xref: /openbmc/linux/drivers/crypto/n2_core.c (revision 151f4e2b)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 struct spu_qreg {
69 	struct spu_queue	*queue;
70 	unsigned long		type;
71 };
72 
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75 
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 	if (q->q_type == HV_NCS_QTYPE_MAU) {
79 		off += MAU_ENTRY_SIZE;
80 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 			off = 0;
82 	} else {
83 		off += CWQ_ENTRY_SIZE;
84 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 			off = 0;
86 	}
87 	return off;
88 }
89 
90 struct n2_request_common {
91 	struct list_head	entry;
92 	unsigned int		offset;
93 };
94 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
95 
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 				unsigned long old_head, unsigned long new_head)
102 {
103 	if (old_head <= new_head) {
104 		if (offset > old_head && offset <= new_head)
105 			return true;
106 	} else {
107 		if (offset > old_head || offset <= new_head)
108 			return true;
109 	}
110 	return false;
111 }
112 
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 	unsigned long off, new_head, hv_ret;
121 	struct spu_queue *q = dev_id;
122 
123 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 	       smp_processor_id(), q->qhandle);
125 
126 	spin_lock(&q->lock);
127 
128 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129 
130 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 	       smp_processor_id(), new_head, hv_ret);
132 
133 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 		/* XXX ... XXX */
135 	}
136 
137 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 	if (hv_ret == HV_EOK)
139 		q->head = new_head;
140 
141 	spin_unlock(&q->lock);
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 	struct spu_queue *q = dev_id;
149 	unsigned long head, hv_ret;
150 
151 	spin_lock(&q->lock);
152 
153 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 	       smp_processor_id(), q->qhandle);
155 
156 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157 
158 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 	       smp_processor_id(), head, hv_ret);
160 
161 	sun4v_ncs_sethead_marker(q->qhandle, head);
162 
163 	spin_unlock(&q->lock);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 	return q->q + spu_next_offset(q, cur - q->q);
171 }
172 
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 	unsigned long head = q->head;
176 	unsigned long tail = q->tail;
177 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 	unsigned long diff;
179 
180 	if (head > tail)
181 		diff = head - tail;
182 	else
183 		diff = (end - tail) + head;
184 
185 	return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187 
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 	int avail = spu_queue_num_free(q);
191 
192 	if (avail >= num_entries)
193 		return q->q + q->tail;
194 
195 	return NULL;
196 }
197 
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 	unsigned long hv_ret, new_tail;
201 
202 	new_tail = spu_next_offset(q, last - q->q);
203 
204 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 	if (hv_ret == HV_EOK)
206 		q->tail = new_tail;
207 	return hv_ret;
208 }
209 
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 			     int enc_type, int auth_type,
212 			     unsigned int hash_len,
213 			     bool sfas, bool sob, bool eob, bool encrypt,
214 			     int opcode)
215 {
216 	u64 word = (len - 1) & CONTROL_LEN;
217 
218 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 	if (sfas)
222 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 	if (sob)
224 		word |= CONTROL_START_OF_BLOCK;
225 	if (eob)
226 		word |= CONTROL_END_OF_BLOCK;
227 	if (encrypt)
228 		word |= CONTROL_ENCRYPT;
229 	if (hmac_key_len)
230 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 	if (hash_len)
232 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 
234 	return word;
235 }
236 
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 	if (this_len >= 64 ||
241 	    qp->head != qp->tail)
242 		return true;
243 	return false;
244 }
245 #endif
246 
247 struct n2_ahash_alg {
248 	struct list_head	entry;
249 	const u8		*hash_zero;
250 	const u32		*hash_init;
251 	u8			hw_op_hashsz;
252 	u8			digest_size;
253 	u8			auth_type;
254 	u8			hmac_type;
255 	struct ahash_alg	alg;
256 };
257 
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 	struct crypto_alg *alg = tfm->__crt_alg;
261 	struct ahash_alg *ahash_alg;
262 
263 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264 
265 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267 
268 struct n2_hmac_alg {
269 	const char		*child_alg;
270 	struct n2_ahash_alg	derived;
271 };
272 
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 	struct crypto_alg *alg = tfm->__crt_alg;
276 	struct ahash_alg *ahash_alg;
277 
278 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279 
280 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282 
283 struct n2_hash_ctx {
284 	struct crypto_ahash		*fallback_tfm;
285 };
286 
287 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
288 
289 struct n2_hmac_ctx {
290 	struct n2_hash_ctx		base;
291 
292 	struct crypto_shash		*child_shash;
293 
294 	int				hash_key_len;
295 	unsigned char			hash_key[N2_HASH_KEY_MAX];
296 };
297 
298 struct n2_hash_req_ctx {
299 	union {
300 		struct md5_state	md5;
301 		struct sha1_state	sha1;
302 		struct sha256_state	sha256;
303 	} u;
304 
305 	struct ahash_request		fallback_req;
306 };
307 
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313 
314 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316 
317 	return crypto_ahash_init(&rctx->fallback_req);
318 }
319 
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325 
326 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 	rctx->fallback_req.nbytes = req->nbytes;
329 	rctx->fallback_req.src = req->src;
330 
331 	return crypto_ahash_update(&rctx->fallback_req);
332 }
333 
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339 
340 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 	rctx->fallback_req.result = req->result;
343 
344 	return crypto_ahash_final(&rctx->fallback_req);
345 }
346 
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352 
353 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 	rctx->fallback_req.nbytes = req->nbytes;
356 	rctx->fallback_req.src = req->src;
357 	rctx->fallback_req.result = req->result;
358 
359 	return crypto_ahash_finup(&rctx->fallback_req);
360 }
361 
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363 {
364 	return -ENOSYS;
365 }
366 
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368 {
369 	return -ENOSYS;
370 }
371 
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
373 {
374 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 	struct crypto_ahash *fallback_tfm;
378 	int err;
379 
380 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 					  CRYPTO_ALG_NEED_FALLBACK);
382 	if (IS_ERR(fallback_tfm)) {
383 		pr_warning("Fallback driver '%s' could not be loaded!\n",
384 			   fallback_driver_name);
385 		err = PTR_ERR(fallback_tfm);
386 		goto out;
387 	}
388 
389 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 					 crypto_ahash_reqsize(fallback_tfm)));
391 
392 	ctx->fallback_tfm = fallback_tfm;
393 	return 0;
394 
395 out:
396 	return err;
397 }
398 
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400 {
401 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403 
404 	crypto_free_ahash(ctx->fallback_tfm);
405 }
406 
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408 {
409 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 	struct crypto_ahash *fallback_tfm;
414 	struct crypto_shash *child_shash;
415 	int err;
416 
417 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 					  CRYPTO_ALG_NEED_FALLBACK);
419 	if (IS_ERR(fallback_tfm)) {
420 		pr_warning("Fallback driver '%s' could not be loaded!\n",
421 			   fallback_driver_name);
422 		err = PTR_ERR(fallback_tfm);
423 		goto out;
424 	}
425 
426 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 	if (IS_ERR(child_shash)) {
428 		pr_warning("Child shash '%s' could not be loaded!\n",
429 			   n2alg->child_alg);
430 		err = PTR_ERR(child_shash);
431 		goto out_free_fallback;
432 	}
433 
434 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 					 crypto_ahash_reqsize(fallback_tfm)));
436 
437 	ctx->child_shash = child_shash;
438 	ctx->base.fallback_tfm = fallback_tfm;
439 	return 0;
440 
441 out_free_fallback:
442 	crypto_free_ahash(fallback_tfm);
443 
444 out:
445 	return err;
446 }
447 
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449 {
450 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452 
453 	crypto_free_ahash(ctx->base.fallback_tfm);
454 	crypto_free_shash(ctx->child_shash);
455 }
456 
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458 				unsigned int keylen)
459 {
460 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 	struct crypto_shash *child_shash = ctx->child_shash;
462 	struct crypto_ahash *fallback_tfm;
463 	SHASH_DESC_ON_STACK(shash, child_shash);
464 	int err, bs, ds;
465 
466 	fallback_tfm = ctx->base.fallback_tfm;
467 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468 	if (err)
469 		return err;
470 
471 	shash->tfm = child_shash;
472 
473 	bs = crypto_shash_blocksize(child_shash);
474 	ds = crypto_shash_digestsize(child_shash);
475 	BUG_ON(ds > N2_HASH_KEY_MAX);
476 	if (keylen > bs) {
477 		err = crypto_shash_digest(shash, key, keylen,
478 					  ctx->hash_key);
479 		if (err)
480 			return err;
481 		keylen = ds;
482 	} else if (keylen <= N2_HASH_KEY_MAX)
483 		memcpy(ctx->hash_key, key, keylen);
484 
485 	ctx->hash_key_len = keylen;
486 
487 	return err;
488 }
489 
490 static unsigned long wait_for_tail(struct spu_queue *qp)
491 {
492 	unsigned long head, hv_ret;
493 
494 	do {
495 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
496 		if (hv_ret != HV_EOK) {
497 			pr_err("Hypervisor error on gethead\n");
498 			break;
499 		}
500 		if (head == qp->tail) {
501 			qp->head = head;
502 			break;
503 		}
504 	} while (1);
505 	return hv_ret;
506 }
507 
508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
509 					      struct cwq_initial_entry *ent)
510 {
511 	unsigned long hv_ret = spu_queue_submit(qp, ent);
512 
513 	if (hv_ret == HV_EOK)
514 		hv_ret = wait_for_tail(qp);
515 
516 	return hv_ret;
517 }
518 
519 static int n2_do_async_digest(struct ahash_request *req,
520 			      unsigned int auth_type, unsigned int digest_size,
521 			      unsigned int result_size, void *hash_loc,
522 			      unsigned long auth_key, unsigned int auth_key_len)
523 {
524 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
525 	struct cwq_initial_entry *ent;
526 	struct crypto_hash_walk walk;
527 	struct spu_queue *qp;
528 	unsigned long flags;
529 	int err = -ENODEV;
530 	int nbytes, cpu;
531 
532 	/* The total effective length of the operation may not
533 	 * exceed 2^16.
534 	 */
535 	if (unlikely(req->nbytes > (1 << 16))) {
536 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
537 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
538 
539 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
540 		rctx->fallback_req.base.flags =
541 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
542 		rctx->fallback_req.nbytes = req->nbytes;
543 		rctx->fallback_req.src = req->src;
544 		rctx->fallback_req.result = req->result;
545 
546 		return crypto_ahash_digest(&rctx->fallback_req);
547 	}
548 
549 	nbytes = crypto_hash_walk_first(req, &walk);
550 
551 	cpu = get_cpu();
552 	qp = cpu_to_cwq[cpu];
553 	if (!qp)
554 		goto out;
555 
556 	spin_lock_irqsave(&qp->lock, flags);
557 
558 	/* XXX can do better, improve this later by doing a by-hand scatterlist
559 	 * XXX walk, etc.
560 	 */
561 	ent = qp->q + qp->tail;
562 
563 	ent->control = control_word_base(nbytes, auth_key_len, 0,
564 					 auth_type, digest_size,
565 					 false, true, false, false,
566 					 OPCODE_INPLACE_BIT |
567 					 OPCODE_AUTH_MAC);
568 	ent->src_addr = __pa(walk.data);
569 	ent->auth_key_addr = auth_key;
570 	ent->auth_iv_addr = __pa(hash_loc);
571 	ent->final_auth_state_addr = 0UL;
572 	ent->enc_key_addr = 0UL;
573 	ent->enc_iv_addr = 0UL;
574 	ent->dest_addr = __pa(hash_loc);
575 
576 	nbytes = crypto_hash_walk_done(&walk, 0);
577 	while (nbytes > 0) {
578 		ent = spu_queue_next(qp, ent);
579 
580 		ent->control = (nbytes - 1);
581 		ent->src_addr = __pa(walk.data);
582 		ent->auth_key_addr = 0UL;
583 		ent->auth_iv_addr = 0UL;
584 		ent->final_auth_state_addr = 0UL;
585 		ent->enc_key_addr = 0UL;
586 		ent->enc_iv_addr = 0UL;
587 		ent->dest_addr = 0UL;
588 
589 		nbytes = crypto_hash_walk_done(&walk, 0);
590 	}
591 	ent->control |= CONTROL_END_OF_BLOCK;
592 
593 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
594 		err = -EINVAL;
595 	else
596 		err = 0;
597 
598 	spin_unlock_irqrestore(&qp->lock, flags);
599 
600 	if (!err)
601 		memcpy(req->result, hash_loc, result_size);
602 out:
603 	put_cpu();
604 
605 	return err;
606 }
607 
608 static int n2_hash_async_digest(struct ahash_request *req)
609 {
610 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
611 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
612 	int ds;
613 
614 	ds = n2alg->digest_size;
615 	if (unlikely(req->nbytes == 0)) {
616 		memcpy(req->result, n2alg->hash_zero, ds);
617 		return 0;
618 	}
619 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
620 
621 	return n2_do_async_digest(req, n2alg->auth_type,
622 				  n2alg->hw_op_hashsz, ds,
623 				  &rctx->u, 0UL, 0);
624 }
625 
626 static int n2_hmac_async_digest(struct ahash_request *req)
627 {
628 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
629 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
631 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
632 	int ds;
633 
634 	ds = n2alg->derived.digest_size;
635 	if (unlikely(req->nbytes == 0) ||
636 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
637 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
638 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
639 
640 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
641 		rctx->fallback_req.base.flags =
642 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
643 		rctx->fallback_req.nbytes = req->nbytes;
644 		rctx->fallback_req.src = req->src;
645 		rctx->fallback_req.result = req->result;
646 
647 		return crypto_ahash_digest(&rctx->fallback_req);
648 	}
649 	memcpy(&rctx->u, n2alg->derived.hash_init,
650 	       n2alg->derived.hw_op_hashsz);
651 
652 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
653 				  n2alg->derived.hw_op_hashsz, ds,
654 				  &rctx->u,
655 				  __pa(&ctx->hash_key),
656 				  ctx->hash_key_len);
657 }
658 
659 struct n2_cipher_context {
660 	int			key_len;
661 	int			enc_type;
662 	union {
663 		u8		aes[AES_MAX_KEY_SIZE];
664 		u8		des[DES_KEY_SIZE];
665 		u8		des3[3 * DES_KEY_SIZE];
666 		u8		arc4[258]; /* S-box, X, Y */
667 	} key;
668 };
669 
670 #define N2_CHUNK_ARR_LEN	16
671 
672 struct n2_crypto_chunk {
673 	struct list_head	entry;
674 	unsigned long		iv_paddr : 44;
675 	unsigned long		arr_len : 20;
676 	unsigned long		dest_paddr;
677 	unsigned long		dest_final;
678 	struct {
679 		unsigned long	src_paddr : 44;
680 		unsigned long	src_len : 20;
681 	} arr[N2_CHUNK_ARR_LEN];
682 };
683 
684 struct n2_request_context {
685 	struct ablkcipher_walk	walk;
686 	struct list_head	chunk_list;
687 	struct n2_crypto_chunk	chunk;
688 	u8			temp_iv[16];
689 };
690 
691 /* The SPU allows some level of flexibility for partial cipher blocks
692  * being specified in a descriptor.
693  *
694  * It merely requires that every descriptor's length field is at least
695  * as large as the cipher block size.  This means that a cipher block
696  * can span at most 2 descriptors.  However, this does not allow a
697  * partial block to span into the final descriptor as that would
698  * violate the rule (since every descriptor's length must be at lest
699  * the block size).  So, for example, assuming an 8 byte block size:
700  *
701  *	0xe --> 0xa --> 0x8
702  *
703  * is a valid length sequence, whereas:
704  *
705  *	0xe --> 0xb --> 0x7
706  *
707  * is not a valid sequence.
708  */
709 
710 struct n2_cipher_alg {
711 	struct list_head	entry;
712 	u8			enc_type;
713 	struct crypto_alg	alg;
714 };
715 
716 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
717 {
718 	struct crypto_alg *alg = tfm->__crt_alg;
719 
720 	return container_of(alg, struct n2_cipher_alg, alg);
721 }
722 
723 struct n2_cipher_request_context {
724 	struct ablkcipher_walk	walk;
725 };
726 
727 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
728 			 unsigned int keylen)
729 {
730 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
731 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
732 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
733 
734 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735 
736 	switch (keylen) {
737 	case AES_KEYSIZE_128:
738 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
739 		break;
740 	case AES_KEYSIZE_192:
741 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
742 		break;
743 	case AES_KEYSIZE_256:
744 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
745 		break;
746 	default:
747 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
748 		return -EINVAL;
749 	}
750 
751 	ctx->key_len = keylen;
752 	memcpy(ctx->key.aes, key, keylen);
753 	return 0;
754 }
755 
756 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
757 			 unsigned int keylen)
758 {
759 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
760 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
761 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
762 	u32 tmp[DES_EXPKEY_WORDS];
763 	int err;
764 
765 	ctx->enc_type = n2alg->enc_type;
766 
767 	if (keylen != DES_KEY_SIZE) {
768 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
769 		return -EINVAL;
770 	}
771 
772 	err = des_ekey(tmp, key);
773 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
774 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
775 		return -EINVAL;
776 	}
777 
778 	ctx->key_len = keylen;
779 	memcpy(ctx->key.des, key, keylen);
780 	return 0;
781 }
782 
783 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
784 			  unsigned int keylen)
785 {
786 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
787 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
788 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
789 	u32 flags;
790 	int err;
791 
792 	flags = crypto_ablkcipher_get_flags(cipher);
793 	err = __des3_verify_key(&flags, key);
794 	if (unlikely(err)) {
795 		crypto_ablkcipher_set_flags(cipher, flags);
796 		return err;
797 	}
798 
799 	ctx->enc_type = n2alg->enc_type;
800 
801 	ctx->key_len = keylen;
802 	memcpy(ctx->key.des3, key, keylen);
803 	return 0;
804 }
805 
806 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
807 			  unsigned int keylen)
808 {
809 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
810 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
811 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
812 	u8 *s = ctx->key.arc4;
813 	u8 *x = s + 256;
814 	u8 *y = x + 1;
815 	int i, j, k;
816 
817 	ctx->enc_type = n2alg->enc_type;
818 
819 	j = k = 0;
820 	*x = 0;
821 	*y = 0;
822 	for (i = 0; i < 256; i++)
823 		s[i] = i;
824 	for (i = 0; i < 256; i++) {
825 		u8 a = s[i];
826 		j = (j + key[k] + a) & 0xff;
827 		s[i] = s[j];
828 		s[j] = a;
829 		if (++k >= keylen)
830 			k = 0;
831 	}
832 
833 	return 0;
834 }
835 
836 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
837 {
838 	int this_len = nbytes;
839 
840 	this_len -= (nbytes & (block_size - 1));
841 	return this_len > (1 << 16) ? (1 << 16) : this_len;
842 }
843 
844 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
845 			    struct spu_queue *qp, bool encrypt)
846 {
847 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
848 	struct cwq_initial_entry *ent;
849 	bool in_place;
850 	int i;
851 
852 	ent = spu_queue_alloc(qp, cp->arr_len);
853 	if (!ent) {
854 		pr_info("queue_alloc() of %d fails\n",
855 			cp->arr_len);
856 		return -EBUSY;
857 	}
858 
859 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
860 
861 	ent->control = control_word_base(cp->arr[0].src_len,
862 					 0, ctx->enc_type, 0, 0,
863 					 false, true, false, encrypt,
864 					 OPCODE_ENCRYPT |
865 					 (in_place ? OPCODE_INPLACE_BIT : 0));
866 	ent->src_addr = cp->arr[0].src_paddr;
867 	ent->auth_key_addr = 0UL;
868 	ent->auth_iv_addr = 0UL;
869 	ent->final_auth_state_addr = 0UL;
870 	ent->enc_key_addr = __pa(&ctx->key);
871 	ent->enc_iv_addr = cp->iv_paddr;
872 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
873 
874 	for (i = 1; i < cp->arr_len; i++) {
875 		ent = spu_queue_next(qp, ent);
876 
877 		ent->control = cp->arr[i].src_len - 1;
878 		ent->src_addr = cp->arr[i].src_paddr;
879 		ent->auth_key_addr = 0UL;
880 		ent->auth_iv_addr = 0UL;
881 		ent->final_auth_state_addr = 0UL;
882 		ent->enc_key_addr = 0UL;
883 		ent->enc_iv_addr = 0UL;
884 		ent->dest_addr = 0UL;
885 	}
886 	ent->control |= CONTROL_END_OF_BLOCK;
887 
888 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
889 }
890 
891 static int n2_compute_chunks(struct ablkcipher_request *req)
892 {
893 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
894 	struct ablkcipher_walk *walk = &rctx->walk;
895 	struct n2_crypto_chunk *chunk;
896 	unsigned long dest_prev;
897 	unsigned int tot_len;
898 	bool prev_in_place;
899 	int err, nbytes;
900 
901 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
902 	err = ablkcipher_walk_phys(req, walk);
903 	if (err)
904 		return err;
905 
906 	INIT_LIST_HEAD(&rctx->chunk_list);
907 
908 	chunk = &rctx->chunk;
909 	INIT_LIST_HEAD(&chunk->entry);
910 
911 	chunk->iv_paddr = 0UL;
912 	chunk->arr_len = 0;
913 	chunk->dest_paddr = 0UL;
914 
915 	prev_in_place = false;
916 	dest_prev = ~0UL;
917 	tot_len = 0;
918 
919 	while ((nbytes = walk->nbytes) != 0) {
920 		unsigned long dest_paddr, src_paddr;
921 		bool in_place;
922 		int this_len;
923 
924 		src_paddr = (page_to_phys(walk->src.page) +
925 			     walk->src.offset);
926 		dest_paddr = (page_to_phys(walk->dst.page) +
927 			      walk->dst.offset);
928 		in_place = (src_paddr == dest_paddr);
929 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
930 
931 		if (chunk->arr_len != 0) {
932 			if (in_place != prev_in_place ||
933 			    (!prev_in_place &&
934 			     dest_paddr != dest_prev) ||
935 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
936 			    tot_len + this_len > (1 << 16)) {
937 				chunk->dest_final = dest_prev;
938 				list_add_tail(&chunk->entry,
939 					      &rctx->chunk_list);
940 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
941 				if (!chunk) {
942 					err = -ENOMEM;
943 					break;
944 				}
945 				INIT_LIST_HEAD(&chunk->entry);
946 			}
947 		}
948 		if (chunk->arr_len == 0) {
949 			chunk->dest_paddr = dest_paddr;
950 			tot_len = 0;
951 		}
952 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
953 		chunk->arr[chunk->arr_len].src_len = this_len;
954 		chunk->arr_len++;
955 
956 		dest_prev = dest_paddr + this_len;
957 		prev_in_place = in_place;
958 		tot_len += this_len;
959 
960 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
961 		if (err)
962 			break;
963 	}
964 	if (!err && chunk->arr_len != 0) {
965 		chunk->dest_final = dest_prev;
966 		list_add_tail(&chunk->entry, &rctx->chunk_list);
967 	}
968 
969 	return err;
970 }
971 
972 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
973 {
974 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
975 	struct n2_crypto_chunk *c, *tmp;
976 
977 	if (final_iv)
978 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
979 
980 	ablkcipher_walk_complete(&rctx->walk);
981 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
982 		list_del(&c->entry);
983 		if (unlikely(c != &rctx->chunk))
984 			kfree(c);
985 	}
986 
987 }
988 
989 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
990 {
991 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
992 	struct crypto_tfm *tfm = req->base.tfm;
993 	int err = n2_compute_chunks(req);
994 	struct n2_crypto_chunk *c, *tmp;
995 	unsigned long flags, hv_ret;
996 	struct spu_queue *qp;
997 
998 	if (err)
999 		return err;
1000 
1001 	qp = cpu_to_cwq[get_cpu()];
1002 	err = -ENODEV;
1003 	if (!qp)
1004 		goto out;
1005 
1006 	spin_lock_irqsave(&qp->lock, flags);
1007 
1008 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1009 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1010 		if (err)
1011 			break;
1012 		list_del(&c->entry);
1013 		if (unlikely(c != &rctx->chunk))
1014 			kfree(c);
1015 	}
1016 	if (!err) {
1017 		hv_ret = wait_for_tail(qp);
1018 		if (hv_ret != HV_EOK)
1019 			err = -EINVAL;
1020 	}
1021 
1022 	spin_unlock_irqrestore(&qp->lock, flags);
1023 
1024 out:
1025 	put_cpu();
1026 
1027 	n2_chunk_complete(req, NULL);
1028 	return err;
1029 }
1030 
1031 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1032 {
1033 	return n2_do_ecb(req, true);
1034 }
1035 
1036 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1037 {
1038 	return n2_do_ecb(req, false);
1039 }
1040 
1041 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1042 {
1043 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1044 	struct crypto_tfm *tfm = req->base.tfm;
1045 	unsigned long flags, hv_ret, iv_paddr;
1046 	int err = n2_compute_chunks(req);
1047 	struct n2_crypto_chunk *c, *tmp;
1048 	struct spu_queue *qp;
1049 	void *final_iv_addr;
1050 
1051 	final_iv_addr = NULL;
1052 
1053 	if (err)
1054 		return err;
1055 
1056 	qp = cpu_to_cwq[get_cpu()];
1057 	err = -ENODEV;
1058 	if (!qp)
1059 		goto out;
1060 
1061 	spin_lock_irqsave(&qp->lock, flags);
1062 
1063 	if (encrypt) {
1064 		iv_paddr = __pa(rctx->walk.iv);
1065 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1066 					 entry) {
1067 			c->iv_paddr = iv_paddr;
1068 			err = __n2_crypt_chunk(tfm, c, qp, true);
1069 			if (err)
1070 				break;
1071 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1072 			list_del(&c->entry);
1073 			if (unlikely(c != &rctx->chunk))
1074 				kfree(c);
1075 		}
1076 		final_iv_addr = __va(iv_paddr);
1077 	} else {
1078 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1079 						 entry) {
1080 			if (c == &rctx->chunk) {
1081 				iv_paddr = __pa(rctx->walk.iv);
1082 			} else {
1083 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1084 					    tmp->arr[tmp->arr_len-1].src_len -
1085 					    rctx->walk.blocksize);
1086 			}
1087 			if (!final_iv_addr) {
1088 				unsigned long pa;
1089 
1090 				pa = (c->arr[c->arr_len-1].src_paddr +
1091 				      c->arr[c->arr_len-1].src_len -
1092 				      rctx->walk.blocksize);
1093 				final_iv_addr = rctx->temp_iv;
1094 				memcpy(rctx->temp_iv, __va(pa),
1095 				       rctx->walk.blocksize);
1096 			}
1097 			c->iv_paddr = iv_paddr;
1098 			err = __n2_crypt_chunk(tfm, c, qp, false);
1099 			if (err)
1100 				break;
1101 			list_del(&c->entry);
1102 			if (unlikely(c != &rctx->chunk))
1103 				kfree(c);
1104 		}
1105 	}
1106 	if (!err) {
1107 		hv_ret = wait_for_tail(qp);
1108 		if (hv_ret != HV_EOK)
1109 			err = -EINVAL;
1110 	}
1111 
1112 	spin_unlock_irqrestore(&qp->lock, flags);
1113 
1114 out:
1115 	put_cpu();
1116 
1117 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1118 	return err;
1119 }
1120 
1121 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1122 {
1123 	return n2_do_chaining(req, true);
1124 }
1125 
1126 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1127 {
1128 	return n2_do_chaining(req, false);
1129 }
1130 
1131 struct n2_cipher_tmpl {
1132 	const char		*name;
1133 	const char		*drv_name;
1134 	u8			block_size;
1135 	u8			enc_type;
1136 	struct ablkcipher_alg	ablkcipher;
1137 };
1138 
1139 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1140 	/* ARC4: only ECB is supported (chaining bits ignored) */
1141 	{	.name		= "ecb(arc4)",
1142 		.drv_name	= "ecb-arc4",
1143 		.block_size	= 1,
1144 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1145 				   ENC_TYPE_CHAINING_ECB),
1146 		.ablkcipher	= {
1147 			.min_keysize	= 1,
1148 			.max_keysize	= 256,
1149 			.setkey		= n2_arc4_setkey,
1150 			.encrypt	= n2_encrypt_ecb,
1151 			.decrypt	= n2_decrypt_ecb,
1152 		},
1153 	},
1154 
1155 	/* DES: ECB CBC and CFB are supported */
1156 	{	.name		= "ecb(des)",
1157 		.drv_name	= "ecb-des",
1158 		.block_size	= DES_BLOCK_SIZE,
1159 		.enc_type	= (ENC_TYPE_ALG_DES |
1160 				   ENC_TYPE_CHAINING_ECB),
1161 		.ablkcipher	= {
1162 			.min_keysize	= DES_KEY_SIZE,
1163 			.max_keysize	= DES_KEY_SIZE,
1164 			.setkey		= n2_des_setkey,
1165 			.encrypt	= n2_encrypt_ecb,
1166 			.decrypt	= n2_decrypt_ecb,
1167 		},
1168 	},
1169 	{	.name		= "cbc(des)",
1170 		.drv_name	= "cbc-des",
1171 		.block_size	= DES_BLOCK_SIZE,
1172 		.enc_type	= (ENC_TYPE_ALG_DES |
1173 				   ENC_TYPE_CHAINING_CBC),
1174 		.ablkcipher	= {
1175 			.ivsize		= DES_BLOCK_SIZE,
1176 			.min_keysize	= DES_KEY_SIZE,
1177 			.max_keysize	= DES_KEY_SIZE,
1178 			.setkey		= n2_des_setkey,
1179 			.encrypt	= n2_encrypt_chaining,
1180 			.decrypt	= n2_decrypt_chaining,
1181 		},
1182 	},
1183 	{	.name		= "cfb(des)",
1184 		.drv_name	= "cfb-des",
1185 		.block_size	= DES_BLOCK_SIZE,
1186 		.enc_type	= (ENC_TYPE_ALG_DES |
1187 				   ENC_TYPE_CHAINING_CFB),
1188 		.ablkcipher	= {
1189 			.min_keysize	= DES_KEY_SIZE,
1190 			.max_keysize	= DES_KEY_SIZE,
1191 			.setkey		= n2_des_setkey,
1192 			.encrypt	= n2_encrypt_chaining,
1193 			.decrypt	= n2_decrypt_chaining,
1194 		},
1195 	},
1196 
1197 	/* 3DES: ECB CBC and CFB are supported */
1198 	{	.name		= "ecb(des3_ede)",
1199 		.drv_name	= "ecb-3des",
1200 		.block_size	= DES_BLOCK_SIZE,
1201 		.enc_type	= (ENC_TYPE_ALG_3DES |
1202 				   ENC_TYPE_CHAINING_ECB),
1203 		.ablkcipher	= {
1204 			.min_keysize	= 3 * DES_KEY_SIZE,
1205 			.max_keysize	= 3 * DES_KEY_SIZE,
1206 			.setkey		= n2_3des_setkey,
1207 			.encrypt	= n2_encrypt_ecb,
1208 			.decrypt	= n2_decrypt_ecb,
1209 		},
1210 	},
1211 	{	.name		= "cbc(des3_ede)",
1212 		.drv_name	= "cbc-3des",
1213 		.block_size	= DES_BLOCK_SIZE,
1214 		.enc_type	= (ENC_TYPE_ALG_3DES |
1215 				   ENC_TYPE_CHAINING_CBC),
1216 		.ablkcipher	= {
1217 			.ivsize		= DES_BLOCK_SIZE,
1218 			.min_keysize	= 3 * DES_KEY_SIZE,
1219 			.max_keysize	= 3 * DES_KEY_SIZE,
1220 			.setkey		= n2_3des_setkey,
1221 			.encrypt	= n2_encrypt_chaining,
1222 			.decrypt	= n2_decrypt_chaining,
1223 		},
1224 	},
1225 	{	.name		= "cfb(des3_ede)",
1226 		.drv_name	= "cfb-3des",
1227 		.block_size	= DES_BLOCK_SIZE,
1228 		.enc_type	= (ENC_TYPE_ALG_3DES |
1229 				   ENC_TYPE_CHAINING_CFB),
1230 		.ablkcipher	= {
1231 			.min_keysize	= 3 * DES_KEY_SIZE,
1232 			.max_keysize	= 3 * DES_KEY_SIZE,
1233 			.setkey		= n2_3des_setkey,
1234 			.encrypt	= n2_encrypt_chaining,
1235 			.decrypt	= n2_decrypt_chaining,
1236 		},
1237 	},
1238 	/* AES: ECB CBC and CTR are supported */
1239 	{	.name		= "ecb(aes)",
1240 		.drv_name	= "ecb-aes",
1241 		.block_size	= AES_BLOCK_SIZE,
1242 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1243 				   ENC_TYPE_CHAINING_ECB),
1244 		.ablkcipher	= {
1245 			.min_keysize	= AES_MIN_KEY_SIZE,
1246 			.max_keysize	= AES_MAX_KEY_SIZE,
1247 			.setkey		= n2_aes_setkey,
1248 			.encrypt	= n2_encrypt_ecb,
1249 			.decrypt	= n2_decrypt_ecb,
1250 		},
1251 	},
1252 	{	.name		= "cbc(aes)",
1253 		.drv_name	= "cbc-aes",
1254 		.block_size	= AES_BLOCK_SIZE,
1255 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1256 				   ENC_TYPE_CHAINING_CBC),
1257 		.ablkcipher	= {
1258 			.ivsize		= AES_BLOCK_SIZE,
1259 			.min_keysize	= AES_MIN_KEY_SIZE,
1260 			.max_keysize	= AES_MAX_KEY_SIZE,
1261 			.setkey		= n2_aes_setkey,
1262 			.encrypt	= n2_encrypt_chaining,
1263 			.decrypt	= n2_decrypt_chaining,
1264 		},
1265 	},
1266 	{	.name		= "ctr(aes)",
1267 		.drv_name	= "ctr-aes",
1268 		.block_size	= AES_BLOCK_SIZE,
1269 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1270 				   ENC_TYPE_CHAINING_COUNTER),
1271 		.ablkcipher	= {
1272 			.ivsize		= AES_BLOCK_SIZE,
1273 			.min_keysize	= AES_MIN_KEY_SIZE,
1274 			.max_keysize	= AES_MAX_KEY_SIZE,
1275 			.setkey		= n2_aes_setkey,
1276 			.encrypt	= n2_encrypt_chaining,
1277 			.decrypt	= n2_encrypt_chaining,
1278 		},
1279 	},
1280 
1281 };
1282 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1283 
1284 static LIST_HEAD(cipher_algs);
1285 
1286 struct n2_hash_tmpl {
1287 	const char	*name;
1288 	const u8	*hash_zero;
1289 	const u32	*hash_init;
1290 	u8		hw_op_hashsz;
1291 	u8		digest_size;
1292 	u8		block_size;
1293 	u8		auth_type;
1294 	u8		hmac_type;
1295 };
1296 
1297 static const u32 md5_init[MD5_HASH_WORDS] = {
1298 	cpu_to_le32(MD5_H0),
1299 	cpu_to_le32(MD5_H1),
1300 	cpu_to_le32(MD5_H2),
1301 	cpu_to_le32(MD5_H3),
1302 };
1303 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1304 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1305 };
1306 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1307 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1308 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1309 };
1310 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1311 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1312 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1313 };
1314 
1315 static const struct n2_hash_tmpl hash_tmpls[] = {
1316 	{ .name		= "md5",
1317 	  .hash_zero	= md5_zero_message_hash,
1318 	  .hash_init	= md5_init,
1319 	  .auth_type	= AUTH_TYPE_MD5,
1320 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1321 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1322 	  .digest_size	= MD5_DIGEST_SIZE,
1323 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1324 	{ .name		= "sha1",
1325 	  .hash_zero	= sha1_zero_message_hash,
1326 	  .hash_init	= sha1_init,
1327 	  .auth_type	= AUTH_TYPE_SHA1,
1328 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1329 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1330 	  .digest_size	= SHA1_DIGEST_SIZE,
1331 	  .block_size	= SHA1_BLOCK_SIZE },
1332 	{ .name		= "sha256",
1333 	  .hash_zero	= sha256_zero_message_hash,
1334 	  .hash_init	= sha256_init,
1335 	  .auth_type	= AUTH_TYPE_SHA256,
1336 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1337 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1338 	  .digest_size	= SHA256_DIGEST_SIZE,
1339 	  .block_size	= SHA256_BLOCK_SIZE },
1340 	{ .name		= "sha224",
1341 	  .hash_zero	= sha224_zero_message_hash,
1342 	  .hash_init	= sha224_init,
1343 	  .auth_type	= AUTH_TYPE_SHA256,
1344 	  .hmac_type	= AUTH_TYPE_RESERVED,
1345 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1346 	  .digest_size	= SHA224_DIGEST_SIZE,
1347 	  .block_size	= SHA224_BLOCK_SIZE },
1348 };
1349 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1350 
1351 static LIST_HEAD(ahash_algs);
1352 static LIST_HEAD(hmac_algs);
1353 
1354 static int algs_registered;
1355 
1356 static void __n2_unregister_algs(void)
1357 {
1358 	struct n2_cipher_alg *cipher, *cipher_tmp;
1359 	struct n2_ahash_alg *alg, *alg_tmp;
1360 	struct n2_hmac_alg *hmac, *hmac_tmp;
1361 
1362 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1363 		crypto_unregister_alg(&cipher->alg);
1364 		list_del(&cipher->entry);
1365 		kfree(cipher);
1366 	}
1367 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1368 		crypto_unregister_ahash(&hmac->derived.alg);
1369 		list_del(&hmac->derived.entry);
1370 		kfree(hmac);
1371 	}
1372 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1373 		crypto_unregister_ahash(&alg->alg);
1374 		list_del(&alg->entry);
1375 		kfree(alg);
1376 	}
1377 }
1378 
1379 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1380 {
1381 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1382 	return 0;
1383 }
1384 
1385 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1386 {
1387 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1388 	struct crypto_alg *alg;
1389 	int err;
1390 
1391 	if (!p)
1392 		return -ENOMEM;
1393 
1394 	alg = &p->alg;
1395 
1396 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1397 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1398 	alg->cra_priority = N2_CRA_PRIORITY;
1399 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1400 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1401 	alg->cra_blocksize = tmpl->block_size;
1402 	p->enc_type = tmpl->enc_type;
1403 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1404 	alg->cra_type = &crypto_ablkcipher_type;
1405 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1406 	alg->cra_init = n2_cipher_cra_init;
1407 	alg->cra_module = THIS_MODULE;
1408 
1409 	list_add(&p->entry, &cipher_algs);
1410 	err = crypto_register_alg(alg);
1411 	if (err) {
1412 		pr_err("%s alg registration failed\n", alg->cra_name);
1413 		list_del(&p->entry);
1414 		kfree(p);
1415 	} else {
1416 		pr_info("%s alg registered\n", alg->cra_name);
1417 	}
1418 	return err;
1419 }
1420 
1421 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1422 {
1423 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1424 	struct ahash_alg *ahash;
1425 	struct crypto_alg *base;
1426 	int err;
1427 
1428 	if (!p)
1429 		return -ENOMEM;
1430 
1431 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1432 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1433 	INIT_LIST_HEAD(&p->derived.entry);
1434 
1435 	ahash = &p->derived.alg;
1436 	ahash->digest = n2_hmac_async_digest;
1437 	ahash->setkey = n2_hmac_async_setkey;
1438 
1439 	base = &ahash->halg.base;
1440 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1441 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1442 
1443 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1444 	base->cra_init = n2_hmac_cra_init;
1445 	base->cra_exit = n2_hmac_cra_exit;
1446 
1447 	list_add(&p->derived.entry, &hmac_algs);
1448 	err = crypto_register_ahash(ahash);
1449 	if (err) {
1450 		pr_err("%s alg registration failed\n", base->cra_name);
1451 		list_del(&p->derived.entry);
1452 		kfree(p);
1453 	} else {
1454 		pr_info("%s alg registered\n", base->cra_name);
1455 	}
1456 	return err;
1457 }
1458 
1459 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1460 {
1461 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1462 	struct hash_alg_common *halg;
1463 	struct crypto_alg *base;
1464 	struct ahash_alg *ahash;
1465 	int err;
1466 
1467 	if (!p)
1468 		return -ENOMEM;
1469 
1470 	p->hash_zero = tmpl->hash_zero;
1471 	p->hash_init = tmpl->hash_init;
1472 	p->auth_type = tmpl->auth_type;
1473 	p->hmac_type = tmpl->hmac_type;
1474 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1475 	p->digest_size = tmpl->digest_size;
1476 
1477 	ahash = &p->alg;
1478 	ahash->init = n2_hash_async_init;
1479 	ahash->update = n2_hash_async_update;
1480 	ahash->final = n2_hash_async_final;
1481 	ahash->finup = n2_hash_async_finup;
1482 	ahash->digest = n2_hash_async_digest;
1483 	ahash->export = n2_hash_async_noexport;
1484 	ahash->import = n2_hash_async_noimport;
1485 
1486 	halg = &ahash->halg;
1487 	halg->digestsize = tmpl->digest_size;
1488 
1489 	base = &halg->base;
1490 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1491 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1492 	base->cra_priority = N2_CRA_PRIORITY;
1493 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1494 			  CRYPTO_ALG_NEED_FALLBACK;
1495 	base->cra_blocksize = tmpl->block_size;
1496 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1497 	base->cra_module = THIS_MODULE;
1498 	base->cra_init = n2_hash_cra_init;
1499 	base->cra_exit = n2_hash_cra_exit;
1500 
1501 	list_add(&p->entry, &ahash_algs);
1502 	err = crypto_register_ahash(ahash);
1503 	if (err) {
1504 		pr_err("%s alg registration failed\n", base->cra_name);
1505 		list_del(&p->entry);
1506 		kfree(p);
1507 	} else {
1508 		pr_info("%s alg registered\n", base->cra_name);
1509 	}
1510 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1511 		err = __n2_register_one_hmac(p);
1512 	return err;
1513 }
1514 
1515 static int n2_register_algs(void)
1516 {
1517 	int i, err = 0;
1518 
1519 	mutex_lock(&spu_lock);
1520 	if (algs_registered++)
1521 		goto out;
1522 
1523 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1524 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1525 		if (err) {
1526 			__n2_unregister_algs();
1527 			goto out;
1528 		}
1529 	}
1530 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1531 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1532 		if (err) {
1533 			__n2_unregister_algs();
1534 			goto out;
1535 		}
1536 	}
1537 
1538 out:
1539 	mutex_unlock(&spu_lock);
1540 	return err;
1541 }
1542 
1543 static void n2_unregister_algs(void)
1544 {
1545 	mutex_lock(&spu_lock);
1546 	if (!--algs_registered)
1547 		__n2_unregister_algs();
1548 	mutex_unlock(&spu_lock);
1549 }
1550 
1551 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1552  * a devino.  This isn't very useful to us because all of the
1553  * interrupts listed in the device_node have been translated to
1554  * Linux virtual IRQ cookie numbers.
1555  *
1556  * So we have to back-translate, going through the 'intr' and 'ino'
1557  * property tables of the n2cp MDESC node, matching it with the OF
1558  * 'interrupts' property entries, in order to to figure out which
1559  * devino goes to which already-translated IRQ.
1560  */
1561 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1562 			     unsigned long dev_ino)
1563 {
1564 	const unsigned int *dev_intrs;
1565 	unsigned int intr;
1566 	int i;
1567 
1568 	for (i = 0; i < ip->num_intrs; i++) {
1569 		if (ip->ino_table[i].ino == dev_ino)
1570 			break;
1571 	}
1572 	if (i == ip->num_intrs)
1573 		return -ENODEV;
1574 
1575 	intr = ip->ino_table[i].intr;
1576 
1577 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1578 	if (!dev_intrs)
1579 		return -ENODEV;
1580 
1581 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1582 		if (dev_intrs[i] == intr)
1583 			return i;
1584 	}
1585 
1586 	return -ENODEV;
1587 }
1588 
1589 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1590 		       const char *irq_name, struct spu_queue *p,
1591 		       irq_handler_t handler)
1592 {
1593 	unsigned long herr;
1594 	int index;
1595 
1596 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1597 	if (herr)
1598 		return -EINVAL;
1599 
1600 	index = find_devino_index(dev, ip, p->devino);
1601 	if (index < 0)
1602 		return index;
1603 
1604 	p->irq = dev->archdata.irqs[index];
1605 
1606 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1607 
1608 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1609 }
1610 
1611 static struct kmem_cache *queue_cache[2];
1612 
1613 static void *new_queue(unsigned long q_type)
1614 {
1615 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1616 }
1617 
1618 static void free_queue(void *p, unsigned long q_type)
1619 {
1620 	kmem_cache_free(queue_cache[q_type - 1], p);
1621 }
1622 
1623 static int queue_cache_init(void)
1624 {
1625 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1626 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1627 			kmem_cache_create("mau_queue",
1628 					  (MAU_NUM_ENTRIES *
1629 					   MAU_ENTRY_SIZE),
1630 					  MAU_ENTRY_SIZE, 0, NULL);
1631 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1632 		return -ENOMEM;
1633 
1634 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1635 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1636 			kmem_cache_create("cwq_queue",
1637 					  (CWQ_NUM_ENTRIES *
1638 					   CWQ_ENTRY_SIZE),
1639 					  CWQ_ENTRY_SIZE, 0, NULL);
1640 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1641 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1642 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1643 		return -ENOMEM;
1644 	}
1645 	return 0;
1646 }
1647 
1648 static void queue_cache_destroy(void)
1649 {
1650 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1651 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1652 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1653 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1654 }
1655 
1656 static long spu_queue_register_workfn(void *arg)
1657 {
1658 	struct spu_qreg *qr = arg;
1659 	struct spu_queue *p = qr->queue;
1660 	unsigned long q_type = qr->type;
1661 	unsigned long hv_ret;
1662 
1663 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1664 				 CWQ_NUM_ENTRIES, &p->qhandle);
1665 	if (!hv_ret)
1666 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1667 
1668 	return hv_ret ? -EINVAL : 0;
1669 }
1670 
1671 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1672 {
1673 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1674 	struct spu_qreg qr = { .queue = p, .type = q_type };
1675 
1676 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1677 }
1678 
1679 static int spu_queue_setup(struct spu_queue *p)
1680 {
1681 	int err;
1682 
1683 	p->q = new_queue(p->q_type);
1684 	if (!p->q)
1685 		return -ENOMEM;
1686 
1687 	err = spu_queue_register(p, p->q_type);
1688 	if (err) {
1689 		free_queue(p->q, p->q_type);
1690 		p->q = NULL;
1691 	}
1692 
1693 	return err;
1694 }
1695 
1696 static void spu_queue_destroy(struct spu_queue *p)
1697 {
1698 	unsigned long hv_ret;
1699 
1700 	if (!p->q)
1701 		return;
1702 
1703 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1704 
1705 	if (!hv_ret)
1706 		free_queue(p->q, p->q_type);
1707 }
1708 
1709 static void spu_list_destroy(struct list_head *list)
1710 {
1711 	struct spu_queue *p, *n;
1712 
1713 	list_for_each_entry_safe(p, n, list, list) {
1714 		int i;
1715 
1716 		for (i = 0; i < NR_CPUS; i++) {
1717 			if (cpu_to_cwq[i] == p)
1718 				cpu_to_cwq[i] = NULL;
1719 		}
1720 
1721 		if (p->irq) {
1722 			free_irq(p->irq, p);
1723 			p->irq = 0;
1724 		}
1725 		spu_queue_destroy(p);
1726 		list_del(&p->list);
1727 		kfree(p);
1728 	}
1729 }
1730 
1731 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1732  * gathering cpu membership information.
1733  */
1734 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1735 			       struct platform_device *dev,
1736 			       u64 node, struct spu_queue *p,
1737 			       struct spu_queue **table)
1738 {
1739 	u64 arc;
1740 
1741 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1742 		u64 tgt = mdesc_arc_target(mdesc, arc);
1743 		const char *name = mdesc_node_name(mdesc, tgt);
1744 		const u64 *id;
1745 
1746 		if (strcmp(name, "cpu"))
1747 			continue;
1748 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1749 		if (table[*id] != NULL) {
1750 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1751 				dev->dev.of_node);
1752 			return -EINVAL;
1753 		}
1754 		cpumask_set_cpu(*id, &p->sharing);
1755 		table[*id] = p;
1756 	}
1757 	return 0;
1758 }
1759 
1760 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1761 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1762 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1763 			    u64 node, const char *iname, unsigned long q_type,
1764 			    irq_handler_t handler, struct spu_queue **table)
1765 {
1766 	struct spu_queue *p;
1767 	int err;
1768 
1769 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1770 	if (!p) {
1771 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1772 			dev->dev.of_node);
1773 		return -ENOMEM;
1774 	}
1775 
1776 	cpumask_clear(&p->sharing);
1777 	spin_lock_init(&p->lock);
1778 	p->q_type = q_type;
1779 	INIT_LIST_HEAD(&p->jobs);
1780 	list_add(&p->list, list);
1781 
1782 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1783 	if (err)
1784 		return err;
1785 
1786 	err = spu_queue_setup(p);
1787 	if (err)
1788 		return err;
1789 
1790 	return spu_map_ino(dev, ip, iname, p, handler);
1791 }
1792 
1793 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1794 			  struct spu_mdesc_info *ip, struct list_head *list,
1795 			  const char *exec_name, unsigned long q_type,
1796 			  irq_handler_t handler, struct spu_queue **table)
1797 {
1798 	int err = 0;
1799 	u64 node;
1800 
1801 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1802 		const char *type;
1803 
1804 		type = mdesc_get_property(mdesc, node, "type", NULL);
1805 		if (!type || strcmp(type, exec_name))
1806 			continue;
1807 
1808 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1809 				       exec_name, q_type, handler, table);
1810 		if (err) {
1811 			spu_list_destroy(list);
1812 			break;
1813 		}
1814 	}
1815 
1816 	return err;
1817 }
1818 
1819 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1820 			 struct spu_mdesc_info *ip)
1821 {
1822 	const u64 *ino;
1823 	int ino_len;
1824 	int i;
1825 
1826 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1827 	if (!ino) {
1828 		printk("NO 'ino'\n");
1829 		return -ENODEV;
1830 	}
1831 
1832 	ip->num_intrs = ino_len / sizeof(u64);
1833 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1834 				 ip->num_intrs),
1835 				GFP_KERNEL);
1836 	if (!ip->ino_table)
1837 		return -ENOMEM;
1838 
1839 	for (i = 0; i < ip->num_intrs; i++) {
1840 		struct ino_blob *b = &ip->ino_table[i];
1841 		b->intr = i + 1;
1842 		b->ino = ino[i];
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1849 				struct platform_device *dev,
1850 				struct spu_mdesc_info *ip,
1851 				const char *node_name)
1852 {
1853 	const unsigned int *reg;
1854 	u64 node;
1855 
1856 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1857 	if (!reg)
1858 		return -ENODEV;
1859 
1860 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1861 		const char *name;
1862 		const u64 *chdl;
1863 
1864 		name = mdesc_get_property(mdesc, node, "name", NULL);
1865 		if (!name || strcmp(name, node_name))
1866 			continue;
1867 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1868 		if (!chdl || (*chdl != *reg))
1869 			continue;
1870 		ip->cfg_handle = *chdl;
1871 		return get_irq_props(mdesc, node, ip);
1872 	}
1873 
1874 	return -ENODEV;
1875 }
1876 
1877 static unsigned long n2_spu_hvapi_major;
1878 static unsigned long n2_spu_hvapi_minor;
1879 
1880 static int n2_spu_hvapi_register(void)
1881 {
1882 	int err;
1883 
1884 	n2_spu_hvapi_major = 2;
1885 	n2_spu_hvapi_minor = 0;
1886 
1887 	err = sun4v_hvapi_register(HV_GRP_NCS,
1888 				   n2_spu_hvapi_major,
1889 				   &n2_spu_hvapi_minor);
1890 
1891 	if (!err)
1892 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1893 			n2_spu_hvapi_major,
1894 			n2_spu_hvapi_minor);
1895 
1896 	return err;
1897 }
1898 
1899 static void n2_spu_hvapi_unregister(void)
1900 {
1901 	sun4v_hvapi_unregister(HV_GRP_NCS);
1902 }
1903 
1904 static int global_ref;
1905 
1906 static int grab_global_resources(void)
1907 {
1908 	int err = 0;
1909 
1910 	mutex_lock(&spu_lock);
1911 
1912 	if (global_ref++)
1913 		goto out;
1914 
1915 	err = n2_spu_hvapi_register();
1916 	if (err)
1917 		goto out;
1918 
1919 	err = queue_cache_init();
1920 	if (err)
1921 		goto out_hvapi_release;
1922 
1923 	err = -ENOMEM;
1924 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1925 			     GFP_KERNEL);
1926 	if (!cpu_to_cwq)
1927 		goto out_queue_cache_destroy;
1928 
1929 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1930 			     GFP_KERNEL);
1931 	if (!cpu_to_mau)
1932 		goto out_free_cwq_table;
1933 
1934 	err = 0;
1935 
1936 out:
1937 	if (err)
1938 		global_ref--;
1939 	mutex_unlock(&spu_lock);
1940 	return err;
1941 
1942 out_free_cwq_table:
1943 	kfree(cpu_to_cwq);
1944 	cpu_to_cwq = NULL;
1945 
1946 out_queue_cache_destroy:
1947 	queue_cache_destroy();
1948 
1949 out_hvapi_release:
1950 	n2_spu_hvapi_unregister();
1951 	goto out;
1952 }
1953 
1954 static void release_global_resources(void)
1955 {
1956 	mutex_lock(&spu_lock);
1957 	if (!--global_ref) {
1958 		kfree(cpu_to_cwq);
1959 		cpu_to_cwq = NULL;
1960 
1961 		kfree(cpu_to_mau);
1962 		cpu_to_mau = NULL;
1963 
1964 		queue_cache_destroy();
1965 		n2_spu_hvapi_unregister();
1966 	}
1967 	mutex_unlock(&spu_lock);
1968 }
1969 
1970 static struct n2_crypto *alloc_n2cp(void)
1971 {
1972 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1973 
1974 	if (np)
1975 		INIT_LIST_HEAD(&np->cwq_list);
1976 
1977 	return np;
1978 }
1979 
1980 static void free_n2cp(struct n2_crypto *np)
1981 {
1982 	kfree(np->cwq_info.ino_table);
1983 	np->cwq_info.ino_table = NULL;
1984 
1985 	kfree(np);
1986 }
1987 
1988 static void n2_spu_driver_version(void)
1989 {
1990 	static int n2_spu_version_printed;
1991 
1992 	if (n2_spu_version_printed++ == 0)
1993 		pr_info("%s", version);
1994 }
1995 
1996 static int n2_crypto_probe(struct platform_device *dev)
1997 {
1998 	struct mdesc_handle *mdesc;
1999 	struct n2_crypto *np;
2000 	int err;
2001 
2002 	n2_spu_driver_version();
2003 
2004 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2005 
2006 	np = alloc_n2cp();
2007 	if (!np) {
2008 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2009 			dev->dev.of_node);
2010 		return -ENOMEM;
2011 	}
2012 
2013 	err = grab_global_resources();
2014 	if (err) {
2015 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2016 			dev->dev.of_node);
2017 		goto out_free_n2cp;
2018 	}
2019 
2020 	mdesc = mdesc_grab();
2021 
2022 	if (!mdesc) {
2023 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2024 			dev->dev.of_node);
2025 		err = -ENODEV;
2026 		goto out_free_global;
2027 	}
2028 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2029 	if (err) {
2030 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2031 			dev->dev.of_node);
2032 		mdesc_release(mdesc);
2033 		goto out_free_global;
2034 	}
2035 
2036 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2037 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2038 			     cpu_to_cwq);
2039 	mdesc_release(mdesc);
2040 
2041 	if (err) {
2042 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2043 			dev->dev.of_node);
2044 		goto out_free_global;
2045 	}
2046 
2047 	err = n2_register_algs();
2048 	if (err) {
2049 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2050 			dev->dev.of_node);
2051 		goto out_free_spu_list;
2052 	}
2053 
2054 	dev_set_drvdata(&dev->dev, np);
2055 
2056 	return 0;
2057 
2058 out_free_spu_list:
2059 	spu_list_destroy(&np->cwq_list);
2060 
2061 out_free_global:
2062 	release_global_resources();
2063 
2064 out_free_n2cp:
2065 	free_n2cp(np);
2066 
2067 	return err;
2068 }
2069 
2070 static int n2_crypto_remove(struct platform_device *dev)
2071 {
2072 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2073 
2074 	n2_unregister_algs();
2075 
2076 	spu_list_destroy(&np->cwq_list);
2077 
2078 	release_global_resources();
2079 
2080 	free_n2cp(np);
2081 
2082 	return 0;
2083 }
2084 
2085 static struct n2_mau *alloc_ncp(void)
2086 {
2087 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2088 
2089 	if (mp)
2090 		INIT_LIST_HEAD(&mp->mau_list);
2091 
2092 	return mp;
2093 }
2094 
2095 static void free_ncp(struct n2_mau *mp)
2096 {
2097 	kfree(mp->mau_info.ino_table);
2098 	mp->mau_info.ino_table = NULL;
2099 
2100 	kfree(mp);
2101 }
2102 
2103 static int n2_mau_probe(struct platform_device *dev)
2104 {
2105 	struct mdesc_handle *mdesc;
2106 	struct n2_mau *mp;
2107 	int err;
2108 
2109 	n2_spu_driver_version();
2110 
2111 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2112 
2113 	mp = alloc_ncp();
2114 	if (!mp) {
2115 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2116 			dev->dev.of_node);
2117 		return -ENOMEM;
2118 	}
2119 
2120 	err = grab_global_resources();
2121 	if (err) {
2122 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2123 			dev->dev.of_node);
2124 		goto out_free_ncp;
2125 	}
2126 
2127 	mdesc = mdesc_grab();
2128 
2129 	if (!mdesc) {
2130 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2131 			dev->dev.of_node);
2132 		err = -ENODEV;
2133 		goto out_free_global;
2134 	}
2135 
2136 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2137 	if (err) {
2138 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2139 			dev->dev.of_node);
2140 		mdesc_release(mdesc);
2141 		goto out_free_global;
2142 	}
2143 
2144 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2145 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2146 			     cpu_to_mau);
2147 	mdesc_release(mdesc);
2148 
2149 	if (err) {
2150 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2151 			dev->dev.of_node);
2152 		goto out_free_global;
2153 	}
2154 
2155 	dev_set_drvdata(&dev->dev, mp);
2156 
2157 	return 0;
2158 
2159 out_free_global:
2160 	release_global_resources();
2161 
2162 out_free_ncp:
2163 	free_ncp(mp);
2164 
2165 	return err;
2166 }
2167 
2168 static int n2_mau_remove(struct platform_device *dev)
2169 {
2170 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2171 
2172 	spu_list_destroy(&mp->mau_list);
2173 
2174 	release_global_resources();
2175 
2176 	free_ncp(mp);
2177 
2178 	return 0;
2179 }
2180 
2181 static const struct of_device_id n2_crypto_match[] = {
2182 	{
2183 		.name = "n2cp",
2184 		.compatible = "SUNW,n2-cwq",
2185 	},
2186 	{
2187 		.name = "n2cp",
2188 		.compatible = "SUNW,vf-cwq",
2189 	},
2190 	{
2191 		.name = "n2cp",
2192 		.compatible = "SUNW,kt-cwq",
2193 	},
2194 	{},
2195 };
2196 
2197 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2198 
2199 static struct platform_driver n2_crypto_driver = {
2200 	.driver = {
2201 		.name		=	"n2cp",
2202 		.of_match_table	=	n2_crypto_match,
2203 	},
2204 	.probe		=	n2_crypto_probe,
2205 	.remove		=	n2_crypto_remove,
2206 };
2207 
2208 static const struct of_device_id n2_mau_match[] = {
2209 	{
2210 		.name = "ncp",
2211 		.compatible = "SUNW,n2-mau",
2212 	},
2213 	{
2214 		.name = "ncp",
2215 		.compatible = "SUNW,vf-mau",
2216 	},
2217 	{
2218 		.name = "ncp",
2219 		.compatible = "SUNW,kt-mau",
2220 	},
2221 	{},
2222 };
2223 
2224 MODULE_DEVICE_TABLE(of, n2_mau_match);
2225 
2226 static struct platform_driver n2_mau_driver = {
2227 	.driver = {
2228 		.name		=	"ncp",
2229 		.of_match_table	=	n2_mau_match,
2230 	},
2231 	.probe		=	n2_mau_probe,
2232 	.remove		=	n2_mau_remove,
2233 };
2234 
2235 static struct platform_driver * const drivers[] = {
2236 	&n2_crypto_driver,
2237 	&n2_mau_driver,
2238 };
2239 
2240 static int __init n2_init(void)
2241 {
2242 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2243 }
2244 
2245 static void __exit n2_exit(void)
2246 {
2247 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2248 }
2249 
2250 module_init(n2_init);
2251 module_exit(n2_exit);
2252