36 #define DRV_MODULE_VERSION	"0.2"
37 #define DRV_MODULE_RELDATE	"July 28, 2011"
38 
39 static const char version[] =
40 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41 
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46 
47 #define N2_CRA_PRIORITY		200
48 
49 static DEFINE_MUTEX(spu_lock);
50 
51 struct spu_queue {
52 	cpumask_t		sharing;
53 	unsigned long		qhandle;
54 
55 	spinlock_t		lock;
56 	u8			q_type;
57 	void			*q;
58 	unsigned long		head;
59 	unsigned long		tail;
60 	struct list_head	jobs;
61 
62 	unsigned long		devino;
63 
64 	char			irq_name[32];
65 	unsigned int		irq;
66 
67 	struct list_head	list;
68 };
69 
70 struct spu_qreg {
71 	struct spu_queue	*queue;
72 	unsigned long		type;
73 };
74 
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77 
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80 	if (q->q_type == HV_NCS_QTYPE_MAU) {
81 		off += MAU_ENTRY_SIZE;
82 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 			off = 0;
84 	} else {
85 		off += CWQ_ENTRY_SIZE;
86 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 			off = 0;
88 	}
89 	return off;
90 }
91 
92 struct n2_request_common {
93 	struct list_head	entry;
94 	unsigned int		offset;
95 };
96 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
97 
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 				unsigned long old_head, unsigned long new_head)
104 {
105 	if (old_head <= new_head) {
106 		if (offset > old_head && offset <= new_head)
107 			return true;
108 	} else {
109 		if (offset > old_head || offset <= new_head)
110 			return true;
111 	}
112 	return false;
113 }
114 
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122 	unsigned long off, new_head, hv_ret;
123 	struct spu_queue *q = dev_id;
124 
125 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 	       smp_processor_id(), q->qhandle);
127 
128 	spin_lock(&q->lock);
129 
130 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131 
132 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 	       smp_processor_id(), new_head, hv_ret);
134 
135 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 		/* XXX ... XXX */
137 	}
138 
139 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 	if (hv_ret == HV_EOK)
141 		q->head = new_head;
142 
143 	spin_unlock(&q->lock);
144 
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150 	struct spu_queue *q = dev_id;
151 	unsigned long head, hv_ret;
152 
153 	spin_lock(&q->lock);
154 
155 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 	       smp_processor_id(), q->qhandle);
157 
158 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159 
160 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 	       smp_processor_id(), head, hv_ret);
162 
163 	sun4v_ncs_sethead_marker(q->qhandle, head);
164 
165 	spin_unlock(&q->lock);
166 
167 	return IRQ_HANDLED;
168 }
169 
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172 	return q->q + spu_next_offset(q, cur - q->q);
173 }
174 
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177 	unsigned long head = q->head;
178 	unsigned long tail = q->tail;
179 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 	unsigned long diff;
181 
182 	if (head > tail)
183 		diff = head - tail;
184 	else
185 		diff = (end - tail) + head;
186 
187 	return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189 
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192 	int avail = spu_queue_num_free(q);
193 
194 	if (avail >= num_entries)
195 		return q->q + q->tail;
196 
197 	return NULL;
198 }
199 
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202 	unsigned long hv_ret, new_tail;
203 
204 	new_tail = spu_next_offset(q, last - q->q);
205 
206 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 	if (hv_ret == HV_EOK)
208 		q->tail = new_tail;
209 	return hv_ret;
210 }
211 
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 			     int enc_type, int auth_type,
214 			     unsigned int hash_len,
215 			     bool sfas, bool sob, bool eob, bool encrypt,
216 			     int opcode)
217 {
218 	u64 word = (len - 1) & CONTROL_LEN;
219 
220 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 	if (sfas)
224 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 	if (sob)
226 		word |= CONTROL_START_OF_BLOCK;
227 	if (eob)
228 		word |= CONTROL_END_OF_BLOCK;
229 	if (encrypt)
230 		word |= CONTROL_ENCRYPT;
231 	if (hmac_key_len)
232 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 	if (hash_len)
234 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235 
236 	return word;
237 }
238 
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242 	if (this_len >= 64 ||
243 	    qp->head != qp->tail)
244 		return true;
245 	return false;
246 }
247 #endif
248 
249 struct n2_ahash_alg {
250 	struct list_head	entry;
251 	const u8		*hash_zero;
252 	const u32		*hash_init;
253 	u8			hw_op_hashsz;
254 	u8			digest_size;
255 	u8			auth_type;
256 	u8			hmac_type;
257 	struct ahash_alg	alg;
258 };
259 
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262 	struct crypto_alg *alg = tfm->__crt_alg;
263 	struct ahash_alg *ahash_alg;
264 
265 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266 
267 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269 
270 struct n2_hmac_alg {
271 	const char		*child_alg;
272 	struct n2_ahash_alg	derived;
273 };
274 
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277 	struct crypto_alg *alg = tfm->__crt_alg;
278 	struct ahash_alg *ahash_alg;
279 
280 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281 
282 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284 
285 struct n2_hash_ctx {
286 	struct crypto_ahash		*fallback_tfm;
287 };
288 
289 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
290 
291 struct n2_hmac_ctx {
292 	struct n2_hash_ctx		base;
293 
294 	struct crypto_shash		*child_shash;
295 
296 	int				hash_key_len;
297 	unsigned char			hash_key[N2_HASH_KEY_MAX];
298 };
299 
300 struct n2_hash_req_ctx {
301 	union {
302 		struct md5_state	md5;
303 		struct sha1_state	sha1;
304 		struct sha256_state	sha256;
305 	} u;
306 
307 	struct ahash_request		fallback_req;
308 };
309 
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315 
316 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318 
319 	return crypto_ahash_init(&rctx->fallback_req);
320 }
321 
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327 
328 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 	rctx->fallback_req.nbytes = req->nbytes;
331 	rctx->fallback_req.src = req->src;
332 
333 	return crypto_ahash_update(&rctx->fallback_req);
334 }
335 
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341 
342 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 	rctx->fallback_req.result = req->result;
345 
346 	return crypto_ahash_final(&rctx->fallback_req);
347 }
348 
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354 
355 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 	rctx->fallback_req.nbytes = req->nbytes;
358 	rctx->fallback_req.src = req->src;
359 	rctx->fallback_req.result = req->result;
360 
361 	return crypto_ahash_finup(&rctx->fallback_req);
362 }
363 
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366 	return -ENOSYS;
367 }
368 
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371 	return -ENOSYS;
372 }
373 
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 	struct crypto_ahash *fallback_tfm;
380 	int err;
381 
382 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 					  CRYPTO_ALG_NEED_FALLBACK);
384 	if (IS_ERR(fallback_tfm)) {
385 		pr_warn("Fallback driver '%s' could not be loaded!\n",
386 			fallback_driver_name);
387 		err = PTR_ERR(fallback_tfm);
388 		goto out;
389 	}
390 
391 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 					 crypto_ahash_reqsize(fallback_tfm)));
393 
394 	ctx->fallback_tfm = fallback_tfm;
395 	return 0;
396 
397 out:
398 	return err;
399 }
400 
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405 
406 	crypto_free_ahash(ctx->fallback_tfm);
407 }
408 
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 	struct crypto_ahash *fallback_tfm;
416 	struct crypto_shash *child_shash;
417 	int err;
418 
419 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 					  CRYPTO_ALG_NEED_FALLBACK);
421 	if (IS_ERR(fallback_tfm)) {
422 		pr_warn("Fallback driver '%s' could not be loaded!\n",
423 			fallback_driver_name);
424 		err = PTR_ERR(fallback_tfm);
425 		goto out;
426 	}
427 
428 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 	if (IS_ERR(child_shash)) {
430 		pr_warn("Child shash '%s' could not be loaded!\n",
431 			n2alg->child_alg);
432 		err = PTR_ERR(child_shash);
433 		goto out_free_fallback;
434 	}
435 
436 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 					 crypto_ahash_reqsize(fallback_tfm)));
438 
439 	ctx->child_shash = child_shash;
440 	ctx->base.fallback_tfm = fallback_tfm;
441 	return 0;
442 
443 out_free_fallback:
444 	crypto_free_ahash(fallback_tfm);
445 
446 out:
447 	return err;
448 }
449 
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454 
455 	crypto_free_ahash(ctx->base.fallback_tfm);
456 	crypto_free_shash(ctx->child_shash);
457 }
458 
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 				unsigned int keylen)
461 {
462 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 	struct crypto_shash *child_shash = ctx->child_shash;
464 	struct crypto_ahash *fallback_tfm;
465 	int err, bs, ds;
466 
467 	fallback_tfm = ctx->base.fallback_tfm;
468 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 	if (err)
470 		return err;
471 
472 	bs = crypto_shash_blocksize(child_shash);
473 	ds = crypto_shash_digestsize(child_shash);
474 	BUG_ON(ds > N2_HASH_KEY_MAX);
475 	if (keylen > bs) {
476 		err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 					      ctx->hash_key);
478 		if (err)
479 			return err;
480 		keylen = ds;
481 	} else if (keylen <= N2_HASH_KEY_MAX)
482 		memcpy(ctx->hash_key, key, keylen);
483 
484 	ctx->hash_key_len = keylen;
485 
486 	return err;
487 }
488 
489 static unsigned long wait_for_tail(struct spu_queue *qp)
490 {
491 	unsigned long head, hv_ret;
492 
493 	do {
494 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 		if (hv_ret != HV_EOK) {
496 			pr_err("Hypervisor error on gethead\n");
497 			break;
498 		}
499 		if (head == qp->tail) {
500 			qp->head = head;
501 			break;
502 		}
503 	} while (1);
504 	return hv_ret;
505 }
506 
507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 					      struct cwq_initial_entry *ent)
509 {
510 	unsigned long hv_ret = spu_queue_submit(qp, ent);
511 
512 	if (hv_ret == HV_EOK)
513 		hv_ret = wait_for_tail(qp);
514 
515 	return hv_ret;
516 }
517 
518 static int n2_do_async_digest(struct ahash_request *req,
519 			      unsigned int auth_type, unsigned int digest_size,
520 			      unsigned int result_size, void *hash_loc,
521 			      unsigned long auth_key, unsigned int auth_key_len)
522 {
523 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 	struct cwq_initial_entry *ent;
525 	struct crypto_hash_walk walk;
526 	struct spu_queue *qp;
527 	unsigned long flags;
528 	int err = -ENODEV;
529 	int nbytes, cpu;
530 
531 	/* The total effective length of the operation may not
532 	 * exceed 2^16.
533 	 */
534 	if (unlikely(req->nbytes > (1 << 16))) {
535 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537 
538 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 		rctx->fallback_req.base.flags =
540 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 		rctx->fallback_req.nbytes = req->nbytes;
542 		rctx->fallback_req.src = req->src;
543 		rctx->fallback_req.result = req->result;
544 
545 		return crypto_ahash_digest(&rctx->fallback_req);
546 	}
547 
548 	nbytes = crypto_hash_walk_first(req, &walk);
549 
550 	cpu = get_cpu();
551 	qp = cpu_to_cwq[cpu];
552 	if (!qp)
553 		goto out;
554 
555 	spin_lock_irqsave(&qp->lock, flags);
556 
557 	/* XXX can do better, improve this later by doing a by-hand scatterlist
558 	 * XXX walk, etc.
559 	 */
560 	ent = qp->q + qp->tail;
561 
562 	ent->control = control_word_base(nbytes, auth_key_len, 0,
563 					 auth_type, digest_size,
564 					 false, true, false, false,
565 					 OPCODE_INPLACE_BIT |
566 					 OPCODE_AUTH_MAC);
567 	ent->src_addr = __pa(walk.data);
568 	ent->auth_key_addr = auth_key;
569 	ent->auth_iv_addr = __pa(hash_loc);
570 	ent->final_auth_state_addr = 0UL;
571 	ent->enc_key_addr = 0UL;
572 	ent->enc_iv_addr = 0UL;
573 	ent->dest_addr = __pa(hash_loc);
574 
575 	nbytes = crypto_hash_walk_done(&walk, 0);
576 	while (nbytes > 0) {
577 		ent = spu_queue_next(qp, ent);
578 
579 		ent->control = (nbytes - 1);
580 		ent->src_addr = __pa(walk.data);
581 		ent->auth_key_addr = 0UL;
582 		ent->auth_iv_addr = 0UL;
583 		ent->final_auth_state_addr = 0UL;
584 		ent->enc_key_addr = 0UL;
585 		ent->enc_iv_addr = 0UL;
586 		ent->dest_addr = 0UL;
587 
588 		nbytes = crypto_hash_walk_done(&walk, 0);
589 	}
590 	ent->control |= CONTROL_END_OF_BLOCK;
591 
592 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 		err = -EINVAL;
594 	else
595 		err = 0;
596 
597 	spin_unlock_irqrestore(&qp->lock, flags);
598 
599 	if (!err)
600 		memcpy(req->result, hash_loc, result_size);
601 out:
602 	put_cpu();
603 
604 	return err;
605 }
606 
607 static int n2_hash_async_digest(struct ahash_request *req)
608 {
609 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 	int ds;
612 
613 	ds = n2alg->digest_size;
614 	if (unlikely(req->nbytes == 0)) {
615 		memcpy(req->result, n2alg->hash_zero, ds);
616 		return 0;
617 	}
618 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619 
620 	return n2_do_async_digest(req, n2alg->auth_type,
621 				  n2alg->hw_op_hashsz, ds,
622 				  &rctx->u, 0UL, 0);
623 }
624 
625 static int n2_hmac_async_digest(struct ahash_request *req)
626 {
627 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 	int ds;
632 
633 	ds = n2alg->derived.digest_size;
634 	if (unlikely(req->nbytes == 0) ||
635 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638 
639 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 		rctx->fallback_req.base.flags =
641 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 		rctx->fallback_req.nbytes = req->nbytes;
643 		rctx->fallback_req.src = req->src;
644 		rctx->fallback_req.result = req->result;
645 
646 		return crypto_ahash_digest(&rctx->fallback_req);
647 	}
648 	memcpy(&rctx->u, n2alg->derived.hash_init,
649 	       n2alg->derived.hw_op_hashsz);
650 
651 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 				  n2alg->derived.hw_op_hashsz, ds,
653 				  &rctx->u,
654 				  __pa(&ctx->hash_key),
655 				  ctx->hash_key_len);
656 }
657 
658 struct n2_skcipher_context {
659 	int			key_len;
660 	int			enc_type;
661 	union {
662 		u8		aes[AES_MAX_KEY_SIZE];
663 		u8		des[DES_KEY_SIZE];
664 		u8		des3[3 * DES_KEY_SIZE];
665 		u8		arc4[258]; /* S-box, X, Y */
666 	} key;
667 };
668 
669 #define N2_CHUNK_ARR_LEN	16
670 
671 struct n2_crypto_chunk {
672 	struct list_head	entry;
673 	unsigned long		iv_paddr : 44;
674 	unsigned long		arr_len : 20;
675 	unsigned long		dest_paddr;
676 	unsigned long		dest_final;
677 	struct {
678 		unsigned long	src_paddr : 44;
679 		unsigned long	src_len : 20;
680 	} arr[N2_CHUNK_ARR_LEN];
681 };
682 
683 struct n2_request_context {
684 	struct skcipher_walk	walk;
685 	struct list_head	chunk_list;
686 	struct n2_crypto_chunk	chunk;
687 	u8			temp_iv[16];
688 };
689 
690 /* The SPU allows some level of flexibility for partial cipher blocks
691  * being specified in a descriptor.
692  *
693  * It merely requires that every descriptor's length field is at least
694  * as large as the cipher block size.  This means that a cipher block
695  * can span at most 2 descriptors.  However, this does not allow a
696  * partial block to span into the final descriptor as that would
697  * violate the rule (since every descriptor's length must be at lest
698  * the block size).  So, for example, assuming an 8 byte block size:
699  *
700  *	0xe --> 0xa --> 0x8
701  *
702  * is a valid length sequence, whereas:
703  *
704  *	0xe --> 0xb --> 0x7
705  *
706  * is not a valid sequence.
707  */
708 
709 struct n2_skcipher_alg {
710 	struct list_head	entry;
711 	u8			enc_type;
712 	struct skcipher_alg	skcipher;
713 };
714 
715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716 {
717 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718 
719 	return container_of(alg, struct n2_skcipher_alg, skcipher);
720 }
721 
722 struct n2_skcipher_request_context {
723 	struct skcipher_walk	walk;
724 };
725 
726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 			 unsigned int keylen)
728 {
729 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732 
733 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734 
735 	switch (keylen) {
736 	case AES_KEYSIZE_128:
737 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 		break;
739 	case AES_KEYSIZE_192:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 		break;
742 	case AES_KEYSIZE_256:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 		break;
745 	default:
746 		return -EINVAL;
747 	}
748 
749 	ctx->key_len = keylen;
750 	memcpy(ctx->key.aes, key, keylen);
751 	return 0;
752 }
753 
754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 			 unsigned int keylen)
756 {
757 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 	int err;
761 
762 	err = verify_skcipher_des_key(skcipher, key);
763 	if (err)
764 		return err;
765 
766 	ctx->enc_type = n2alg->enc_type;
767 
768 	ctx->key_len = keylen;
769 	memcpy(ctx->key.des, key, keylen);
770 	return 0;
771 }
772 
773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 			  unsigned int keylen)
775 {
776 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 	int err;
780 
781 	err = verify_skcipher_des3_key(skcipher, key);
782 	if (err)
783 		return err;
784 
785 	ctx->enc_type = n2alg->enc_type;
786 
787 	ctx->key_len = keylen;
788 	memcpy(ctx->key.des3, key, keylen);
789 	return 0;
790 }
791 
792 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
793 			  unsigned int keylen)
794 {
795 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
796 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
797 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
798 	u8 *s = ctx->key.arc4;
799 	u8 *x = s + 256;
800 	u8 *y = x + 1;
801 	int i, j, k;
802 
803 	ctx->enc_type = n2alg->enc_type;
804 
805 	j = k = 0;
806 	*x = 0;
807 	*y = 0;
808 	for (i = 0; i < 256; i++)
809 		s[i] = i;
810 	for (i = 0; i < 256; i++) {
811 		u8 a = s[i];
812 		j = (j + key[k] + a) & 0xff;
813 		s[i] = s[j];
814 		s[j] = a;
815 		if (++k >= keylen)
816 			k = 0;
817 	}
818 
819 	return 0;
820 }
821 
822 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
823 {
824 	int this_len = nbytes;
825 
826 	this_len -= (nbytes & (block_size - 1));
827 	return this_len > (1 << 16) ? (1 << 16) : this_len;
828 }
829 
830 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
831 			    struct n2_crypto_chunk *cp,
832 			    struct spu_queue *qp, bool encrypt)
833 {
834 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
835 	struct cwq_initial_entry *ent;
836 	bool in_place;
837 	int i;
838 
839 	ent = spu_queue_alloc(qp, cp->arr_len);
840 	if (!ent) {
841 		pr_info("queue_alloc() of %d fails\n",
842 			cp->arr_len);
843 		return -EBUSY;
844 	}
845 
846 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847 
848 	ent->control = control_word_base(cp->arr[0].src_len,
849 					 0, ctx->enc_type, 0, 0,
850 					 false, true, false, encrypt,
851 					 OPCODE_ENCRYPT |
852 					 (in_place ? OPCODE_INPLACE_BIT : 0));
853 	ent->src_addr = cp->arr[0].src_paddr;
854 	ent->auth_key_addr = 0UL;
855 	ent->auth_iv_addr = 0UL;
856 	ent->final_auth_state_addr = 0UL;
857 	ent->enc_key_addr = __pa(&ctx->key);
858 	ent->enc_iv_addr = cp->iv_paddr;
859 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860 
861 	for (i = 1; i < cp->arr_len; i++) {
862 		ent = spu_queue_next(qp, ent);
863 
864 		ent->control = cp->arr[i].src_len - 1;
865 		ent->src_addr = cp->arr[i].src_paddr;
866 		ent->auth_key_addr = 0UL;
867 		ent->auth_iv_addr = 0UL;
868 		ent->final_auth_state_addr = 0UL;
869 		ent->enc_key_addr = 0UL;
870 		ent->enc_iv_addr = 0UL;
871 		ent->dest_addr = 0UL;
872 	}
873 	ent->control |= CONTROL_END_OF_BLOCK;
874 
875 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 }
877 
878 static int n2_compute_chunks(struct skcipher_request *req)
879 {
880 	struct n2_request_context *rctx = skcipher_request_ctx(req);
881 	struct skcipher_walk *walk = &rctx->walk;
882 	struct n2_crypto_chunk *chunk;
883 	unsigned long dest_prev;
884 	unsigned int tot_len;
885 	bool prev_in_place;
886 	int err, nbytes;
887 
888 	err = skcipher_walk_async(walk, req);
889 	if (err)
890 		return err;
891 
892 	INIT_LIST_HEAD(&rctx->chunk_list);
893 
894 	chunk = &rctx->chunk;
895 	INIT_LIST_HEAD(&chunk->entry);
896 
897 	chunk->iv_paddr = 0UL;
898 	chunk->arr_len = 0;
899 	chunk->dest_paddr = 0UL;
900 
901 	prev_in_place = false;
902 	dest_prev = ~0UL;
903 	tot_len = 0;
904 
905 	while ((nbytes = walk->nbytes) != 0) {
906 		unsigned long dest_paddr, src_paddr;
907 		bool in_place;
908 		int this_len;
909 
910 		src_paddr = (page_to_phys(walk->src.phys.page) +
911 			     walk->src.phys.offset);
912 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
913 			      walk->dst.phys.offset);
914 		in_place = (src_paddr == dest_paddr);
915 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
916 
917 		if (chunk->arr_len != 0) {
918 			if (in_place != prev_in_place ||
919 			    (!prev_in_place &&
920 			     dest_paddr != dest_prev) ||
921 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
922 			    tot_len + this_len > (1 << 16)) {
923 				chunk->dest_final = dest_prev;
924 				list_add_tail(&chunk->entry,
925 					      &rctx->chunk_list);
926 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
927 				if (!chunk) {
928 					err = -ENOMEM;
929 					break;
930 				}
931 				INIT_LIST_HEAD(&chunk->entry);
932 			}
933 		}
934 		if (chunk->arr_len == 0) {
935 			chunk->dest_paddr = dest_paddr;
936 			tot_len = 0;
937 		}
938 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
939 		chunk->arr[chunk->arr_len].src_len = this_len;
940 		chunk->arr_len++;
941 
942 		dest_prev = dest_paddr + this_len;
943 		prev_in_place = in_place;
944 		tot_len += this_len;
945 
946 		err = skcipher_walk_done(walk, nbytes - this_len);
947 		if (err)
948 			break;
949 	}
950 	if (!err && chunk->arr_len != 0) {
951 		chunk->dest_final = dest_prev;
952 		list_add_tail(&chunk->entry, &rctx->chunk_list);
953 	}
954 
955 	return err;
956 }
957 
958 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
959 {
960 	struct n2_request_context *rctx = skcipher_request_ctx(req);
961 	struct n2_crypto_chunk *c, *tmp;
962 
963 	if (final_iv)
964 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965 
966 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967 		list_del(&c->entry);
968 		if (unlikely(c != &rctx->chunk))
969 			kfree(c);
970 	}
971 
972 }
973 
974 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
975 {
976 	struct n2_request_context *rctx = skcipher_request_ctx(req);
977 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
978 	int err = n2_compute_chunks(req);
979 	struct n2_crypto_chunk *c, *tmp;
980 	unsigned long flags, hv_ret;
981 	struct spu_queue *qp;
982 
983 	if (err)
984 		return err;
985 
986 	qp = cpu_to_cwq[get_cpu()];
987 	err = -ENODEV;
988 	if (!qp)
989 		goto out;
990 
991 	spin_lock_irqsave(&qp->lock, flags);
992 
993 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995 		if (err)
996 			break;
997 		list_del(&c->entry);
998 		if (unlikely(c != &rctx->chunk))
999 			kfree(c);
1000 	}
1001 	if (!err) {
1002 		hv_ret = wait_for_tail(qp);
1003 		if (hv_ret != HV_EOK)
1004 			err = -EINVAL;
1005 	}
1006 
1007 	spin_unlock_irqrestore(&qp->lock, flags);
1008 
1009 out:
1010 	put_cpu();
1011 
1012 	n2_chunk_complete(req, NULL);
1013 	return err;
1014 }
1015 
1016 static int n2_encrypt_ecb(struct skcipher_request *req)
1017 {
1018 	return n2_do_ecb(req, true);
1019 }
1020 
1021 static int n2_decrypt_ecb(struct skcipher_request *req)
1022 {
1023 	return n2_do_ecb(req, false);
1024 }
1025 
1026 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027 {
1028 	struct n2_request_context *rctx = skcipher_request_ctx(req);
1029 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030 	unsigned long flags, hv_ret, iv_paddr;
1031 	int err = n2_compute_chunks(req);
1032 	struct n2_crypto_chunk *c, *tmp;
1033 	struct spu_queue *qp;
1034 	void *final_iv_addr;
1035 
1036 	final_iv_addr = NULL;
1037 
1038 	if (err)
1039 		return err;
1040 
1041 	qp = cpu_to_cwq[get_cpu()];
1042 	err = -ENODEV;
1043 	if (!qp)
1044 		goto out;
1045 
1046 	spin_lock_irqsave(&qp->lock, flags);
1047 
1048 	if (encrypt) {
1049 		iv_paddr = __pa(rctx->walk.iv);
1050 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051 					 entry) {
1052 			c->iv_paddr = iv_paddr;
1053 			err = __n2_crypt_chunk(tfm, c, qp, true);
1054 			if (err)
1055 				break;
1056 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1057 			list_del(&c->entry);
1058 			if (unlikely(c != &rctx->chunk))
1059 				kfree(c);
1060 		}
1061 		final_iv_addr = __va(iv_paddr);
1062 	} else {
1063 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064 						 entry) {
1065 			if (c == &rctx->chunk) {
1066 				iv_paddr = __pa(rctx->walk.iv);
1067 			} else {
1068 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069 					    tmp->arr[tmp->arr_len-1].src_len -
1070 					    rctx->walk.blocksize);
1071 			}
1072 			if (!final_iv_addr) {
1073 				unsigned long pa;
1074 
1075 				pa = (c->arr[c->arr_len-1].src_paddr +
1076 				      c->arr[c->arr_len-1].src_len -
1077 				      rctx->walk.blocksize);
1078 				final_iv_addr = rctx->temp_iv;
1079 				memcpy(rctx->temp_iv, __va(pa),
1080 				       rctx->walk.blocksize);
1081 			}
1082 			c->iv_paddr = iv_paddr;
1083 			err = __n2_crypt_chunk(tfm, c, qp, false);
1084 			if (err)
1085 				break;
1086 			list_del(&c->entry);
1087 			if (unlikely(c != &rctx->chunk))
1088 				kfree(c);
1089 		}
1090 	}
1091 	if (!err) {
1092 		hv_ret = wait_for_tail(qp);
1093 		if (hv_ret != HV_EOK)
1094 			err = -EINVAL;
1095 	}
1096 
1097 	spin_unlock_irqrestore(&qp->lock, flags);
1098 
1099 out:
1100 	put_cpu();
1101 
1102 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103 	return err;
1104 }
1105 
1106 static int n2_encrypt_chaining(struct skcipher_request *req)
1107 {
1108 	return n2_do_chaining(req, true);
1109 }
1110 
1111 static int n2_decrypt_chaining(struct skcipher_request *req)
1112 {
1113 	return n2_do_chaining(req, false);
1114 }
1115 
1116 struct n2_skcipher_tmpl {
1117 	const char		*name;
1118 	const char		*drv_name;
1119 	u8			block_size;
1120 	u8			enc_type;
1121 	struct skcipher_alg	skcipher;
1122 };
1123 
1124 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125 	/* ARC4: only ECB is supported (chaining bits ignored) */
1126 	{	.name		= "ecb(arc4)",
1127 		.drv_name	= "ecb-arc4",
1128 		.block_size	= 1,
1129 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1130 				   ENC_TYPE_CHAINING_ECB),
1131 		.skcipher	= {
1132 			.min_keysize	= 1,
1133 			.max_keysize	= 256,
1134 			.setkey		= n2_arc4_setkey,
1135 			.encrypt	= n2_encrypt_ecb,
1136 			.decrypt	= n2_decrypt_ecb,
1137 		},
1138 	},
1139 
1140 	/* DES: ECB CBC and CFB are supported */
1141 	{	.name		= "ecb(des)",
1142 		.drv_name	= "ecb-des",
1143 		.block_size	= DES_BLOCK_SIZE,
1144 		.enc_type	= (ENC_TYPE_ALG_DES |
1145 				   ENC_TYPE_CHAINING_ECB),
1146 		.skcipher	= {
1147 			.min_keysize	= DES_KEY_SIZE,
1148 			.max_keysize	= DES_KEY_SIZE,
1149 			.setkey		= n2_des_setkey,
1150 			.encrypt	= n2_encrypt_ecb,
1151 			.decrypt	= n2_decrypt_ecb,
1152 		},
1153 	},
1154 	{	.name		= "cbc(des)",
1155 		.drv_name	= "cbc-des",
1156 		.block_size	= DES_BLOCK_SIZE,
1157 		.enc_type	= (ENC_TYPE_ALG_DES |
1158 				   ENC_TYPE_CHAINING_CBC),
1159 		.skcipher	= {
1160 			.ivsize		= DES_BLOCK_SIZE,
1161 			.min_keysize	= DES_KEY_SIZE,
1162 			.max_keysize	= DES_KEY_SIZE,
1163 			.setkey		= n2_des_setkey,
1164 			.encrypt	= n2_encrypt_chaining,
1165 			.decrypt	= n2_decrypt_chaining,
1166 		},
1167 	},
1168 	{	.name		= "cfb(des)",
1169 		.drv_name	= "cfb-des",
1170 		.block_size	= DES_BLOCK_SIZE,
1171 		.enc_type	= (ENC_TYPE_ALG_DES |
1172 				   ENC_TYPE_CHAINING_CFB),
1173 		.skcipher	= {
1174 			.min_keysize	= DES_KEY_SIZE,
1175 			.max_keysize	= DES_KEY_SIZE,
1176 			.setkey		= n2_des_setkey,
1177 			.encrypt	= n2_encrypt_chaining,
1178 			.decrypt	= n2_decrypt_chaining,
1179 		},
1180 	},
1181 
1182 	/* 3DES: ECB CBC and CFB are supported */
1183 	{	.name		= "ecb(des3_ede)",
1184 		.drv_name	= "ecb-3des",
1185 		.block_size	= DES_BLOCK_SIZE,
1186 		.enc_type	= (ENC_TYPE_ALG_3DES |
1187 				   ENC_TYPE_CHAINING_ECB),
1188 		.skcipher	= {
1189 			.min_keysize	= 3 * DES_KEY_SIZE,
1190 			.max_keysize	= 3 * DES_KEY_SIZE,
1191 			.setkey		= n2_3des_setkey,
1192 			.encrypt	= n2_encrypt_ecb,
1193 			.decrypt	= n2_decrypt_ecb,
1194 		},
1195 	},
1196 	{	.name		= "cbc(des3_ede)",
1197 		.drv_name	= "cbc-3des",
1198 		.block_size	= DES_BLOCK_SIZE,
1199 		.enc_type	= (ENC_TYPE_ALG_3DES |
1200 				   ENC_TYPE_CHAINING_CBC),
1201 		.skcipher	= {
1202 			.ivsize		= DES_BLOCK_SIZE,
1203 			.min_keysize	= 3 * DES_KEY_SIZE,
1204 			.max_keysize	= 3 * DES_KEY_SIZE,
1205 			.setkey		= n2_3des_setkey,
1206 			.encrypt	= n2_encrypt_chaining,
1207 			.decrypt	= n2_decrypt_chaining,
1208 		},
1209 	},
1210 	{	.name		= "cfb(des3_ede)",
1211 		.drv_name	= "cfb-3des",
1212 		.block_size	= DES_BLOCK_SIZE,
1213 		.enc_type	= (ENC_TYPE_ALG_3DES |
1214 				   ENC_TYPE_CHAINING_CFB),
1215 		.skcipher	= {
1216 			.min_keysize	= 3 * DES_KEY_SIZE,
1217 			.max_keysize	= 3 * DES_KEY_SIZE,
1218 			.setkey		= n2_3des_setkey,
1219 			.encrypt	= n2_encrypt_chaining,
1220 			.decrypt	= n2_decrypt_chaining,
1221 		},
1222 	},
1223 	/* AES: ECB CBC and CTR are supported */
1224 	{	.name		= "ecb(aes)",
1225 		.drv_name	= "ecb-aes",
1226 		.block_size	= AES_BLOCK_SIZE,
1227 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1228 				   ENC_TYPE_CHAINING_ECB),
1229 		.skcipher	= {
1230 			.min_keysize	= AES_MIN_KEY_SIZE,
1231 			.max_keysize	= AES_MAX_KEY_SIZE,
1232 			.setkey		= n2_aes_setkey,
1233 			.encrypt	= n2_encrypt_ecb,
1234 			.decrypt	= n2_decrypt_ecb,
1235 		},
1236 	},
1237 	{	.name		= "cbc(aes)",
1238 		.drv_name	= "cbc-aes",
1239 		.block_size	= AES_BLOCK_SIZE,
1240 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1241 				   ENC_TYPE_CHAINING_CBC),
1242 		.skcipher	= {
1243 			.ivsize		= AES_BLOCK_SIZE,
1244 			.min_keysize	= AES_MIN_KEY_SIZE,
1245 			.max_keysize	= AES_MAX_KEY_SIZE,
1246 			.setkey		= n2_aes_setkey,
1247 			.encrypt	= n2_encrypt_chaining,
1248 			.decrypt	= n2_decrypt_chaining,
1249 		},
1250 	},
1251 	{	.name		= "ctr(aes)",
1252 		.drv_name	= "ctr-aes",
1253 		.block_size	= AES_BLOCK_SIZE,
1254 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1255 				   ENC_TYPE_CHAINING_COUNTER),
1256 		.skcipher	= {
1257 			.ivsize		= AES_BLOCK_SIZE,
1258 			.min_keysize	= AES_MIN_KEY_SIZE,
1259 			.max_keysize	= AES_MAX_KEY_SIZE,
1260 			.setkey		= n2_aes_setkey,
1261 			.encrypt	= n2_encrypt_chaining,
1262 			.decrypt	= n2_encrypt_chaining,
1263 		},
1264 	},
1265 
1266 };
1267 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268 
1269 static LIST_HEAD(skcipher_algs);
1270 
1271 struct n2_hash_tmpl {
1272 	const char	*name;
1273 	const u8	*hash_zero;
1274 	const u32	*hash_init;
1275 	u8		hw_op_hashsz;
1276 	u8		digest_size;
1277 	u8		block_size;
1278 	u8		auth_type;
1279 	u8		hmac_type;
1280 };
1281 
1282 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283 	cpu_to_le32(MD5_H0),
1284 	cpu_to_le32(MD5_H1),
1285 	cpu_to_le32(MD5_H2),
1286 	cpu_to_le32(MD5_H3),
1287 };
1288 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290 };
1291 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294 };
1295 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298 };
1299 
1300 static const struct n2_hash_tmpl hash_tmpls[] = {
1301 	{ .name		= "md5",
1302 	  .hash_zero	= md5_zero_message_hash,
1303 	  .hash_init	= n2_md5_init,
1304 	  .auth_type	= AUTH_TYPE_MD5,
1305 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1306 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1307 	  .digest_size	= MD5_DIGEST_SIZE,
1308 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1309 	{ .name		= "sha1",
1310 	  .hash_zero	= sha1_zero_message_hash,
1311 	  .hash_init	= n2_sha1_init,
1312 	  .auth_type	= AUTH_TYPE_SHA1,
1313 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1314 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1315 	  .digest_size	= SHA1_DIGEST_SIZE,
1316 	  .block_size	= SHA1_BLOCK_SIZE },
1317 	{ .name		= "sha256",
1318 	  .hash_zero	= sha256_zero_message_hash,
1319 	  .hash_init	= n2_sha256_init,
1320 	  .auth_type	= AUTH_TYPE_SHA256,
1321 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1322 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1323 	  .digest_size	= SHA256_DIGEST_SIZE,
1324 	  .block_size	= SHA256_BLOCK_SIZE },
1325 	{ .name		= "sha224",
1326 	  .hash_zero	= sha224_zero_message_hash,
1327 	  .hash_init	= n2_sha224_init,
1328 	  .auth_type	= AUTH_TYPE_SHA256,
1329 	  .hmac_type	= AUTH_TYPE_RESERVED,
1330 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1331 	  .digest_size	= SHA224_DIGEST_SIZE,
1332 	  .block_size	= SHA224_BLOCK_SIZE },
1333 };
1334 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335 
1336 static LIST_HEAD(ahash_algs);
1337 static LIST_HEAD(hmac_algs);
1338 
1339 static int algs_registered;
1340 
1341 static void __n2_unregister_algs(void)
1342 {
1343 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344 	struct n2_ahash_alg *alg, *alg_tmp;
1345 	struct n2_hmac_alg *hmac, *hmac_tmp;
1346 
1347 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348 		crypto_unregister_skcipher(&skcipher->skcipher);
1349 		list_del(&skcipher->entry);
1350 		kfree(skcipher);
1351 	}
1352 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353 		crypto_unregister_ahash(&hmac->derived.alg);
1354 		list_del(&hmac->derived.entry);
1355 		kfree(hmac);
1356 	}
1357 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358 		crypto_unregister_ahash(&alg->alg);
1359 		list_del(&alg->entry);
1360 		kfree(alg);
1361 	}
1362 }
1363 
1364 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365 {
1366 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367 	return 0;
1368 }
1369 
1370 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371 {
1372 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373 	struct skcipher_alg *alg;
1374 	int err;
1375 
1376 	if (!p)
1377 		return -ENOMEM;
1378 
1379 	alg = &p->skcipher;
1380 	*alg = tmpl->skcipher;
1381 
1382 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384 	alg->base.cra_priority = N2_CRA_PRIORITY;
1385 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1386 	alg->base.cra_blocksize = tmpl->block_size;
1387 	p->enc_type = tmpl->enc_type;
1388 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1389 	alg->base.cra_module = THIS_MODULE;
1390 	alg->init = n2_skcipher_init_tfm;
1391 
1392 	list_add(&p->entry, &skcipher_algs);
1393 	err = crypto_register_skcipher(alg);
1394 	if (err) {
1395 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1396 		list_del(&p->entry);
1397 		kfree(p);
1398 	} else {
1399 		pr_info("%s alg registered\n", alg->base.cra_name);
1400 	}
1401 	return err;
1402 }
1403 
1404 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1405 {
1406 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1407 	struct ahash_alg *ahash;
1408 	struct crypto_alg *base;
1409 	int err;
1410 
1411 	if (!p)
1412 		return -ENOMEM;
1413 
1414 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1415 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1416 	INIT_LIST_HEAD(&p->derived.entry);
1417 
1418 	ahash = &p->derived.alg;
1419 	ahash->digest = n2_hmac_async_digest;
1420 	ahash->setkey = n2_hmac_async_setkey;
1421 
1422 	base = &ahash->halg.base;
1423 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1424 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1425 
1426 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1427 	base->cra_init = n2_hmac_cra_init;
1428 	base->cra_exit = n2_hmac_cra_exit;
1429 
1430 	list_add(&p->derived.entry, &hmac_algs);
1431 	err = crypto_register_ahash(ahash);
1432 	if (err) {
1433 		pr_err("%s alg registration failed\n", base->cra_name);
1434 		list_del(&p->derived.entry);
1435 		kfree(p);
1436 	} else {
1437 		pr_info("%s alg registered\n", base->cra_name);
1438 	}
1439 	return err;
1440 }
1441 
1442 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1443 {
1444 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1445 	struct hash_alg_common *halg;
1446 	struct crypto_alg *base;
1447 	struct ahash_alg *ahash;
1448 	int err;
1449 
1450 	if (!p)
1451 		return -ENOMEM;
1452 
1453 	p->hash_zero = tmpl->hash_zero;
1454 	p->hash_init = tmpl->hash_init;
1455 	p->auth_type = tmpl->auth_type;
1456 	p->hmac_type = tmpl->hmac_type;
1457 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1458 	p->digest_size = tmpl->digest_size;
1459 
1460 	ahash = &p->alg;
1461 	ahash->init = n2_hash_async_init;
1462 	ahash->update = n2_hash_async_update;
1463 	ahash->final = n2_hash_async_final;
1464 	ahash->finup = n2_hash_async_finup;
1465 	ahash->digest = n2_hash_async_digest;
1466 	ahash->export = n2_hash_async_noexport;
1467 	ahash->import = n2_hash_async_noimport;
1468 
1469 	halg = &ahash->halg;
1470 	halg->digestsize = tmpl->digest_size;
1471 
1472 	base = &halg->base;
1473 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1474 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1475 	base->cra_priority = N2_CRA_PRIORITY;
1476 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1477 			  CRYPTO_ALG_NEED_FALLBACK;
1478 	base->cra_blocksize = tmpl->block_size;
1479 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1480 	base->cra_module = THIS_MODULE;
1481 	base->cra_init = n2_hash_cra_init;
1482 	base->cra_exit = n2_hash_cra_exit;
1483 
1484 	list_add(&p->entry, &ahash_algs);
1485 	err = crypto_register_ahash(ahash);
1486 	if (err) {
1487 		pr_err("%s alg registration failed\n", base->cra_name);
1488 		list_del(&p->entry);
1489 		kfree(p);
1490 	} else {
1491 		pr_info("%s alg registered\n", base->cra_name);
1492 	}
1493 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1494 		err = __n2_register_one_hmac(p);
1495 	return err;
1496 }
1497 
1498 static int n2_register_algs(void)
1499 {
1500 	int i, err = 0;
1501 
1502 	mutex_lock(&spu_lock);
1503 	if (algs_registered++)
1504 		goto out;
1505 
1506 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1507 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1508 		if (err) {
1509 			__n2_unregister_algs();
1510 			goto out;
1511 		}
1512 	}
1513 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1514 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1515 		if (err) {
1516 			__n2_unregister_algs();
1517 			goto out;
1518 		}
1519 	}
1520 
1521 out:
1522 	mutex_unlock(&spu_lock);
1523 	return err;
1524 }
1525 
1526 static void n2_unregister_algs(void)
1527 {
1528 	mutex_lock(&spu_lock);
1529 	if (!--algs_registered)
1530 		__n2_unregister_algs();
1531 	mutex_unlock(&spu_lock);
1532 }
1533 
1534 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1535  * a devino.  This isn't very useful to us because all of the
1536  * interrupts listed in the device_node have been translated to
1537  * Linux virtual IRQ cookie numbers.
1538  *
1539  * So we have to back-translate, going through the 'intr' and 'ino'
1540  * property tables of the n2cp MDESC node, matching it with the OF
1541  * 'interrupts' property entries, in order to to figure out which
1542  * devino goes to which already-translated IRQ.
1543  */
1544 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1545 			     unsigned long dev_ino)
1546 {
1547 	const unsigned int *dev_intrs;
1548 	unsigned int intr;
1549 	int i;
1550 
1551 	for (i = 0; i < ip->num_intrs; i++) {
1552 		if (ip->ino_table[i].ino == dev_ino)
1553 			break;
1554 	}
1555 	if (i == ip->num_intrs)
1556 		return -ENODEV;
1557 
1558 	intr = ip->ino_table[i].intr;
1559 
1560 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1561 	if (!dev_intrs)
1562 		return -ENODEV;
1563 
1564 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1565 		if (dev_intrs[i] == intr)
1566 			return i;
1567 	}
1568 
1569 	return -ENODEV;
1570 }
1571 
1572 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1573 		       const char *irq_name, struct spu_queue *p,
1574 		       irq_handler_t handler)
1575 {
1576 	unsigned long herr;
1577 	int index;
1578 
1579 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1580 	if (herr)
1581 		return -EINVAL;
1582 
1583 	index = find_devino_index(dev, ip, p->devino);
1584 	if (index < 0)
1585 		return index;
1586 
1587 	p->irq = dev->archdata.irqs[index];
1588 
1589 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1590 
1591 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1592 }
1593 
1594 static struct kmem_cache *queue_cache[2];
1595 
1596 static void *new_queue(unsigned long q_type)
1597 {
1598 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1599 }
1600 
1601 static void free_queue(void *p, unsigned long q_type)
1602 {
1603 	kmem_cache_free(queue_cache[q_type - 1], p);
1604 }
1605 
1606 static int queue_cache_init(void)
1607 {
1608 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1609 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1610 			kmem_cache_create("mau_queue",
1611 					  (MAU_NUM_ENTRIES *
1612 					   MAU_ENTRY_SIZE),
1613 					  MAU_ENTRY_SIZE, 0, NULL);
1614 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1615 		return -ENOMEM;
1616 
1617 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1618 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1619 			kmem_cache_create("cwq_queue",
1620 					  (CWQ_NUM_ENTRIES *
1621 					   CWQ_ENTRY_SIZE),
1622 					  CWQ_ENTRY_SIZE, 0, NULL);
1623 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1624 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1625 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1626 		return -ENOMEM;
1627 	}
1628 	return 0;
1629 }
1630 
1631 static void queue_cache_destroy(void)
1632 {
1633 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1634 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1635 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1636 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1637 }
1638 
1639 static long spu_queue_register_workfn(void *arg)
1640 {
1641 	struct spu_qreg *qr = arg;
1642 	struct spu_queue *p = qr->queue;
1643 	unsigned long q_type = qr->type;
1644 	unsigned long hv_ret;
1645 
1646 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1647 				 CWQ_NUM_ENTRIES, &p->qhandle);
1648 	if (!hv_ret)
1649 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1650 
1651 	return hv_ret ? -EINVAL : 0;
1652 }
1653 
1654 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1655 {
1656 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1657 	struct spu_qreg qr = { .queue = p, .type = q_type };
1658 
1659 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1660 }
1661 
1662 static int spu_queue_setup(struct spu_queue *p)
1663 {
1664 	int err;
1665 
1666 	p->q = new_queue(p->q_type);
1667 	if (!p->q)
1668 		return -ENOMEM;
1669 
1670 	err = spu_queue_register(p, p->q_type);
1671 	if (err) {
1672 		free_queue(p->q, p->q_type);
1673 		p->q = NULL;
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 static void spu_queue_destroy(struct spu_queue *p)
1680 {
1681 	unsigned long hv_ret;
1682 
1683 	if (!p->q)
1684 		return;
1685 
1686 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1687 
1688 	if (!hv_ret)
1689 		free_queue(p->q, p->q_type);
1690 }
1691 
1692 static void spu_list_destroy(struct list_head *list)
1693 {
1694 	struct spu_queue *p, *n;
1695 
1696 	list_for_each_entry_safe(p, n, list, list) {
1697 		int i;
1698 
1699 		for (i = 0; i < NR_CPUS; i++) {
1700 			if (cpu_to_cwq[i] == p)
1701 				cpu_to_cwq[i] = NULL;
1702 		}
1703 
1704 		if (p->irq) {
1705 			free_irq(p->irq, p);
1706 			p->irq = 0;
1707 		}
1708 		spu_queue_destroy(p);
1709 		list_del(&p->list);
1710 		kfree(p);
1711 	}
1712 }
1713 
1714 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1715  * gathering cpu membership information.
1716  */
1717 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1718 			       struct platform_device *dev,
1719 			       u64 node, struct spu_queue *p,
1720 			       struct spu_queue **table)
1721 {
1722 	u64 arc;
1723 
1724 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1725 		u64 tgt = mdesc_arc_target(mdesc, arc);
1726 		const char *name = mdesc_node_name(mdesc, tgt);
1727 		const u64 *id;
1728 
1729 		if (strcmp(name, "cpu"))
1730 			continue;
1731 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1732 		if (table[*id] != NULL) {
1733 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1734 				dev->dev.of_node);
1735 			return -EINVAL;
1736 		}
1737 		cpumask_set_cpu(*id, &p->sharing);
1738 		table[*id] = p;
1739 	}
1740 	return 0;
1741 }
1742 
1743 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1744 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1745 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1746 			    u64 node, const char *iname, unsigned long q_type,
1747 			    irq_handler_t handler, struct spu_queue **table)
1748 {
1749 	struct spu_queue *p;
1750 	int err;
1751 
1752 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1753 	if (!p) {
1754 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1755 			dev->dev.of_node);
1756 		return -ENOMEM;
1757 	}
1758 
1759 	cpumask_clear(&p->sharing);
1760 	spin_lock_init(&p->lock);
1761 	p->q_type = q_type;
1762 	INIT_LIST_HEAD(&p->jobs);
1763 	list_add(&p->list, list);
1764 
1765 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1766 	if (err)
1767 		return err;
1768 
1769 	err = spu_queue_setup(p);
1770 	if (err)
1771 		return err;
1772 
1773 	return spu_map_ino(dev, ip, iname, p, handler);
1774 }
1775 
1776 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1777 			  struct spu_mdesc_info *ip, struct list_head *list,
1778 			  const char *exec_name, unsigned long q_type,
1779 			  irq_handler_t handler, struct spu_queue **table)
1780 {
1781 	int err = 0;
1782 	u64 node;
1783 
1784 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1785 		const char *type;
1786 
1787 		type = mdesc_get_property(mdesc, node, "type", NULL);
1788 		if (!type || strcmp(type, exec_name))
1789 			continue;
1790 
1791 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1792 				       exec_name, q_type, handler, table);
1793 		if (err) {
1794 			spu_list_destroy(list);
1795 			break;
1796 		}
1797 	}
1798 
1799 	return err;
1800 }
1801 
1802 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1803 			 struct spu_mdesc_info *ip)
1804 {
1805 	const u64 *ino;
1806 	int ino_len;
1807 	int i;
1808 
1809 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1810 	if (!ino) {
1811 		printk("NO 'ino'\n");
1812 		return -ENODEV;
1813 	}
1814 
1815 	ip->num_intrs = ino_len / sizeof(u64);
1816 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1817 				 ip->num_intrs),
1818 				GFP_KERNEL);
1819 	if (!ip->ino_table)
1820 		return -ENOMEM;
1821 
1822 	for (i = 0; i < ip->num_intrs; i++) {
1823 		struct ino_blob *b = &ip->ino_table[i];
1824 		b->intr = i + 1;
1825 		b->ino = ino[i];
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1832 				struct platform_device *dev,
1833 				struct spu_mdesc_info *ip,
1834 				const char *node_name)
1835 {
1836 	const unsigned int *reg;
1837 	u64 node;
1838 
1839 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1840 	if (!reg)
1841 		return -ENODEV;
1842 
1843 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1844 		const char *name;
1845 		const u64 *chdl;
1846 
1847 		name = mdesc_get_property(mdesc, node, "name", NULL);
1848 		if (!name || strcmp(name, node_name))
1849 			continue;
1850 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1851 		if (!chdl || (*chdl != *reg))
1852 			continue;
1853 		ip->cfg_handle = *chdl;
1854 		return get_irq_props(mdesc, node, ip);
1855 	}
1856 
1857 	return -ENODEV;
1858 }
1859 
1860 static unsigned long n2_spu_hvapi_major;
1861 static unsigned long n2_spu_hvapi_minor;
1862 
1863 static int n2_spu_hvapi_register(void)
1864 {
1865 	int err;
1866 
1867 	n2_spu_hvapi_major = 2;
1868 	n2_spu_hvapi_minor = 0;
1869 
1870 	err = sun4v_hvapi_register(HV_GRP_NCS,
1871 				   n2_spu_hvapi_major,
1872 				   &n2_spu_hvapi_minor);
1873 
1874 	if (!err)
1875 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1876 			n2_spu_hvapi_major,
1877 			n2_spu_hvapi_minor);
1878 
1879 	return err;
1880 }
1881 
1882 static void n2_spu_hvapi_unregister(void)
1883 {
1884 	sun4v_hvapi_unregister(HV_GRP_NCS);
1885 }
1886 
1887 static int global_ref;
1888 
1889 static int grab_global_resources(void)
1890 {
1891 	int err = 0;
1892 
1893 	mutex_lock(&spu_lock);
1894 
1895 	if (global_ref++)
1896 		goto out;
1897 
1898 	err = n2_spu_hvapi_register();
1899 	if (err)
1900 		goto out;
1901 
1902 	err = queue_cache_init();
1903 	if (err)
1904 		goto out_hvapi_release;
1905 
1906 	err = -ENOMEM;
1907 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1908 			     GFP_KERNEL);
1909 	if (!cpu_to_cwq)
1910 		goto out_queue_cache_destroy;
1911 
1912 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1913 			     GFP_KERNEL);
1914 	if (!cpu_to_mau)
1915 		goto out_free_cwq_table;
1916 
1917 	err = 0;
1918 
1919 out:
1920 	if (err)
1921 		global_ref--;
1922 	mutex_unlock(&spu_lock);
1923 	return err;
1924 
1925 out_free_cwq_table:
1926 	kfree(cpu_to_cwq);
1927 	cpu_to_cwq = NULL;
1928 
1929 out_queue_cache_destroy:
1930 	queue_cache_destroy();
1931 
1932 out_hvapi_release:
1933 	n2_spu_hvapi_unregister();
1934 	goto out;
1935 }
1936 
1937 static void release_global_resources(void)
1938 {
1939 	mutex_lock(&spu_lock);
1940 	if (!--global_ref) {
1941 		kfree(cpu_to_cwq);
1942 		cpu_to_cwq = NULL;
1943 
1944 		kfree(cpu_to_mau);
1945 		cpu_to_mau = NULL;
1946 
1947 		queue_cache_destroy();
1948 		n2_spu_hvapi_unregister();
1949 	}
1950 	mutex_unlock(&spu_lock);
1951 }
1952 
1953 static struct n2_crypto *alloc_n2cp(void)
1954 {
1955 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1956 
1957 	if (np)
1958 		INIT_LIST_HEAD(&np->cwq_list);
1959 
1960 	return np;
1961 }
1962 
1963 static void free_n2cp(struct n2_crypto *np)
1964 {
1965 	kfree(np->cwq_info.ino_table);
1966 	np->cwq_info.ino_table = NULL;
1967 
1968 	kfree(np);
1969 }
1970 
1971 static void n2_spu_driver_version(void)
1972 {
1973 	static int n2_spu_version_printed;
1974 
1975 	if (n2_spu_version_printed++ == 0)
1976 		pr_info("%s", version);
1977 }
1978 
1979 static int n2_crypto_probe(struct platform_device *dev)
1980 {
1981 	struct mdesc_handle *mdesc;
1982 	struct n2_crypto *np;
1983 	int err;
1984 
1985 	n2_spu_driver_version();
1986 
1987 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1988 
1989 	np = alloc_n2cp();
1990 	if (!np) {
1991 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1992 			dev->dev.of_node);
1993 		return -ENOMEM;
1994 	}
1995 
1996 	err = grab_global_resources();
1997 	if (err) {
1998 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1999 			dev->dev.of_node);
2000 		goto out_free_n2cp;
2001 	}
2002 
2003 	mdesc = mdesc_grab();
2004 
2005 	if (!mdesc) {
2006 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2007 			dev->dev.of_node);
2008 		err = -ENODEV;
2009 		goto out_free_global;
2010 	}
2011 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2012 	if (err) {
2013 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2014 			dev->dev.of_node);
2015 		mdesc_release(mdesc);
2016 		goto out_free_global;
2017 	}
2018 
2019 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2020 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2021 			     cpu_to_cwq);
2022 	mdesc_release(mdesc);
2023 
2024 	if (err) {
2025 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2026 			dev->dev.of_node);
2027 		goto out_free_global;
2028 	}
2029 
2030 	err = n2_register_algs();
2031 	if (err) {
2032 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2033 			dev->dev.of_node);
2034 		goto out_free_spu_list;
2035 	}
2036 
2037 	dev_set_drvdata(&dev->dev, np);
2038 
2039 	return 0;
2040 
2041 out_free_spu_list:
2042 	spu_list_destroy(&np->cwq_list);
2043 
2044 out_free_global:
2045 	release_global_resources();
2046 
2047 out_free_n2cp:
2048 	free_n2cp(np);
2049 
2050 	return err;
2051 }
2052 
2053 static int n2_crypto_remove(struct platform_device *dev)
2054 {
2055 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2056 
2057 	n2_unregister_algs();
2058 
2059 	spu_list_destroy(&np->cwq_list);
2060 
2061 	release_global_resources();
2062 
2063 	free_n2cp(np);
2064 
2065 	return 0;
2066 }
2067 
2068 static struct n2_mau *alloc_ncp(void)
2069 {
2070 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2071 
2072 	if (mp)
2073 		INIT_LIST_HEAD(&mp->mau_list);
2074 
2075 	return mp;
2076 }
2077 
2078 static void free_ncp(struct n2_mau *mp)
2079 {
2080 	kfree(mp->mau_info.ino_table);
2081 	mp->mau_info.ino_table = NULL;
2082 
2083 	kfree(mp);
2084 }
2085 
2086 static int n2_mau_probe(struct platform_device *dev)
2087 {
2088 	struct mdesc_handle *mdesc;
2089 	struct n2_mau *mp;
2090 	int err;
2091 
2092 	n2_spu_driver_version();
2093 
2094 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2095 
2096 	mp = alloc_ncp();
2097 	if (!mp) {
2098 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2099 			dev->dev.of_node);
2100 		return -ENOMEM;
2101 	}
2102 
2103 	err = grab_global_resources();
2104 	if (err) {
2105 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2106 			dev->dev.of_node);
2107 		goto out_free_ncp;
2108 	}
2109 
2110 	mdesc = mdesc_grab();
2111 
2112 	if (!mdesc) {
2113 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2114 			dev->dev.of_node);
2115 		err = -ENODEV;
2116 		goto out_free_global;
2117 	}
2118 
2119 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2120 	if (err) {
2121 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2122 			dev->dev.of_node);
2123 		mdesc_release(mdesc);
2124 		goto out_free_global;
2125 	}
2126 
2127 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2128 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2129 			     cpu_to_mau);
2130 	mdesc_release(mdesc);
2131 
2132 	if (err) {
2133 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2134 			dev->dev.of_node);
2135 		goto out_free_global;
2136 	}
2137 
2138 	dev_set_drvdata(&dev->dev, mp);
2139 
2140 	return 0;
2141 
2142 out_free_global:
2143 	release_global_resources();
2144 
2145 out_free_ncp:
2146 	free_ncp(mp);
2147 
2148 	return err;
2149 }
2150 
2151 static int n2_mau_remove(struct platform_device *dev)
2152 {
2153 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2154 
2155 	spu_list_destroy(&mp->mau_list);
2156 
2157 	release_global_resources();
2158 
2159 	free_ncp(mp);
2160 
2161 	return 0;
2162 }
2163 
2164 static const struct of_device_id n2_crypto_match[] = {
2165 	{
2166 		.name = "n2cp",
2167 		.compatible = "SUNW,n2-cwq",
2168 	},
2169 	{
2170 		.name = "n2cp",
2171 		.compatible = "SUNW,vf-cwq",
2172 	},
2173 	{
2174 		.name = "n2cp",
2175 		.compatible = "SUNW,kt-cwq",
2176 	},
2177 	{},
2178 };
2179 
2180 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2181 
2182 static struct platform_driver n2_crypto_driver = {
2183 	.driver = {
2184 		.name		=	"n2cp",
2185 		.of_match_table	=	n2_crypto_match,
2186 	},
2187 	.probe		=	n2_crypto_probe,
2188 	.remove		=	n2_crypto_remove,
2189 };
2190 
2191 static const struct of_device_id n2_mau_match[] = {
2192 	{
2193 		.name = "ncp",
2194 		.compatible = "SUNW,n2-mau",
2195 	},
2196 	{
2197 		.name = "ncp",
2198 		.compatible = "SUNW,vf-mau",
2199 	},
2200 	{
2201 		.name = "ncp",
2202 		.compatible = "SUNW,kt-mau",
2203 	},
2204 	{},
2205 };
2206 
2207 MODULE_DEVICE_TABLE(of, n2_mau_match);
2208 
2209 static struct platform_driver n2_mau_driver = {
2210 	.driver = {
2211 		.name		=	"ncp",
2212 		.of_match_table	=	n2_mau_match,
2213 	},
2214 	.probe		=	n2_mau_probe,
2215 	.remove		=	n2_mau_remove,
2216 };
2217 
2218 static struct platform_driver * const drivers[] = {
2219 	&n2_crypto_driver,
2220 	&n2_mau_driver,
2221 };
2222 
2223 static int __init n2_init(void)
2224 {
2225 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2226 }
2227 
2228 static void __exit n2_exit(void)
2229 {
2230 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2231 }
2232 
2233 module_init(n2_init);
2234 module_exit(n2_exit);
2235