xref: /openbmc/linux/drivers/crypto/n2_core.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha1.h>
19 #include <crypto/sha2.h>
20 #include <crypto/aes.h>
21 #include <crypto/internal/des.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/algapi.h>
30 
31 #include <asm/hypervisor.h>
32 #include <asm/mdesc.h>
33 
34 #include "n2_core.h"
35 
36 #define DRV_MODULE_NAME		"n2_crypto"
37 #define DRV_MODULE_VERSION	"0.2"
38 #define DRV_MODULE_RELDATE	"July 28, 2011"
39 
40 static const char version[] =
41 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
42 
43 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
44 MODULE_DESCRIPTION("Niagara2 Crypto driver");
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(DRV_MODULE_VERSION);
47 
48 #define N2_CRA_PRIORITY		200
49 
50 static DEFINE_MUTEX(spu_lock);
51 
52 struct spu_queue {
53 	cpumask_t		sharing;
54 	unsigned long		qhandle;
55 
56 	spinlock_t		lock;
57 	u8			q_type;
58 	void			*q;
59 	unsigned long		head;
60 	unsigned long		tail;
61 	struct list_head	jobs;
62 
63 	unsigned long		devino;
64 
65 	char			irq_name[32];
66 	unsigned int		irq;
67 
68 	struct list_head	list;
69 };
70 
71 struct spu_qreg {
72 	struct spu_queue	*queue;
73 	unsigned long		type;
74 };
75 
76 static struct spu_queue **cpu_to_cwq;
77 static struct spu_queue **cpu_to_mau;
78 
79 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
80 {
81 	if (q->q_type == HV_NCS_QTYPE_MAU) {
82 		off += MAU_ENTRY_SIZE;
83 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
84 			off = 0;
85 	} else {
86 		off += CWQ_ENTRY_SIZE;
87 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
88 			off = 0;
89 	}
90 	return off;
91 }
92 
93 struct n2_request_common {
94 	struct list_head	entry;
95 	unsigned int		offset;
96 };
97 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
98 
99 /* An async job request records the final tail value it used in
100  * n2_request_common->offset, test to see if that offset is in
101  * the range old_head, new_head, inclusive.
102  */
103 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
104 				unsigned long old_head, unsigned long new_head)
105 {
106 	if (old_head <= new_head) {
107 		if (offset > old_head && offset <= new_head)
108 			return true;
109 	} else {
110 		if (offset > old_head || offset <= new_head)
111 			return true;
112 	}
113 	return false;
114 }
115 
116 /* When the HEAD marker is unequal to the actual HEAD, we get
117  * a virtual device INO interrupt.  We should process the
118  * completed CWQ entries and adjust the HEAD marker to clear
119  * the IRQ.
120  */
121 static irqreturn_t cwq_intr(int irq, void *dev_id)
122 {
123 	unsigned long off, new_head, hv_ret;
124 	struct spu_queue *q = dev_id;
125 
126 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
127 	       smp_processor_id(), q->qhandle);
128 
129 	spin_lock(&q->lock);
130 
131 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
132 
133 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
134 	       smp_processor_id(), new_head, hv_ret);
135 
136 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
137 		/* XXX ... XXX */
138 	}
139 
140 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
141 	if (hv_ret == HV_EOK)
142 		q->head = new_head;
143 
144 	spin_unlock(&q->lock);
145 
146 	return IRQ_HANDLED;
147 }
148 
149 static irqreturn_t mau_intr(int irq, void *dev_id)
150 {
151 	struct spu_queue *q = dev_id;
152 	unsigned long head, hv_ret;
153 
154 	spin_lock(&q->lock);
155 
156 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
157 	       smp_processor_id(), q->qhandle);
158 
159 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
160 
161 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
162 	       smp_processor_id(), head, hv_ret);
163 
164 	sun4v_ncs_sethead_marker(q->qhandle, head);
165 
166 	spin_unlock(&q->lock);
167 
168 	return IRQ_HANDLED;
169 }
170 
171 static void *spu_queue_next(struct spu_queue *q, void *cur)
172 {
173 	return q->q + spu_next_offset(q, cur - q->q);
174 }
175 
176 static int spu_queue_num_free(struct spu_queue *q)
177 {
178 	unsigned long head = q->head;
179 	unsigned long tail = q->tail;
180 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
181 	unsigned long diff;
182 
183 	if (head > tail)
184 		diff = head - tail;
185 	else
186 		diff = (end - tail) + head;
187 
188 	return (diff / CWQ_ENTRY_SIZE) - 1;
189 }
190 
191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
192 {
193 	int avail = spu_queue_num_free(q);
194 
195 	if (avail >= num_entries)
196 		return q->q + q->tail;
197 
198 	return NULL;
199 }
200 
201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
202 {
203 	unsigned long hv_ret, new_tail;
204 
205 	new_tail = spu_next_offset(q, last - q->q);
206 
207 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
208 	if (hv_ret == HV_EOK)
209 		q->tail = new_tail;
210 	return hv_ret;
211 }
212 
213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
214 			     int enc_type, int auth_type,
215 			     unsigned int hash_len,
216 			     bool sfas, bool sob, bool eob, bool encrypt,
217 			     int opcode)
218 {
219 	u64 word = (len - 1) & CONTROL_LEN;
220 
221 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
222 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
223 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
224 	if (sfas)
225 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
226 	if (sob)
227 		word |= CONTROL_START_OF_BLOCK;
228 	if (eob)
229 		word |= CONTROL_END_OF_BLOCK;
230 	if (encrypt)
231 		word |= CONTROL_ENCRYPT;
232 	if (hmac_key_len)
233 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
234 	if (hash_len)
235 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
236 
237 	return word;
238 }
239 
240 #if 0
241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
242 {
243 	if (this_len >= 64 ||
244 	    qp->head != qp->tail)
245 		return true;
246 	return false;
247 }
248 #endif
249 
250 struct n2_ahash_alg {
251 	struct list_head	entry;
252 	const u8		*hash_zero;
253 	const u8		*hash_init;
254 	u8			hw_op_hashsz;
255 	u8			digest_size;
256 	u8			auth_type;
257 	u8			hmac_type;
258 	struct ahash_alg	alg;
259 };
260 
261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
262 {
263 	struct crypto_alg *alg = tfm->__crt_alg;
264 	struct ahash_alg *ahash_alg;
265 
266 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
267 
268 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
269 }
270 
271 struct n2_hmac_alg {
272 	const char		*child_alg;
273 	struct n2_ahash_alg	derived;
274 };
275 
276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
277 {
278 	struct crypto_alg *alg = tfm->__crt_alg;
279 	struct ahash_alg *ahash_alg;
280 
281 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
282 
283 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
284 }
285 
286 struct n2_hash_ctx {
287 	struct crypto_ahash		*fallback_tfm;
288 };
289 
290 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
291 
292 struct n2_hmac_ctx {
293 	struct n2_hash_ctx		base;
294 
295 	struct crypto_shash		*child_shash;
296 
297 	int				hash_key_len;
298 	unsigned char			hash_key[N2_HASH_KEY_MAX];
299 };
300 
301 struct n2_hash_req_ctx {
302 	union {
303 		struct md5_state	md5;
304 		struct sha1_state	sha1;
305 		struct sha256_state	sha256;
306 	} u;
307 
308 	struct ahash_request		fallback_req;
309 };
310 
311 static int n2_hash_async_init(struct ahash_request *req)
312 {
313 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
314 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
315 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
316 
317 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
318 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
319 
320 	return crypto_ahash_init(&rctx->fallback_req);
321 }
322 
323 static int n2_hash_async_update(struct ahash_request *req)
324 {
325 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
326 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
327 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
328 
329 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
330 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
331 	rctx->fallback_req.nbytes = req->nbytes;
332 	rctx->fallback_req.src = req->src;
333 
334 	return crypto_ahash_update(&rctx->fallback_req);
335 }
336 
337 static int n2_hash_async_final(struct ahash_request *req)
338 {
339 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
340 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
341 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
342 
343 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
344 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
345 	rctx->fallback_req.result = req->result;
346 
347 	return crypto_ahash_final(&rctx->fallback_req);
348 }
349 
350 static int n2_hash_async_finup(struct ahash_request *req)
351 {
352 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
353 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
354 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
355 
356 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
357 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
358 	rctx->fallback_req.nbytes = req->nbytes;
359 	rctx->fallback_req.src = req->src;
360 	rctx->fallback_req.result = req->result;
361 
362 	return crypto_ahash_finup(&rctx->fallback_req);
363 }
364 
365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
366 {
367 	return -ENOSYS;
368 }
369 
370 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
371 {
372 	return -ENOSYS;
373 }
374 
375 static int n2_hash_cra_init(struct crypto_tfm *tfm)
376 {
377 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
378 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
379 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
380 	struct crypto_ahash *fallback_tfm;
381 	int err;
382 
383 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
384 					  CRYPTO_ALG_NEED_FALLBACK);
385 	if (IS_ERR(fallback_tfm)) {
386 		pr_warn("Fallback driver '%s' could not be loaded!\n",
387 			fallback_driver_name);
388 		err = PTR_ERR(fallback_tfm);
389 		goto out;
390 	}
391 
392 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
393 					 crypto_ahash_reqsize(fallback_tfm)));
394 
395 	ctx->fallback_tfm = fallback_tfm;
396 	return 0;
397 
398 out:
399 	return err;
400 }
401 
402 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
403 {
404 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
405 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
406 
407 	crypto_free_ahash(ctx->fallback_tfm);
408 }
409 
410 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
411 {
412 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
413 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
414 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
415 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
416 	struct crypto_ahash *fallback_tfm;
417 	struct crypto_shash *child_shash;
418 	int err;
419 
420 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
421 					  CRYPTO_ALG_NEED_FALLBACK);
422 	if (IS_ERR(fallback_tfm)) {
423 		pr_warn("Fallback driver '%s' could not be loaded!\n",
424 			fallback_driver_name);
425 		err = PTR_ERR(fallback_tfm);
426 		goto out;
427 	}
428 
429 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
430 	if (IS_ERR(child_shash)) {
431 		pr_warn("Child shash '%s' could not be loaded!\n",
432 			n2alg->child_alg);
433 		err = PTR_ERR(child_shash);
434 		goto out_free_fallback;
435 	}
436 
437 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
438 					 crypto_ahash_reqsize(fallback_tfm)));
439 
440 	ctx->child_shash = child_shash;
441 	ctx->base.fallback_tfm = fallback_tfm;
442 	return 0;
443 
444 out_free_fallback:
445 	crypto_free_ahash(fallback_tfm);
446 
447 out:
448 	return err;
449 }
450 
451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
452 {
453 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
454 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
455 
456 	crypto_free_ahash(ctx->base.fallback_tfm);
457 	crypto_free_shash(ctx->child_shash);
458 }
459 
460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
461 				unsigned int keylen)
462 {
463 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
464 	struct crypto_shash *child_shash = ctx->child_shash;
465 	struct crypto_ahash *fallback_tfm;
466 	int err, bs, ds;
467 
468 	fallback_tfm = ctx->base.fallback_tfm;
469 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470 	if (err)
471 		return err;
472 
473 	bs = crypto_shash_blocksize(child_shash);
474 	ds = crypto_shash_digestsize(child_shash);
475 	BUG_ON(ds > N2_HASH_KEY_MAX);
476 	if (keylen > bs) {
477 		err = crypto_shash_tfm_digest(child_shash, key, keylen,
478 					      ctx->hash_key);
479 		if (err)
480 			return err;
481 		keylen = ds;
482 	} else if (keylen <= N2_HASH_KEY_MAX)
483 		memcpy(ctx->hash_key, key, keylen);
484 
485 	ctx->hash_key_len = keylen;
486 
487 	return err;
488 }
489 
490 static unsigned long wait_for_tail(struct spu_queue *qp)
491 {
492 	unsigned long head, hv_ret;
493 
494 	do {
495 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
496 		if (hv_ret != HV_EOK) {
497 			pr_err("Hypervisor error on gethead\n");
498 			break;
499 		}
500 		if (head == qp->tail) {
501 			qp->head = head;
502 			break;
503 		}
504 	} while (1);
505 	return hv_ret;
506 }
507 
508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
509 					      struct cwq_initial_entry *ent)
510 {
511 	unsigned long hv_ret = spu_queue_submit(qp, ent);
512 
513 	if (hv_ret == HV_EOK)
514 		hv_ret = wait_for_tail(qp);
515 
516 	return hv_ret;
517 }
518 
519 static int n2_do_async_digest(struct ahash_request *req,
520 			      unsigned int auth_type, unsigned int digest_size,
521 			      unsigned int result_size, void *hash_loc,
522 			      unsigned long auth_key, unsigned int auth_key_len)
523 {
524 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
525 	struct cwq_initial_entry *ent;
526 	struct crypto_hash_walk walk;
527 	struct spu_queue *qp;
528 	unsigned long flags;
529 	int err = -ENODEV;
530 	int nbytes, cpu;
531 
532 	/* The total effective length of the operation may not
533 	 * exceed 2^16.
534 	 */
535 	if (unlikely(req->nbytes > (1 << 16))) {
536 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
537 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
538 
539 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
540 		rctx->fallback_req.base.flags =
541 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
542 		rctx->fallback_req.nbytes = req->nbytes;
543 		rctx->fallback_req.src = req->src;
544 		rctx->fallback_req.result = req->result;
545 
546 		return crypto_ahash_digest(&rctx->fallback_req);
547 	}
548 
549 	nbytes = crypto_hash_walk_first(req, &walk);
550 
551 	cpu = get_cpu();
552 	qp = cpu_to_cwq[cpu];
553 	if (!qp)
554 		goto out;
555 
556 	spin_lock_irqsave(&qp->lock, flags);
557 
558 	/* XXX can do better, improve this later by doing a by-hand scatterlist
559 	 * XXX walk, etc.
560 	 */
561 	ent = qp->q + qp->tail;
562 
563 	ent->control = control_word_base(nbytes, auth_key_len, 0,
564 					 auth_type, digest_size,
565 					 false, true, false, false,
566 					 OPCODE_INPLACE_BIT |
567 					 OPCODE_AUTH_MAC);
568 	ent->src_addr = __pa(walk.data);
569 	ent->auth_key_addr = auth_key;
570 	ent->auth_iv_addr = __pa(hash_loc);
571 	ent->final_auth_state_addr = 0UL;
572 	ent->enc_key_addr = 0UL;
573 	ent->enc_iv_addr = 0UL;
574 	ent->dest_addr = __pa(hash_loc);
575 
576 	nbytes = crypto_hash_walk_done(&walk, 0);
577 	while (nbytes > 0) {
578 		ent = spu_queue_next(qp, ent);
579 
580 		ent->control = (nbytes - 1);
581 		ent->src_addr = __pa(walk.data);
582 		ent->auth_key_addr = 0UL;
583 		ent->auth_iv_addr = 0UL;
584 		ent->final_auth_state_addr = 0UL;
585 		ent->enc_key_addr = 0UL;
586 		ent->enc_iv_addr = 0UL;
587 		ent->dest_addr = 0UL;
588 
589 		nbytes = crypto_hash_walk_done(&walk, 0);
590 	}
591 	ent->control |= CONTROL_END_OF_BLOCK;
592 
593 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
594 		err = -EINVAL;
595 	else
596 		err = 0;
597 
598 	spin_unlock_irqrestore(&qp->lock, flags);
599 
600 	if (!err)
601 		memcpy(req->result, hash_loc, result_size);
602 out:
603 	put_cpu();
604 
605 	return err;
606 }
607 
608 static int n2_hash_async_digest(struct ahash_request *req)
609 {
610 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
611 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
612 	int ds;
613 
614 	ds = n2alg->digest_size;
615 	if (unlikely(req->nbytes == 0)) {
616 		memcpy(req->result, n2alg->hash_zero, ds);
617 		return 0;
618 	}
619 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
620 
621 	return n2_do_async_digest(req, n2alg->auth_type,
622 				  n2alg->hw_op_hashsz, ds,
623 				  &rctx->u, 0UL, 0);
624 }
625 
626 static int n2_hmac_async_digest(struct ahash_request *req)
627 {
628 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
629 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
631 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
632 	int ds;
633 
634 	ds = n2alg->derived.digest_size;
635 	if (unlikely(req->nbytes == 0) ||
636 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
637 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
638 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
639 
640 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
641 		rctx->fallback_req.base.flags =
642 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
643 		rctx->fallback_req.nbytes = req->nbytes;
644 		rctx->fallback_req.src = req->src;
645 		rctx->fallback_req.result = req->result;
646 
647 		return crypto_ahash_digest(&rctx->fallback_req);
648 	}
649 	memcpy(&rctx->u, n2alg->derived.hash_init,
650 	       n2alg->derived.hw_op_hashsz);
651 
652 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
653 				  n2alg->derived.hw_op_hashsz, ds,
654 				  &rctx->u,
655 				  __pa(&ctx->hash_key),
656 				  ctx->hash_key_len);
657 }
658 
659 struct n2_skcipher_context {
660 	int			key_len;
661 	int			enc_type;
662 	union {
663 		u8		aes[AES_MAX_KEY_SIZE];
664 		u8		des[DES_KEY_SIZE];
665 		u8		des3[3 * DES_KEY_SIZE];
666 	} key;
667 };
668 
669 #define N2_CHUNK_ARR_LEN	16
670 
671 struct n2_crypto_chunk {
672 	struct list_head	entry;
673 	unsigned long		iv_paddr : 44;
674 	unsigned long		arr_len : 20;
675 	unsigned long		dest_paddr;
676 	unsigned long		dest_final;
677 	struct {
678 		unsigned long	src_paddr : 44;
679 		unsigned long	src_len : 20;
680 	} arr[N2_CHUNK_ARR_LEN];
681 };
682 
683 struct n2_request_context {
684 	struct skcipher_walk	walk;
685 	struct list_head	chunk_list;
686 	struct n2_crypto_chunk	chunk;
687 	u8			temp_iv[16];
688 };
689 
690 /* The SPU allows some level of flexibility for partial cipher blocks
691  * being specified in a descriptor.
692  *
693  * It merely requires that every descriptor's length field is at least
694  * as large as the cipher block size.  This means that a cipher block
695  * can span at most 2 descriptors.  However, this does not allow a
696  * partial block to span into the final descriptor as that would
697  * violate the rule (since every descriptor's length must be at lest
698  * the block size).  So, for example, assuming an 8 byte block size:
699  *
700  *	0xe --> 0xa --> 0x8
701  *
702  * is a valid length sequence, whereas:
703  *
704  *	0xe --> 0xb --> 0x7
705  *
706  * is not a valid sequence.
707  */
708 
709 struct n2_skcipher_alg {
710 	struct list_head	entry;
711 	u8			enc_type;
712 	struct skcipher_alg	skcipher;
713 };
714 
715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716 {
717 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718 
719 	return container_of(alg, struct n2_skcipher_alg, skcipher);
720 }
721 
722 struct n2_skcipher_request_context {
723 	struct skcipher_walk	walk;
724 };
725 
726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 			 unsigned int keylen)
728 {
729 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732 
733 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734 
735 	switch (keylen) {
736 	case AES_KEYSIZE_128:
737 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 		break;
739 	case AES_KEYSIZE_192:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 		break;
742 	case AES_KEYSIZE_256:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 		break;
745 	default:
746 		return -EINVAL;
747 	}
748 
749 	ctx->key_len = keylen;
750 	memcpy(ctx->key.aes, key, keylen);
751 	return 0;
752 }
753 
754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 			 unsigned int keylen)
756 {
757 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 	int err;
761 
762 	err = verify_skcipher_des_key(skcipher, key);
763 	if (err)
764 		return err;
765 
766 	ctx->enc_type = n2alg->enc_type;
767 
768 	ctx->key_len = keylen;
769 	memcpy(ctx->key.des, key, keylen);
770 	return 0;
771 }
772 
773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 			  unsigned int keylen)
775 {
776 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 	int err;
780 
781 	err = verify_skcipher_des3_key(skcipher, key);
782 	if (err)
783 		return err;
784 
785 	ctx->enc_type = n2alg->enc_type;
786 
787 	ctx->key_len = keylen;
788 	memcpy(ctx->key.des3, key, keylen);
789 	return 0;
790 }
791 
792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
793 {
794 	int this_len = nbytes;
795 
796 	this_len -= (nbytes & (block_size - 1));
797 	return this_len > (1 << 16) ? (1 << 16) : this_len;
798 }
799 
800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
801 			    struct n2_crypto_chunk *cp,
802 			    struct spu_queue *qp, bool encrypt)
803 {
804 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
805 	struct cwq_initial_entry *ent;
806 	bool in_place;
807 	int i;
808 
809 	ent = spu_queue_alloc(qp, cp->arr_len);
810 	if (!ent) {
811 		pr_info("queue_alloc() of %d fails\n",
812 			cp->arr_len);
813 		return -EBUSY;
814 	}
815 
816 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
817 
818 	ent->control = control_word_base(cp->arr[0].src_len,
819 					 0, ctx->enc_type, 0, 0,
820 					 false, true, false, encrypt,
821 					 OPCODE_ENCRYPT |
822 					 (in_place ? OPCODE_INPLACE_BIT : 0));
823 	ent->src_addr = cp->arr[0].src_paddr;
824 	ent->auth_key_addr = 0UL;
825 	ent->auth_iv_addr = 0UL;
826 	ent->final_auth_state_addr = 0UL;
827 	ent->enc_key_addr = __pa(&ctx->key);
828 	ent->enc_iv_addr = cp->iv_paddr;
829 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
830 
831 	for (i = 1; i < cp->arr_len; i++) {
832 		ent = spu_queue_next(qp, ent);
833 
834 		ent->control = cp->arr[i].src_len - 1;
835 		ent->src_addr = cp->arr[i].src_paddr;
836 		ent->auth_key_addr = 0UL;
837 		ent->auth_iv_addr = 0UL;
838 		ent->final_auth_state_addr = 0UL;
839 		ent->enc_key_addr = 0UL;
840 		ent->enc_iv_addr = 0UL;
841 		ent->dest_addr = 0UL;
842 	}
843 	ent->control |= CONTROL_END_OF_BLOCK;
844 
845 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
846 }
847 
848 static int n2_compute_chunks(struct skcipher_request *req)
849 {
850 	struct n2_request_context *rctx = skcipher_request_ctx(req);
851 	struct skcipher_walk *walk = &rctx->walk;
852 	struct n2_crypto_chunk *chunk;
853 	unsigned long dest_prev;
854 	unsigned int tot_len;
855 	bool prev_in_place;
856 	int err, nbytes;
857 
858 	err = skcipher_walk_async(walk, req);
859 	if (err)
860 		return err;
861 
862 	INIT_LIST_HEAD(&rctx->chunk_list);
863 
864 	chunk = &rctx->chunk;
865 	INIT_LIST_HEAD(&chunk->entry);
866 
867 	chunk->iv_paddr = 0UL;
868 	chunk->arr_len = 0;
869 	chunk->dest_paddr = 0UL;
870 
871 	prev_in_place = false;
872 	dest_prev = ~0UL;
873 	tot_len = 0;
874 
875 	while ((nbytes = walk->nbytes) != 0) {
876 		unsigned long dest_paddr, src_paddr;
877 		bool in_place;
878 		int this_len;
879 
880 		src_paddr = (page_to_phys(walk->src.phys.page) +
881 			     walk->src.phys.offset);
882 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
883 			      walk->dst.phys.offset);
884 		in_place = (src_paddr == dest_paddr);
885 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
886 
887 		if (chunk->arr_len != 0) {
888 			if (in_place != prev_in_place ||
889 			    (!prev_in_place &&
890 			     dest_paddr != dest_prev) ||
891 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
892 			    tot_len + this_len > (1 << 16)) {
893 				chunk->dest_final = dest_prev;
894 				list_add_tail(&chunk->entry,
895 					      &rctx->chunk_list);
896 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
897 				if (!chunk) {
898 					err = -ENOMEM;
899 					break;
900 				}
901 				INIT_LIST_HEAD(&chunk->entry);
902 			}
903 		}
904 		if (chunk->arr_len == 0) {
905 			chunk->dest_paddr = dest_paddr;
906 			tot_len = 0;
907 		}
908 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
909 		chunk->arr[chunk->arr_len].src_len = this_len;
910 		chunk->arr_len++;
911 
912 		dest_prev = dest_paddr + this_len;
913 		prev_in_place = in_place;
914 		tot_len += this_len;
915 
916 		err = skcipher_walk_done(walk, nbytes - this_len);
917 		if (err)
918 			break;
919 	}
920 	if (!err && chunk->arr_len != 0) {
921 		chunk->dest_final = dest_prev;
922 		list_add_tail(&chunk->entry, &rctx->chunk_list);
923 	}
924 
925 	return err;
926 }
927 
928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
929 {
930 	struct n2_request_context *rctx = skcipher_request_ctx(req);
931 	struct n2_crypto_chunk *c, *tmp;
932 
933 	if (final_iv)
934 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
935 
936 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
937 		list_del(&c->entry);
938 		if (unlikely(c != &rctx->chunk))
939 			kfree(c);
940 	}
941 
942 }
943 
944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
945 {
946 	struct n2_request_context *rctx = skcipher_request_ctx(req);
947 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
948 	int err = n2_compute_chunks(req);
949 	struct n2_crypto_chunk *c, *tmp;
950 	unsigned long flags, hv_ret;
951 	struct spu_queue *qp;
952 
953 	if (err)
954 		return err;
955 
956 	qp = cpu_to_cwq[get_cpu()];
957 	err = -ENODEV;
958 	if (!qp)
959 		goto out;
960 
961 	spin_lock_irqsave(&qp->lock, flags);
962 
963 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
965 		if (err)
966 			break;
967 		list_del(&c->entry);
968 		if (unlikely(c != &rctx->chunk))
969 			kfree(c);
970 	}
971 	if (!err) {
972 		hv_ret = wait_for_tail(qp);
973 		if (hv_ret != HV_EOK)
974 			err = -EINVAL;
975 	}
976 
977 	spin_unlock_irqrestore(&qp->lock, flags);
978 
979 out:
980 	put_cpu();
981 
982 	n2_chunk_complete(req, NULL);
983 	return err;
984 }
985 
986 static int n2_encrypt_ecb(struct skcipher_request *req)
987 {
988 	return n2_do_ecb(req, true);
989 }
990 
991 static int n2_decrypt_ecb(struct skcipher_request *req)
992 {
993 	return n2_do_ecb(req, false);
994 }
995 
996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
997 {
998 	struct n2_request_context *rctx = skcipher_request_ctx(req);
999 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000 	unsigned long flags, hv_ret, iv_paddr;
1001 	int err = n2_compute_chunks(req);
1002 	struct n2_crypto_chunk *c, *tmp;
1003 	struct spu_queue *qp;
1004 	void *final_iv_addr;
1005 
1006 	final_iv_addr = NULL;
1007 
1008 	if (err)
1009 		return err;
1010 
1011 	qp = cpu_to_cwq[get_cpu()];
1012 	err = -ENODEV;
1013 	if (!qp)
1014 		goto out;
1015 
1016 	spin_lock_irqsave(&qp->lock, flags);
1017 
1018 	if (encrypt) {
1019 		iv_paddr = __pa(rctx->walk.iv);
1020 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021 					 entry) {
1022 			c->iv_paddr = iv_paddr;
1023 			err = __n2_crypt_chunk(tfm, c, qp, true);
1024 			if (err)
1025 				break;
1026 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1027 			list_del(&c->entry);
1028 			if (unlikely(c != &rctx->chunk))
1029 				kfree(c);
1030 		}
1031 		final_iv_addr = __va(iv_paddr);
1032 	} else {
1033 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034 						 entry) {
1035 			if (c == &rctx->chunk) {
1036 				iv_paddr = __pa(rctx->walk.iv);
1037 			} else {
1038 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039 					    tmp->arr[tmp->arr_len-1].src_len -
1040 					    rctx->walk.blocksize);
1041 			}
1042 			if (!final_iv_addr) {
1043 				unsigned long pa;
1044 
1045 				pa = (c->arr[c->arr_len-1].src_paddr +
1046 				      c->arr[c->arr_len-1].src_len -
1047 				      rctx->walk.blocksize);
1048 				final_iv_addr = rctx->temp_iv;
1049 				memcpy(rctx->temp_iv, __va(pa),
1050 				       rctx->walk.blocksize);
1051 			}
1052 			c->iv_paddr = iv_paddr;
1053 			err = __n2_crypt_chunk(tfm, c, qp, false);
1054 			if (err)
1055 				break;
1056 			list_del(&c->entry);
1057 			if (unlikely(c != &rctx->chunk))
1058 				kfree(c);
1059 		}
1060 	}
1061 	if (!err) {
1062 		hv_ret = wait_for_tail(qp);
1063 		if (hv_ret != HV_EOK)
1064 			err = -EINVAL;
1065 	}
1066 
1067 	spin_unlock_irqrestore(&qp->lock, flags);
1068 
1069 out:
1070 	put_cpu();
1071 
1072 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073 	return err;
1074 }
1075 
1076 static int n2_encrypt_chaining(struct skcipher_request *req)
1077 {
1078 	return n2_do_chaining(req, true);
1079 }
1080 
1081 static int n2_decrypt_chaining(struct skcipher_request *req)
1082 {
1083 	return n2_do_chaining(req, false);
1084 }
1085 
1086 struct n2_skcipher_tmpl {
1087 	const char		*name;
1088 	const char		*drv_name;
1089 	u8			block_size;
1090 	u8			enc_type;
1091 	struct skcipher_alg	skcipher;
1092 };
1093 
1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095 	/* DES: ECB CBC and CFB are supported */
1096 	{	.name		= "ecb(des)",
1097 		.drv_name	= "ecb-des",
1098 		.block_size	= DES_BLOCK_SIZE,
1099 		.enc_type	= (ENC_TYPE_ALG_DES |
1100 				   ENC_TYPE_CHAINING_ECB),
1101 		.skcipher	= {
1102 			.min_keysize	= DES_KEY_SIZE,
1103 			.max_keysize	= DES_KEY_SIZE,
1104 			.setkey		= n2_des_setkey,
1105 			.encrypt	= n2_encrypt_ecb,
1106 			.decrypt	= n2_decrypt_ecb,
1107 		},
1108 	},
1109 	{	.name		= "cbc(des)",
1110 		.drv_name	= "cbc-des",
1111 		.block_size	= DES_BLOCK_SIZE,
1112 		.enc_type	= (ENC_TYPE_ALG_DES |
1113 				   ENC_TYPE_CHAINING_CBC),
1114 		.skcipher	= {
1115 			.ivsize		= DES_BLOCK_SIZE,
1116 			.min_keysize	= DES_KEY_SIZE,
1117 			.max_keysize	= DES_KEY_SIZE,
1118 			.setkey		= n2_des_setkey,
1119 			.encrypt	= n2_encrypt_chaining,
1120 			.decrypt	= n2_decrypt_chaining,
1121 		},
1122 	},
1123 	{	.name		= "cfb(des)",
1124 		.drv_name	= "cfb-des",
1125 		.block_size	= DES_BLOCK_SIZE,
1126 		.enc_type	= (ENC_TYPE_ALG_DES |
1127 				   ENC_TYPE_CHAINING_CFB),
1128 		.skcipher	= {
1129 			.min_keysize	= DES_KEY_SIZE,
1130 			.max_keysize	= DES_KEY_SIZE,
1131 			.setkey		= n2_des_setkey,
1132 			.encrypt	= n2_encrypt_chaining,
1133 			.decrypt	= n2_decrypt_chaining,
1134 		},
1135 	},
1136 
1137 	/* 3DES: ECB CBC and CFB are supported */
1138 	{	.name		= "ecb(des3_ede)",
1139 		.drv_name	= "ecb-3des",
1140 		.block_size	= DES_BLOCK_SIZE,
1141 		.enc_type	= (ENC_TYPE_ALG_3DES |
1142 				   ENC_TYPE_CHAINING_ECB),
1143 		.skcipher	= {
1144 			.min_keysize	= 3 * DES_KEY_SIZE,
1145 			.max_keysize	= 3 * DES_KEY_SIZE,
1146 			.setkey		= n2_3des_setkey,
1147 			.encrypt	= n2_encrypt_ecb,
1148 			.decrypt	= n2_decrypt_ecb,
1149 		},
1150 	},
1151 	{	.name		= "cbc(des3_ede)",
1152 		.drv_name	= "cbc-3des",
1153 		.block_size	= DES_BLOCK_SIZE,
1154 		.enc_type	= (ENC_TYPE_ALG_3DES |
1155 				   ENC_TYPE_CHAINING_CBC),
1156 		.skcipher	= {
1157 			.ivsize		= DES_BLOCK_SIZE,
1158 			.min_keysize	= 3 * DES_KEY_SIZE,
1159 			.max_keysize	= 3 * DES_KEY_SIZE,
1160 			.setkey		= n2_3des_setkey,
1161 			.encrypt	= n2_encrypt_chaining,
1162 			.decrypt	= n2_decrypt_chaining,
1163 		},
1164 	},
1165 	{	.name		= "cfb(des3_ede)",
1166 		.drv_name	= "cfb-3des",
1167 		.block_size	= DES_BLOCK_SIZE,
1168 		.enc_type	= (ENC_TYPE_ALG_3DES |
1169 				   ENC_TYPE_CHAINING_CFB),
1170 		.skcipher	= {
1171 			.min_keysize	= 3 * DES_KEY_SIZE,
1172 			.max_keysize	= 3 * DES_KEY_SIZE,
1173 			.setkey		= n2_3des_setkey,
1174 			.encrypt	= n2_encrypt_chaining,
1175 			.decrypt	= n2_decrypt_chaining,
1176 		},
1177 	},
1178 	/* AES: ECB CBC and CTR are supported */
1179 	{	.name		= "ecb(aes)",
1180 		.drv_name	= "ecb-aes",
1181 		.block_size	= AES_BLOCK_SIZE,
1182 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1183 				   ENC_TYPE_CHAINING_ECB),
1184 		.skcipher	= {
1185 			.min_keysize	= AES_MIN_KEY_SIZE,
1186 			.max_keysize	= AES_MAX_KEY_SIZE,
1187 			.setkey		= n2_aes_setkey,
1188 			.encrypt	= n2_encrypt_ecb,
1189 			.decrypt	= n2_decrypt_ecb,
1190 		},
1191 	},
1192 	{	.name		= "cbc(aes)",
1193 		.drv_name	= "cbc-aes",
1194 		.block_size	= AES_BLOCK_SIZE,
1195 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1196 				   ENC_TYPE_CHAINING_CBC),
1197 		.skcipher	= {
1198 			.ivsize		= AES_BLOCK_SIZE,
1199 			.min_keysize	= AES_MIN_KEY_SIZE,
1200 			.max_keysize	= AES_MAX_KEY_SIZE,
1201 			.setkey		= n2_aes_setkey,
1202 			.encrypt	= n2_encrypt_chaining,
1203 			.decrypt	= n2_decrypt_chaining,
1204 		},
1205 	},
1206 	{	.name		= "ctr(aes)",
1207 		.drv_name	= "ctr-aes",
1208 		.block_size	= AES_BLOCK_SIZE,
1209 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1210 				   ENC_TYPE_CHAINING_COUNTER),
1211 		.skcipher	= {
1212 			.ivsize		= AES_BLOCK_SIZE,
1213 			.min_keysize	= AES_MIN_KEY_SIZE,
1214 			.max_keysize	= AES_MAX_KEY_SIZE,
1215 			.setkey		= n2_aes_setkey,
1216 			.encrypt	= n2_encrypt_chaining,
1217 			.decrypt	= n2_encrypt_chaining,
1218 		},
1219 	},
1220 
1221 };
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223 
1224 static LIST_HEAD(skcipher_algs);
1225 
1226 struct n2_hash_tmpl {
1227 	const char	*name;
1228 	const u8	*hash_zero;
1229 	const u8	*hash_init;
1230 	u8		hw_op_hashsz;
1231 	u8		digest_size;
1232 	u8		statesize;
1233 	u8		block_size;
1234 	u8		auth_type;
1235 	u8		hmac_type;
1236 };
1237 
1238 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1239 	cpu_to_le32(MD5_H0),
1240 	cpu_to_le32(MD5_H1),
1241 	cpu_to_le32(MD5_H2),
1242 	cpu_to_le32(MD5_H3),
1243 };
1244 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1245 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1246 };
1247 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1248 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1249 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1250 };
1251 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1252 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1253 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1254 };
1255 
1256 static const struct n2_hash_tmpl hash_tmpls[] = {
1257 	{ .name		= "md5",
1258 	  .hash_zero	= md5_zero_message_hash,
1259 	  .hash_init	= (u8 *)n2_md5_init,
1260 	  .auth_type	= AUTH_TYPE_MD5,
1261 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1262 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1263 	  .digest_size	= MD5_DIGEST_SIZE,
1264 	  .statesize	= sizeof(struct md5_state),
1265 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1266 	{ .name		= "sha1",
1267 	  .hash_zero	= sha1_zero_message_hash,
1268 	  .hash_init	= (u8 *)n2_sha1_init,
1269 	  .auth_type	= AUTH_TYPE_SHA1,
1270 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1271 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1272 	  .digest_size	= SHA1_DIGEST_SIZE,
1273 	  .statesize	= sizeof(struct sha1_state),
1274 	  .block_size	= SHA1_BLOCK_SIZE },
1275 	{ .name		= "sha256",
1276 	  .hash_zero	= sha256_zero_message_hash,
1277 	  .hash_init	= (u8 *)n2_sha256_init,
1278 	  .auth_type	= AUTH_TYPE_SHA256,
1279 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1280 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1281 	  .digest_size	= SHA256_DIGEST_SIZE,
1282 	  .statesize	= sizeof(struct sha256_state),
1283 	  .block_size	= SHA256_BLOCK_SIZE },
1284 	{ .name		= "sha224",
1285 	  .hash_zero	= sha224_zero_message_hash,
1286 	  .hash_init	= (u8 *)n2_sha224_init,
1287 	  .auth_type	= AUTH_TYPE_SHA256,
1288 	  .hmac_type	= AUTH_TYPE_RESERVED,
1289 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1290 	  .digest_size	= SHA224_DIGEST_SIZE,
1291 	  .statesize	= sizeof(struct sha256_state),
1292 	  .block_size	= SHA224_BLOCK_SIZE },
1293 };
1294 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1295 
1296 static LIST_HEAD(ahash_algs);
1297 static LIST_HEAD(hmac_algs);
1298 
1299 static int algs_registered;
1300 
1301 static void __n2_unregister_algs(void)
1302 {
1303 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1304 	struct n2_ahash_alg *alg, *alg_tmp;
1305 	struct n2_hmac_alg *hmac, *hmac_tmp;
1306 
1307 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1308 		crypto_unregister_skcipher(&skcipher->skcipher);
1309 		list_del(&skcipher->entry);
1310 		kfree(skcipher);
1311 	}
1312 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1313 		crypto_unregister_ahash(&hmac->derived.alg);
1314 		list_del(&hmac->derived.entry);
1315 		kfree(hmac);
1316 	}
1317 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1318 		crypto_unregister_ahash(&alg->alg);
1319 		list_del(&alg->entry);
1320 		kfree(alg);
1321 	}
1322 }
1323 
1324 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1325 {
1326 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1327 	return 0;
1328 }
1329 
1330 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1331 {
1332 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1333 	struct skcipher_alg *alg;
1334 	int err;
1335 
1336 	if (!p)
1337 		return -ENOMEM;
1338 
1339 	alg = &p->skcipher;
1340 	*alg = tmpl->skcipher;
1341 
1342 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1343 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1344 	alg->base.cra_priority = N2_CRA_PRIORITY;
1345 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1346 			      CRYPTO_ALG_ALLOCATES_MEMORY;
1347 	alg->base.cra_blocksize = tmpl->block_size;
1348 	p->enc_type = tmpl->enc_type;
1349 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1350 	alg->base.cra_module = THIS_MODULE;
1351 	alg->init = n2_skcipher_init_tfm;
1352 
1353 	list_add(&p->entry, &skcipher_algs);
1354 	err = crypto_register_skcipher(alg);
1355 	if (err) {
1356 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1357 		list_del(&p->entry);
1358 		kfree(p);
1359 	} else {
1360 		pr_info("%s alg registered\n", alg->base.cra_name);
1361 	}
1362 	return err;
1363 }
1364 
1365 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1366 {
1367 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1368 	struct ahash_alg *ahash;
1369 	struct crypto_alg *base;
1370 	int err;
1371 
1372 	if (!p)
1373 		return -ENOMEM;
1374 
1375 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1376 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1377 	INIT_LIST_HEAD(&p->derived.entry);
1378 
1379 	ahash = &p->derived.alg;
1380 	ahash->digest = n2_hmac_async_digest;
1381 	ahash->setkey = n2_hmac_async_setkey;
1382 
1383 	base = &ahash->halg.base;
1384 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1385 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1386 
1387 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1388 	base->cra_init = n2_hmac_cra_init;
1389 	base->cra_exit = n2_hmac_cra_exit;
1390 
1391 	list_add(&p->derived.entry, &hmac_algs);
1392 	err = crypto_register_ahash(ahash);
1393 	if (err) {
1394 		pr_err("%s alg registration failed\n", base->cra_name);
1395 		list_del(&p->derived.entry);
1396 		kfree(p);
1397 	} else {
1398 		pr_info("%s alg registered\n", base->cra_name);
1399 	}
1400 	return err;
1401 }
1402 
1403 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1404 {
1405 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406 	struct hash_alg_common *halg;
1407 	struct crypto_alg *base;
1408 	struct ahash_alg *ahash;
1409 	int err;
1410 
1411 	if (!p)
1412 		return -ENOMEM;
1413 
1414 	p->hash_zero = tmpl->hash_zero;
1415 	p->hash_init = tmpl->hash_init;
1416 	p->auth_type = tmpl->auth_type;
1417 	p->hmac_type = tmpl->hmac_type;
1418 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1419 	p->digest_size = tmpl->digest_size;
1420 
1421 	ahash = &p->alg;
1422 	ahash->init = n2_hash_async_init;
1423 	ahash->update = n2_hash_async_update;
1424 	ahash->final = n2_hash_async_final;
1425 	ahash->finup = n2_hash_async_finup;
1426 	ahash->digest = n2_hash_async_digest;
1427 	ahash->export = n2_hash_async_noexport;
1428 	ahash->import = n2_hash_async_noimport;
1429 
1430 	halg = &ahash->halg;
1431 	halg->digestsize = tmpl->digest_size;
1432 	halg->statesize = tmpl->statesize;
1433 
1434 	base = &halg->base;
1435 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1436 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1437 	base->cra_priority = N2_CRA_PRIORITY;
1438 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1439 			  CRYPTO_ALG_NEED_FALLBACK;
1440 	base->cra_blocksize = tmpl->block_size;
1441 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1442 	base->cra_module = THIS_MODULE;
1443 	base->cra_init = n2_hash_cra_init;
1444 	base->cra_exit = n2_hash_cra_exit;
1445 
1446 	list_add(&p->entry, &ahash_algs);
1447 	err = crypto_register_ahash(ahash);
1448 	if (err) {
1449 		pr_err("%s alg registration failed\n", base->cra_name);
1450 		list_del(&p->entry);
1451 		kfree(p);
1452 	} else {
1453 		pr_info("%s alg registered\n", base->cra_name);
1454 	}
1455 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1456 		err = __n2_register_one_hmac(p);
1457 	return err;
1458 }
1459 
1460 static int n2_register_algs(void)
1461 {
1462 	int i, err = 0;
1463 
1464 	mutex_lock(&spu_lock);
1465 	if (algs_registered++)
1466 		goto out;
1467 
1468 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1469 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1470 		if (err) {
1471 			__n2_unregister_algs();
1472 			goto out;
1473 		}
1474 	}
1475 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1476 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1477 		if (err) {
1478 			__n2_unregister_algs();
1479 			goto out;
1480 		}
1481 	}
1482 
1483 out:
1484 	mutex_unlock(&spu_lock);
1485 	return err;
1486 }
1487 
1488 static void n2_unregister_algs(void)
1489 {
1490 	mutex_lock(&spu_lock);
1491 	if (!--algs_registered)
1492 		__n2_unregister_algs();
1493 	mutex_unlock(&spu_lock);
1494 }
1495 
1496 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1497  * a devino.  This isn't very useful to us because all of the
1498  * interrupts listed in the device_node have been translated to
1499  * Linux virtual IRQ cookie numbers.
1500  *
1501  * So we have to back-translate, going through the 'intr' and 'ino'
1502  * property tables of the n2cp MDESC node, matching it with the OF
1503  * 'interrupts' property entries, in order to figure out which
1504  * devino goes to which already-translated IRQ.
1505  */
1506 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1507 			     unsigned long dev_ino)
1508 {
1509 	const unsigned int *dev_intrs;
1510 	unsigned int intr;
1511 	int i;
1512 
1513 	for (i = 0; i < ip->num_intrs; i++) {
1514 		if (ip->ino_table[i].ino == dev_ino)
1515 			break;
1516 	}
1517 	if (i == ip->num_intrs)
1518 		return -ENODEV;
1519 
1520 	intr = ip->ino_table[i].intr;
1521 
1522 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1523 	if (!dev_intrs)
1524 		return -ENODEV;
1525 
1526 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1527 		if (dev_intrs[i] == intr)
1528 			return i;
1529 	}
1530 
1531 	return -ENODEV;
1532 }
1533 
1534 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1535 		       const char *irq_name, struct spu_queue *p,
1536 		       irq_handler_t handler)
1537 {
1538 	unsigned long herr;
1539 	int index;
1540 
1541 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1542 	if (herr)
1543 		return -EINVAL;
1544 
1545 	index = find_devino_index(dev, ip, p->devino);
1546 	if (index < 0)
1547 		return index;
1548 
1549 	p->irq = dev->archdata.irqs[index];
1550 
1551 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1552 
1553 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1554 }
1555 
1556 static struct kmem_cache *queue_cache[2];
1557 
1558 static void *new_queue(unsigned long q_type)
1559 {
1560 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1561 }
1562 
1563 static void free_queue(void *p, unsigned long q_type)
1564 {
1565 	kmem_cache_free(queue_cache[q_type - 1], p);
1566 }
1567 
1568 static int queue_cache_init(void)
1569 {
1570 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1572 			kmem_cache_create("mau_queue",
1573 					  (MAU_NUM_ENTRIES *
1574 					   MAU_ENTRY_SIZE),
1575 					  MAU_ENTRY_SIZE, 0, NULL);
1576 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1577 		return -ENOMEM;
1578 
1579 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1580 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1581 			kmem_cache_create("cwq_queue",
1582 					  (CWQ_NUM_ENTRIES *
1583 					   CWQ_ENTRY_SIZE),
1584 					  CWQ_ENTRY_SIZE, 0, NULL);
1585 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1586 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1587 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1588 		return -ENOMEM;
1589 	}
1590 	return 0;
1591 }
1592 
1593 static void queue_cache_destroy(void)
1594 {
1595 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1596 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1597 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1598 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1599 }
1600 
1601 static long spu_queue_register_workfn(void *arg)
1602 {
1603 	struct spu_qreg *qr = arg;
1604 	struct spu_queue *p = qr->queue;
1605 	unsigned long q_type = qr->type;
1606 	unsigned long hv_ret;
1607 
1608 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1609 				 CWQ_NUM_ENTRIES, &p->qhandle);
1610 	if (!hv_ret)
1611 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1612 
1613 	return hv_ret ? -EINVAL : 0;
1614 }
1615 
1616 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1617 {
1618 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1619 	struct spu_qreg qr = { .queue = p, .type = q_type };
1620 
1621 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1622 }
1623 
1624 static int spu_queue_setup(struct spu_queue *p)
1625 {
1626 	int err;
1627 
1628 	p->q = new_queue(p->q_type);
1629 	if (!p->q)
1630 		return -ENOMEM;
1631 
1632 	err = spu_queue_register(p, p->q_type);
1633 	if (err) {
1634 		free_queue(p->q, p->q_type);
1635 		p->q = NULL;
1636 	}
1637 
1638 	return err;
1639 }
1640 
1641 static void spu_queue_destroy(struct spu_queue *p)
1642 {
1643 	unsigned long hv_ret;
1644 
1645 	if (!p->q)
1646 		return;
1647 
1648 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1649 
1650 	if (!hv_ret)
1651 		free_queue(p->q, p->q_type);
1652 }
1653 
1654 static void spu_list_destroy(struct list_head *list)
1655 {
1656 	struct spu_queue *p, *n;
1657 
1658 	list_for_each_entry_safe(p, n, list, list) {
1659 		int i;
1660 
1661 		for (i = 0; i < NR_CPUS; i++) {
1662 			if (cpu_to_cwq[i] == p)
1663 				cpu_to_cwq[i] = NULL;
1664 		}
1665 
1666 		if (p->irq) {
1667 			free_irq(p->irq, p);
1668 			p->irq = 0;
1669 		}
1670 		spu_queue_destroy(p);
1671 		list_del(&p->list);
1672 		kfree(p);
1673 	}
1674 }
1675 
1676 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1677  * gathering cpu membership information.
1678  */
1679 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1680 			       struct platform_device *dev,
1681 			       u64 node, struct spu_queue *p,
1682 			       struct spu_queue **table)
1683 {
1684 	u64 arc;
1685 
1686 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1687 		u64 tgt = mdesc_arc_target(mdesc, arc);
1688 		const char *name = mdesc_node_name(mdesc, tgt);
1689 		const u64 *id;
1690 
1691 		if (strcmp(name, "cpu"))
1692 			continue;
1693 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1694 		if (table[*id] != NULL) {
1695 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1696 				dev->dev.of_node);
1697 			return -EINVAL;
1698 		}
1699 		cpumask_set_cpu(*id, &p->sharing);
1700 		table[*id] = p;
1701 	}
1702 	return 0;
1703 }
1704 
1705 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1706 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1707 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1708 			    u64 node, const char *iname, unsigned long q_type,
1709 			    irq_handler_t handler, struct spu_queue **table)
1710 {
1711 	struct spu_queue *p;
1712 	int err;
1713 
1714 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1715 	if (!p) {
1716 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1717 			dev->dev.of_node);
1718 		return -ENOMEM;
1719 	}
1720 
1721 	cpumask_clear(&p->sharing);
1722 	spin_lock_init(&p->lock);
1723 	p->q_type = q_type;
1724 	INIT_LIST_HEAD(&p->jobs);
1725 	list_add(&p->list, list);
1726 
1727 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1728 	if (err)
1729 		return err;
1730 
1731 	err = spu_queue_setup(p);
1732 	if (err)
1733 		return err;
1734 
1735 	return spu_map_ino(dev, ip, iname, p, handler);
1736 }
1737 
1738 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1739 			  struct spu_mdesc_info *ip, struct list_head *list,
1740 			  const char *exec_name, unsigned long q_type,
1741 			  irq_handler_t handler, struct spu_queue **table)
1742 {
1743 	int err = 0;
1744 	u64 node;
1745 
1746 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1747 		const char *type;
1748 
1749 		type = mdesc_get_property(mdesc, node, "type", NULL);
1750 		if (!type || strcmp(type, exec_name))
1751 			continue;
1752 
1753 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1754 				       exec_name, q_type, handler, table);
1755 		if (err) {
1756 			spu_list_destroy(list);
1757 			break;
1758 		}
1759 	}
1760 
1761 	return err;
1762 }
1763 
1764 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1765 			 struct spu_mdesc_info *ip)
1766 {
1767 	const u64 *ino;
1768 	int ino_len;
1769 	int i;
1770 
1771 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1772 	if (!ino) {
1773 		printk("NO 'ino'\n");
1774 		return -ENODEV;
1775 	}
1776 
1777 	ip->num_intrs = ino_len / sizeof(u64);
1778 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1779 				 ip->num_intrs),
1780 				GFP_KERNEL);
1781 	if (!ip->ino_table)
1782 		return -ENOMEM;
1783 
1784 	for (i = 0; i < ip->num_intrs; i++) {
1785 		struct ino_blob *b = &ip->ino_table[i];
1786 		b->intr = i + 1;
1787 		b->ino = ino[i];
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1794 				struct platform_device *dev,
1795 				struct spu_mdesc_info *ip,
1796 				const char *node_name)
1797 {
1798 	const unsigned int *reg;
1799 	u64 node;
1800 
1801 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1802 	if (!reg)
1803 		return -ENODEV;
1804 
1805 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1806 		const char *name;
1807 		const u64 *chdl;
1808 
1809 		name = mdesc_get_property(mdesc, node, "name", NULL);
1810 		if (!name || strcmp(name, node_name))
1811 			continue;
1812 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1813 		if (!chdl || (*chdl != *reg))
1814 			continue;
1815 		ip->cfg_handle = *chdl;
1816 		return get_irq_props(mdesc, node, ip);
1817 	}
1818 
1819 	return -ENODEV;
1820 }
1821 
1822 static unsigned long n2_spu_hvapi_major;
1823 static unsigned long n2_spu_hvapi_minor;
1824 
1825 static int n2_spu_hvapi_register(void)
1826 {
1827 	int err;
1828 
1829 	n2_spu_hvapi_major = 2;
1830 	n2_spu_hvapi_minor = 0;
1831 
1832 	err = sun4v_hvapi_register(HV_GRP_NCS,
1833 				   n2_spu_hvapi_major,
1834 				   &n2_spu_hvapi_minor);
1835 
1836 	if (!err)
1837 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1838 			n2_spu_hvapi_major,
1839 			n2_spu_hvapi_minor);
1840 
1841 	return err;
1842 }
1843 
1844 static void n2_spu_hvapi_unregister(void)
1845 {
1846 	sun4v_hvapi_unregister(HV_GRP_NCS);
1847 }
1848 
1849 static int global_ref;
1850 
1851 static int grab_global_resources(void)
1852 {
1853 	int err = 0;
1854 
1855 	mutex_lock(&spu_lock);
1856 
1857 	if (global_ref++)
1858 		goto out;
1859 
1860 	err = n2_spu_hvapi_register();
1861 	if (err)
1862 		goto out;
1863 
1864 	err = queue_cache_init();
1865 	if (err)
1866 		goto out_hvapi_release;
1867 
1868 	err = -ENOMEM;
1869 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1870 			     GFP_KERNEL);
1871 	if (!cpu_to_cwq)
1872 		goto out_queue_cache_destroy;
1873 
1874 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1875 			     GFP_KERNEL);
1876 	if (!cpu_to_mau)
1877 		goto out_free_cwq_table;
1878 
1879 	err = 0;
1880 
1881 out:
1882 	if (err)
1883 		global_ref--;
1884 	mutex_unlock(&spu_lock);
1885 	return err;
1886 
1887 out_free_cwq_table:
1888 	kfree(cpu_to_cwq);
1889 	cpu_to_cwq = NULL;
1890 
1891 out_queue_cache_destroy:
1892 	queue_cache_destroy();
1893 
1894 out_hvapi_release:
1895 	n2_spu_hvapi_unregister();
1896 	goto out;
1897 }
1898 
1899 static void release_global_resources(void)
1900 {
1901 	mutex_lock(&spu_lock);
1902 	if (!--global_ref) {
1903 		kfree(cpu_to_cwq);
1904 		cpu_to_cwq = NULL;
1905 
1906 		kfree(cpu_to_mau);
1907 		cpu_to_mau = NULL;
1908 
1909 		queue_cache_destroy();
1910 		n2_spu_hvapi_unregister();
1911 	}
1912 	mutex_unlock(&spu_lock);
1913 }
1914 
1915 static struct n2_crypto *alloc_n2cp(void)
1916 {
1917 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1918 
1919 	if (np)
1920 		INIT_LIST_HEAD(&np->cwq_list);
1921 
1922 	return np;
1923 }
1924 
1925 static void free_n2cp(struct n2_crypto *np)
1926 {
1927 	kfree(np->cwq_info.ino_table);
1928 	np->cwq_info.ino_table = NULL;
1929 
1930 	kfree(np);
1931 }
1932 
1933 static void n2_spu_driver_version(void)
1934 {
1935 	static int n2_spu_version_printed;
1936 
1937 	if (n2_spu_version_printed++ == 0)
1938 		pr_info("%s", version);
1939 }
1940 
1941 static int n2_crypto_probe(struct platform_device *dev)
1942 {
1943 	struct mdesc_handle *mdesc;
1944 	struct n2_crypto *np;
1945 	int err;
1946 
1947 	n2_spu_driver_version();
1948 
1949 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1950 
1951 	np = alloc_n2cp();
1952 	if (!np) {
1953 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1954 			dev->dev.of_node);
1955 		return -ENOMEM;
1956 	}
1957 
1958 	err = grab_global_resources();
1959 	if (err) {
1960 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1961 			dev->dev.of_node);
1962 		goto out_free_n2cp;
1963 	}
1964 
1965 	mdesc = mdesc_grab();
1966 
1967 	if (!mdesc) {
1968 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1969 			dev->dev.of_node);
1970 		err = -ENODEV;
1971 		goto out_free_global;
1972 	}
1973 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1974 	if (err) {
1975 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1976 			dev->dev.of_node);
1977 		mdesc_release(mdesc);
1978 		goto out_free_global;
1979 	}
1980 
1981 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1982 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1983 			     cpu_to_cwq);
1984 	mdesc_release(mdesc);
1985 
1986 	if (err) {
1987 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1988 			dev->dev.of_node);
1989 		goto out_free_global;
1990 	}
1991 
1992 	err = n2_register_algs();
1993 	if (err) {
1994 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1995 			dev->dev.of_node);
1996 		goto out_free_spu_list;
1997 	}
1998 
1999 	dev_set_drvdata(&dev->dev, np);
2000 
2001 	return 0;
2002 
2003 out_free_spu_list:
2004 	spu_list_destroy(&np->cwq_list);
2005 
2006 out_free_global:
2007 	release_global_resources();
2008 
2009 out_free_n2cp:
2010 	free_n2cp(np);
2011 
2012 	return err;
2013 }
2014 
2015 static int n2_crypto_remove(struct platform_device *dev)
2016 {
2017 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2018 
2019 	n2_unregister_algs();
2020 
2021 	spu_list_destroy(&np->cwq_list);
2022 
2023 	release_global_resources();
2024 
2025 	free_n2cp(np);
2026 
2027 	return 0;
2028 }
2029 
2030 static struct n2_mau *alloc_ncp(void)
2031 {
2032 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2033 
2034 	if (mp)
2035 		INIT_LIST_HEAD(&mp->mau_list);
2036 
2037 	return mp;
2038 }
2039 
2040 static void free_ncp(struct n2_mau *mp)
2041 {
2042 	kfree(mp->mau_info.ino_table);
2043 	mp->mau_info.ino_table = NULL;
2044 
2045 	kfree(mp);
2046 }
2047 
2048 static int n2_mau_probe(struct platform_device *dev)
2049 {
2050 	struct mdesc_handle *mdesc;
2051 	struct n2_mau *mp;
2052 	int err;
2053 
2054 	n2_spu_driver_version();
2055 
2056 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2057 
2058 	mp = alloc_ncp();
2059 	if (!mp) {
2060 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2061 			dev->dev.of_node);
2062 		return -ENOMEM;
2063 	}
2064 
2065 	err = grab_global_resources();
2066 	if (err) {
2067 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2068 			dev->dev.of_node);
2069 		goto out_free_ncp;
2070 	}
2071 
2072 	mdesc = mdesc_grab();
2073 
2074 	if (!mdesc) {
2075 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2076 			dev->dev.of_node);
2077 		err = -ENODEV;
2078 		goto out_free_global;
2079 	}
2080 
2081 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2082 	if (err) {
2083 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2084 			dev->dev.of_node);
2085 		mdesc_release(mdesc);
2086 		goto out_free_global;
2087 	}
2088 
2089 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2090 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2091 			     cpu_to_mau);
2092 	mdesc_release(mdesc);
2093 
2094 	if (err) {
2095 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2096 			dev->dev.of_node);
2097 		goto out_free_global;
2098 	}
2099 
2100 	dev_set_drvdata(&dev->dev, mp);
2101 
2102 	return 0;
2103 
2104 out_free_global:
2105 	release_global_resources();
2106 
2107 out_free_ncp:
2108 	free_ncp(mp);
2109 
2110 	return err;
2111 }
2112 
2113 static int n2_mau_remove(struct platform_device *dev)
2114 {
2115 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2116 
2117 	spu_list_destroy(&mp->mau_list);
2118 
2119 	release_global_resources();
2120 
2121 	free_ncp(mp);
2122 
2123 	return 0;
2124 }
2125 
2126 static const struct of_device_id n2_crypto_match[] = {
2127 	{
2128 		.name = "n2cp",
2129 		.compatible = "SUNW,n2-cwq",
2130 	},
2131 	{
2132 		.name = "n2cp",
2133 		.compatible = "SUNW,vf-cwq",
2134 	},
2135 	{
2136 		.name = "n2cp",
2137 		.compatible = "SUNW,kt-cwq",
2138 	},
2139 	{},
2140 };
2141 
2142 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2143 
2144 static struct platform_driver n2_crypto_driver = {
2145 	.driver = {
2146 		.name		=	"n2cp",
2147 		.of_match_table	=	n2_crypto_match,
2148 	},
2149 	.probe		=	n2_crypto_probe,
2150 	.remove		=	n2_crypto_remove,
2151 };
2152 
2153 static const struct of_device_id n2_mau_match[] = {
2154 	{
2155 		.name = "ncp",
2156 		.compatible = "SUNW,n2-mau",
2157 	},
2158 	{
2159 		.name = "ncp",
2160 		.compatible = "SUNW,vf-mau",
2161 	},
2162 	{
2163 		.name = "ncp",
2164 		.compatible = "SUNW,kt-mau",
2165 	},
2166 	{},
2167 };
2168 
2169 MODULE_DEVICE_TABLE(of, n2_mau_match);
2170 
2171 static struct platform_driver n2_mau_driver = {
2172 	.driver = {
2173 		.name		=	"ncp",
2174 		.of_match_table	=	n2_mau_match,
2175 	},
2176 	.probe		=	n2_mau_probe,
2177 	.remove		=	n2_mau_remove,
2178 };
2179 
2180 static struct platform_driver * const drivers[] = {
2181 	&n2_crypto_driver,
2182 	&n2_mau_driver,
2183 };
2184 
2185 static int __init n2_init(void)
2186 {
2187 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2188 }
2189 
2190 static void __exit n2_exit(void)
2191 {
2192 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2193 }
2194 
2195 module_init(n2_init);
2196 module_exit(n2_exit);
2197